Research Article

Apo和结合MDM2蛋白的动态特征揭示了抑制剂识别抗癌活性的机制

卷 30, 期 10, 2023

发表于: 24 October, 2022

页: [1193 - 1206] 页: 14

弟呕挨: 10.2174/0929867329666220610194919

价格: $65

摘要

背景:小鼠双分钟 2 同系物 (MDM2) 致癌蛋白是 p53 肿瘤抑制基因的主要细胞拮抗剂。通过在分子水平上抑制 MDM2-P53 相互作用来恢复 p53 活性,由于其有前途的抗癌作用,已成为癌症研究的基石。天然医药产品具有多种化学结构,是药物发现的重要来源。 α-山竹素 (AM) 和藤黄酸 (G250) 是植物来源的化合物,在体外和体内对 MDM2-P53 相互作用显示出抑制作用。 方法:尽管许多临床研究对 α-山竹素和藤黄酸与 MDM2 结合所表现出的结构机制的分子理解进行了更深入的了解,但仍然至关重要。在这项研究中,对每个 Apo 和结合的 p53 和 MDM2 蛋白进行了比较分子动力学模拟,以阐明 MDM2-p53 相互作用并更好地了解抑制机制。 结果:结果揭示了 MDM2-p53 相互作用裂缝内 AM 和 G250 的原子相互作用。这两种化合物都介导 p53 氨基末端结构域的 α 螺旋基序之间的相互作用,这导致正交相对残基之间的显着分离,特别是分别是 p53 和 MDM2 的 Lys8 和 Gly47 残基。在 AM 和 G250(分别为 ~0.04 nm 和 ~2.3 nm)的每个残基波动中观察到幅度的对比变化。回转半径(分别为 ~0.03 nm 和 0.04 nm)、C-alpha 偏差(分别为 ~0.06 nm 和 0.1 nm)。发现 AM 的酚基与 MDM2 的 Glu28 和 His96 残基建立了氢相互作用。 G250 的三氧六环也与 MDM2 的 Lys51 和 Leu26 残基形成氢键相互作用。 结论:利用本研究中每种化合物所采用的抑制结合模式所提供的信息,可能进一步有助于癌症治疗的定制设计。

