Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Multivariate Models of Blood Glucose Prediction in Type1 Diabetes: A Survey of the State-of-the-art

Author(s): Sunny Arora, Shailender Kumar* and Pardeep Kumar

Volume 24, Issue 4, 2023

Published on: 14 September, 2022

Page: [532 - 552] Pages: 21

DOI: 10.2174/1389201023666220603092433

Price: $65

Abstract

Diabetes mellitus is a long-term chronicle disorder with a high prevalence rate worldwide. Continuous blood glucose and lifestyle monitoring enabled the control of blood glucose dynamics through machine learning applications using data created by various popular sensors. This survey aims to assess various classical time series, neural networks and state-of-the-art regression models based on a wide variety of machine learning techniques to predict blood glucose and hyper/hypoglycemia in Type 1 diabetic patients. The analysis covers blood glucose prediction modeling, regression, hyper/hypoglycemia alerts, diabetes diagnosis, monitoring, and management. However, the primary focus is on evaluating models for the prediction of Type 1 diabetes. A wide variety of machine learning algorithms have been explored to implement precision medicine by clinicians and provide patients with an early warning system. The automated pancreas may benefit from predictions and alerts of hyper and hypoglycemia.

Keywords: Machine learning, type1 diabetes, regression, glucose prediction, hyperglycemia prediction, diabetes mellitus.