关键词: MDM2,p53,α-倒捡子素(AM),甘博酸(G250),抗癌,动力学模拟

« Previous
[1]
Al-Harbi, L.N.; Subash-Babu, P.; Binobead, M.A.; Alhussain, M.H.; AlSedairy, S.A.; Aloud, A.A.; Alshatwi, A.A. Potential metabolite nymphayol isolated from water lily (Nymphaea stellata) flower inhibits MCF-7 human breast cancer cell growth via upregulation of CDKN2A, pRb2, p53 and Downregulation of PCNA mRNA Expressions. Metabolites, 2020, 10(7), 280.
[http://dx.doi.org/10.3390/metabo10070280] [PMID: 32650545]
[2]
Vousden, K.H.; Prives, C. Blinded by the light: The growing complexity of p53. Cell, 2009, 137(3), 413-431.
[http://dx.doi.org/10.1016/j.cell.2009.04.037] [PMID: 19410540]
[3]
Xu, X.H.; Liu, Q.Y.; Li, T.; Liu, J.L.; Chen, X.; Huang, L.; Qiang, W.A.; Chen, X.; Wang, Y.; Lin, L.G.; Lu, J.J. Garcinone E induces apoptosis and inhibits migration and invasion in ovarian cancer cells. Sci. Rep., 2017, 7(1), 10718.
[http://dx.doi.org/10.1038/s41598-017-11417-4] [PMID: 28878295]
[4]
Wang, W.; Hu, Y. Small molecule agents targeting the p53-MDM2 pathway for cancer therapy. Med. Res. Rev., 2012, 32(6), 1159-1196.
[http://dx.doi.org/10.1002/med.20236] [PMID: 23059763]
[5]
Moll, U.M.; Petrenko, O. The MDM2-p53 interaction. Mol. Cancer Res., 2003, 1(14), 1001-1008.
[PMID: 14707283]
[6]
Kussie, P. H.; Gorina, S.; Marechal, V.; Elenbaas, B.; Moreau, J.; Levine, A. J.; Pavletich, N. P. Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science, 1996, 274(5289), 948-953.
[http://dx.doi.org/10.1126/science.274.5289.948]
[7]
Fu, T.; Min, H.; Xu, Y.; Chen, J.; Li, G. Molecular dynamic simulation insights into the normal state and restoration of p53 function. Int. J. Mol. Sci., 2012, 13(8), 9709-9740.
[http://dx.doi.org/10.3390/ijms13089709] [PMID: 22949826]
[8]
Pedraza-Chaverri, J.; Cárdenas-Rodríguez, N.; Orozco-Ibarra, M.; Pérez-Rojas, J.M. Medicinal properties of mangosteen (Garcinia mangostana). Food Chem. Toxicol., 2008, 46(10), 3227-3239.
[http://dx.doi.org/10.1016/j.fct.2008.07.024] [PMID: 18725264]
[9]
Chantarasriwong, O.; Batova, A.; Chavasiri, W.; Theodorakis, E.A. Chemistry and biology of the caged Garcinia xanthones. Chemistry, 2010, 16(33), 9944-9962.
[http://dx.doi.org/10.1002/chem.201000741] [PMID: 20648491]
[10]
Chitchumroonchokchai, C.; Thomas-Ahner, J.M.; Li, J.; Riedl, K.M.; Nontakham, J.; Suksumrarn, S.; Clinton, S.K.; Kinghorn, A.D.; Failla, M.L. Anti-tumorigenicity of dietary α-mangostin in an HT-29 colon cell xenograft model and the tissue distribution of xanthones and their phase II metabolites. Mol. Nutr. Food Res., 2013, 57(2), 203-211.
[http://dx.doi.org/10.1002/mnfr.201200539] [PMID: 23239542]
[11]
Zhao, J.; Qi, Q.; Yang, Y.; Gu, H-Y.; Lu, N.; Liu, W.; Wang, W.; Qiang, L.; Zhang, L-B.; You, Q-D.; Guo, Q-L. Inhibition of alpha(4) integrin mediated adhesion was involved in the reduction of B16-F10 melanoma cells lung colonization in C57BL/6 mice treated with gambogic acid. Eur. J. Pharmacol., 2008, 589(1-3), 127-131.
[http://dx.doi.org/10.1016/j.ejphar.2008.04.063] [PMID: 18539272]
[12]
Lemos, A.; Gomes, A.S.; Loureiro, J.B.; Brandão, P.; Palmeira, A.; Pinto, M.M.M.; Saraiva, L.; Sousa, M.E. Synthesis, biological evaluation, and in silico studies of novel aminated xanthones as potential p53-activating agents. Molecules, 2019, 24(10), E1975.
[http://dx.doi.org/10.3390/molecules24101975] [PMID: 31121972]
[13]
Liu, J.; Zhang, J.; Wang, H.; Liu, Z.; Zhang, C.; Jiang, Z.; Chen, H. Synthesis of xanthone derivatives and studies on the inhibition against cancer cells growth and synergistic combinations of them. Eur. J. Med. Chem., 2017, 133, 50-61.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.068] [PMID: 28376372]
[14]
Kaomongkolgit, R.; Chaisomboon, N.; Pavasant, P. Apoptotic effect of alpha-mangostin on head and neck squamous carcinoma cells. Arch. Oral Biol., 2011, 56(5), 483-490.
[http://dx.doi.org/10.1016/j.archoralbio.2010.10.023] [PMID: 21106189]
[15]
Gu, H.; Wang, X.; Rao, S.; Wang, J.; Zhao, J.; Ren, F.L.; Mu, R.; Yang, Y.; Qi, Q.; Liu, W.; Lu, N.; Ling, H.; You, Q.; Guo, Q. Gambogic acid mediates apoptosis as a p53 inducer through down-regulation of MDM2 in wild-type p53-expressing cancer cells. Mol. Cancer Ther., 2008, 7(10), 3298-3305.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0212] [PMID: 18852133]
[16]
Leão, M.; Gomes, S.; Pedraza-Chaverri, J.; Machado, N.; Sousa, E.; Pinto, M.; Inga, A.; Pereira, C.; Saraiva, L. Α-mangostin and gambogic acid as potential inhibitors of the p53-MDM2 interaction revealed by a yeast approach. J. Nat. Prod., 2013, 76(4), 774-778.
[http://dx.doi.org/10.1021/np400049j] [PMID: 23540934]
[17]
Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera--a visualization system for exploratory research and analysis. J. Comput. Chem., 2004, 25(13), 1605-1612.
[http://dx.doi.org/10.1002/jcc.20084] [PMID: 15264254]
[18]
Webb, B.; Sali, A. Protein structure modeling with modeller. In: Protein Structure Prediction. Methods in Molecular Biology (Methods and Protocols); Humana Press: New York, NY, 2014; p. 1137.
[http://dx.doi.org/10.1007/978-1-4939-0366-5_1]
[19]
Kim, S.; Thiessen, P.A.; Bolton, E.E.; Chen, J.; Fu, G.; Gindulyte, A.; Han, L.; He, J.; He, S.; Shoemaker, B.A.; Wang, J.; Yu, B.; Zhang, J.; Bryant, S.H. PubChem substance and compound databases. Nucleic Acids Res., 2016, 44(D1), D1202-D1213.
[http://dx.doi.org/10.1093/nar/gkv951] [PMID: 26400175]
[20]
Hospital, A.; Goñi, J.R.; Orozco, M.; Gelpí, J.L. Molecular dynamics simulations: Advances and applications. Adv. Appl. Bioinform. Chem., 2015, 8, 37-47.
[http://dx.doi.org/10.2147/AABC.S70333] [PMID: 26604800]
[21]
Lee, T-S.; Cerutti, D.S.; Mermelstein, D.; Lin, C.; LeGrand, S.; Giese, T.J.; Roitberg, A.; Case, D.A.; Walker, R.C.; York, D.M. GPU-accelerated molecular dynamics and free energy methods in amber18: Performance enhancements and new features. J. Chem. Inf. Model., 2018, 58(10), 2043-2050.
[http://dx.doi.org/10.1021/acs.jcim.8b00462] [PMID: 30199633]
[22]
Wang, J.; Wang, W.; Kollman, P.A.; Case, D.A. Automatic atom type and bond type perception in molecular mechanical calculations. J. Mol. Graph. Model., 2006, 25(2), 247-260.
[http://dx.doi.org/10.1016/j.jmgm.2005.12.005] [PMID: 16458552]
[23]
Berendsen, H.J.C.; Postma, J.P.M.; van Gunsteren, W.F.; DiNola, A.; Haak, J.R. Molecular dynamics with coupling to an external bath. J. Chem. Phys., 1984, 81(8), 3684.
[http://dx.doi.org/10.1063/1.448118]
[24]
Bakan, A.; Meireles, L.M.; Bahar, I. ProDy: Protein dynamics inferred from theory and experiments. Bioinformatics, 2011, 27(11), 1575-1577.
[http://dx.doi.org/10.1093/bioinformatics/btr168] [PMID: 21471012]
[25]
Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph., 1996, 14(1), 33-38.
[http://dx.doi.org/10.1016/0263-7855(96)00018-5] [PMID: 8744570]