Graphical Abstract
[1]
Röder, P.V.; Wu, B.; Liu, Y.; Han, W. Pancreatic regulation of glucose homeostasis. Exp. Mol. Med., 2016, 48(48), e219.
[http://dx.doi.org/10.1038/emm.2016.6] [PMID: 26964835]
[2]
Care, D.; Suppl, S.S. American Diabetes Association. 2. Classification and diagnosis of diabetes: Standards of medical care in diabetes-2019. Diabetes Care, 2019, 42(1), S13-S28.
[http://dx.doi.org/10.2337/dc19-S002] [PMID: 30559228]
[3]
Mauricio, D.; Alonso, N.; Gratacòs, M. Chronic diabetes complications: The need to move beyond classical concepts. Trends Endocrinol. Metab., 2020, 31(4), 287-295.
[http://dx.doi.org/10.1016/j.tem.2020.01.007] [PMID: 32033865]
[4]
Internation Diabetes Federation. IDF Diabetes Atlas 7th ed.; 2015. Available from https://diabetesatlas.org/atlas/seventh-edition/
[5]
Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet, 2016, 388(10053), 1659-1724.
[http://dx.doi.org/10.1016/S0140-6736(16)31679-8]
[6]
Internation Diabetes Federation. IDF Diabetes Atlas 9th ed.; 2019. Available from https://www.idf.org/e-library/epidemiology-research/diabetes-atlas/159-idf-diabetes-atlas-ninth-edition-2019.html
[7]
Wang, W.; Liu, H.; Xiao, S.; Liu, S.; Li, X.; Yu, P. Effects of insulin plus glucagon-like peptide-1 receptor agonists (GLP-1RAs) in treating type 1 diabetes mellitus: A systematic review and meta-analysis. Diabetes Ther., 2017, 8(4), 727-738.
[http://dx.doi.org/10.1007/s13300-017-0282-3] [PMID: 28616805]
[8]
Care, D.; Suppl, S.S. American Diabetes Association. Pharmacologic approaches to glycemic treatment: Standards of medical care in diabetes-2021. Diabetes Care, 2021, 44(S1), S111-S124.
[http://dx.doi.org/10.2337/dc21-S009] [PMID: 33298420]
[9]
Villena, G.W.; Mobashsher, A.T.; Abbosh, A. The progress of glucose monitoring-a review of invasive to minimally and non-invasive techniques, devices and sensors. Sensors (Basel), 2019, 19(4), E800.
[http://dx.doi.org/10.3390/s19040800] [PMID: 30781431]
[10]
Cappon, G.; Acciaroli, G.; Vettoretti, M.; Facchinetti, A.; Sparacino, G. Wearable continuous glucose monitoring sensors: A revolution in diabetes treatment. Electronics, 2017, 6(3), 1-16.
[http://dx.doi.org/10.3390/electronics6030065]
[11]
Liebl, A.; Henrichs, H.R.; Heinemann, L.; Freckmann, G.; Biermann, E.; Thomas, A. Continuous glucose monitoring: Evidence and consensus statement for clinical use. J. Diabetes Sci. Technol., 2013, 7(2), 500-519.
[http://dx.doi.org/10.1177/193229681300700227] [PMID: 23567009]
[12]
Langendam, M.; Luijf, Y.M.; Hooft, L.; Devries, J.H.; Mudde, A.H.; Scholten, R.J.P.M. Continuous glucose monitoring systems for type 1 diabetes mellitus. Cochrane Database Syst. Rev., 2012, 1(12), CD008101.
[http://dx.doi.org/10.1002/14651858.CD008101.pub2] [PMID: 22258980]
[13]
American Diabetes Association. Insulin administration. Diabetes Care, 2004, 27(S1), 2002-2005.
[http://dx.doi.org/10.2337/diacare.27.2007.S106]
[14]
Sora, N.D.; Shashpal, F.; Bond, E.A.; Jenkins, A.J. Insulin pumps: Review of technological advancement in diabetes management. Am. J. Med. Sci., 2019, 358(5), 326-331.
[http://dx.doi.org/10.1016/j.amjms.2019.08.008] [PMID: 31655714]
[15]
Adams, O.P. The impact of brief high-intensity exercise on blood glucose levels. Diabetes Metab. Syndr. Obes., 2013, 6, 113-122.
[http://dx.doi.org/10.2147/DMSO.S29222]
[16]
Shah, M.; Franklin, B.; Adams-Huet, B.; Mitchell, J.; Bouza, B.; Dart, L.; Phillips, M. Effect of meal composition on postprandial glucagon-like peptide-1, insulin, glucagon, C-peptide, and glucose responses in overweight/obese subjects. Eur. J. Nutr., 2017, 56(3), 1053-1062.
[http://dx.doi.org/10.1007/s00394-016-1154-8] [PMID: 26759261]
[17]
Sevil, M.; Rashid, M.; Hajizadeh, I.; Maloney, Z.; Samadi, S.; Askari, M.R.; Brandt, R.; Hobbs, N.; Park, M.; Quinn, L.; Cinar, A. IEEE 16th International Conference on Wearable and Implantable Body Sensor Networks (BSN), 2019, pp. 1-4.
[http://dx.doi.org/10.1109/BSN.2019.8771094]
[18]
Colberg, S.R.; Sigal, R.J.; Yardley, J.E.; Riddell, M.C.; Dunstan, D.W.; Dempsey, P.C.; Horton, E.S.; Castorino, K.; Tate, D.F. Physical activity/exercise and diabetes: A position statement of the American diabetes association. Diabetes Care, 2016, 39(11), 2065-2079.
[http://dx.doi.org/10.2337/dc16-1728] [PMID: 27926890]
[19]
Galassetti, P.; Riddell, M.C. Exercise and type 1 diabetes (T1DM). Am. Physiol. Soc. Compr. Physiol., 2013, 3(3), 1309-1336.
[http://dx.doi.org/10.1002/cphy.c110040]
[20]
Ding, S.; Schumacher, M. Sensor monitoring of physical activity to improve glucose management in diabetic patients: A review. Sensors, 2016, 16(4), 1-13.
[http://dx.doi.org/10.3390/s16040589] [PMID: 27120602]
[21]
Zecchin, C.; Facchinetti, A.; Sparacino, G.; Dalla Man, C.; Manohar, C.; Levine, J.A.; Basu, A.; Kudva, Y.C.; Cobelli, C. Physical activity measured by physical activity monitoring system correlates with glucose trends reconstructed from continuous glucose monitoring. Diabetes Technol. Ther., 2013, 15(10), 836-844.
[http://dx.doi.org/10.1089/dia.2013.0105] [PMID: 23944973]
[22]
Aiello, E.M.; Toffanin, C.; Messori, M.; Cobelli, C.; Magni, L. Postprandial glucose regulation via KNN meal classification in type 1 diabetes. IEEE Control Syst. Lett., 2019, 3(2), 230-235.
[http://dx.doi.org/10.1109/LCSYS.2018.2844179]
[23]
Toffanin, C.; Aiello, E.M.; Del Favero, S.; Cobelli, C.; Magni, L. multiple models for artificial pancrease predictions identified from free-living condition data: A proof of concept study. J. Process Contr., 2019, 77, 29-37.
[http://dx.doi.org/10.1016/j.jprocont.2019.03.007]
[24]
Zarkogianni, K.; Litsa, E.; Mitsis, K.; Wu, P.Y.; Kaddi, C.D.; Cheng, C.W.; Wang, M.D.; Nikita, K.S. A review of emerging technologies for the management of diabetes mellitus. IEEE Trans. Biomed. Eng., 2015, 62(12), 2735-2749.
[http://dx.doi.org/10.1109/TBME.2015.2470521] [PMID: 26292334]
[25]
Oviedo, S.; Vehí, J.; Calm, R.; Armengol, J. A review of personalized blood glucose prediction strategies for T1DM patients. Int. J. Numer. Methods Biomed. Eng., 2017, 33(6), e2833.
[http://dx.doi.org/10.1002/cnm.2833] [PMID: 27644067]
[26]
Kavakiotis, I.; Tsave, O.; Salifoglou, A.; Maglaveras, N.; Vlahavas, I.; Chouvarda, I. Machine learning and data mining methods in diabetes research. Comput. Struct. Biotechnol. J., 2017, 15, 104-116.
[http://dx.doi.org/10.1016/j.csbj.2016.12.005] [PMID: 28138367]
[27]
Woldaregay, A.Z.; Årsand, E.; Botsis, T.; Albers, D.; Mamykina, L.; Hartvigsen, G. Data-driven blood glucose pattern classification and anomalies detection: Machine-learning applications in type 1 diabetes. J. Med. Internet Res., 2019, 21(5), e11030.
[http://dx.doi.org/10.2196/11030] [PMID: 31042157]
[28]
Woldaregay, A.Z.; Årsand, E.; Walderhaug, S.; Albers, D.; Mamykina, L.; Botsis, T.; Hartvigsen, G. Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes. Artif. Intell. Med., 2019, 98(98), 109-134.
[http://dx.doi.org/10.1016/j.artmed.2019.07.007] [PMID: 31383477]
[29]
Ajmera, I.; Swat, M.; Laibe, C.; Le Novère, N.; Chelliah, V. The impact of mathematical modeling on the understanding of diabetes and related complications. CPT Pharm. Syst. Pharmacol., 2013, 2(7), e54.
[http://dx.doi.org/10.1038/psp.2013.30] [PMID: 23842097]
[30]
Novara, C.; Pour, N.M.; Vincent, T.; Grassi, G. A nonlinear blind identification approach to modeling of diabetic patients. IEEE Trans. Control Syst. Technol., 2016, 24(3), 1092-1100.
[http://dx.doi.org/10.1109/TCST.2015.2462734]
[31]
Nature Publishing Group. Ascent of machine learning in medicine. Nat. Mater., 2019, 18(5), 407.
[http://dx.doi.org/10.1038/s41563-019-0360-1] [PMID: 