[26]
Roe, D.R.; Cheatham, T.E., III PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. J. Chem. Theory Comput., 2013, 9(7), 3084-3095.
[http://dx.doi.org/10.1021/ct400341p] [PMID: 26583988]
[27]
Seifert, E. OriginPro 9.1: Scientific data analysis and graphing software-software review. J. Chem. Inf. Model., 2014, 54(5), 1552.
[http://dx.doi.org/10.1021/ci500161d] [PMID: 24702057]
[28]
Genheden, S.; Ryde, U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin. Drug Discov., 2015, 10(5), 449-461.
[http://dx.doi.org/10.1517/17460441.2015.1032936] [PMID: 25835573]
[29]
Drissi, M.; Benhalima, N.; Megrouss, Y.; Rachida, R.; Chouaih, A.; Hamzaoui, F. Theoretical and experimental electrostatic potential around the m-nitrophenol molecule. Molecules, 2015, 20(3), 4042-4054.
[http://dx.doi.org/10.3390/molecules20034042] [PMID: 25741898]
[30]
M., J.; Archontis, G. MM-GB(PB)SA Calculations of Protein-Ligand Binding Free Energies. In: Molecular Dynamics - Studies of Synthetic and Biological Macromolecules; InTech, 2012.
[http://dx.doi.org/10.5772/37107]
[31]
Hou, T.; Wang, J.; Li, Y.; Wang, W. Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. J. Chem. Inf. Model., 2011, 51(1), 69-82.
[http://dx.doi.org/10.1021/ci100275a] [PMID: 21117705]
[32]
Sitkoff, D.; Sharp, K.A.; Honig, B. Accurate calculation of hydration free energies using macroscopic solvent models. J. Phys. Chem., 1994, 98(7), 43.
[http://dx.doi.org/10.1021/j100058a043]
[33]
Li, M-H.; Luo, Q.; Xue, X-G.; Li, Z-S. Molecular dynamics studies of the 3D structure and planar ligand binding of a quadruplex dimer. J. Mol. Model., 2011, 17(3), 515-526.
[http://dx.doi.org/10.1007/s00894-010-0746-0] [PMID: 20508957]
[34]
Ali, S.A.; Hassan, M.I.; Islam, A.; Ahmad, F. A review of methods available to estimate solvent-accessible surface areas of soluble proteins in the folded and unfolded states. Curr. Protein Pept. Sci., 2014, 15(5), 456-476.
[http://dx.doi.org/10.2174/1389203715666140327114232] [PMID: 24678666]
[35]
Richmond, T.J. Solvent accessible surface area and excluded volume in proteins. Analytical equations for overlapping spheres and implications for the hydrophobic effect. J. Mol. Biol., 1984, 178(1), 63-89.
[http://dx.doi.org/10.1016/0022-2836(84)90231-6] [PMID: 6548264]
[36]
Cournia, Z.; Allen, B.; Sherman, W. Relative binding free energy calculations in drug discovery: Recent advances and practical considerations. J. Chem. Inf. Model., 2017, 57(12), 2911-2937.
[http://dx.doi.org/10.1021/acs.jcim.7b00564] [PMID: 29243483]
[37]
El Habbash, A.I.; Mohd Hashim, N.; Ibrahim, M.Y.; Yahayu, M.; Omer, F.A.E.; Abd Rahman, M.; Nordin, N.; Lian, G.E.C. In vitro assessment of anti-proliferative effect induced by α-mangostin from Cratoxylum arborescens on HeLa cells. PeerJ, 2017, 5(7), e3460.
[http://dx.doi.org/10.7717/peerj.3460] [PMID: 28740747]
[38]
Li, C.; Qi, Q.; Lu, N.; Dai, Q.; Li, F.; Wang, X.; You, Q.; Guo, Q. Gambogic acid promotes apoptosis and resistance to metastatic potential in MDA-MB-231 human breast carcinoma cells. Biochem. Cell Biol., 2012, 90(6), 718-730.
[http://dx.doi.org/10.1139/o2012-030] [PMID: 23194187]
[39]
Shehu, A.; Kavraki, L.E. Modeling structures and motions of loops in protein molecules. Entropy (Basel), 2012, 2012, e14020252.
[http://dx.doi.org/10.3390/e14020252]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy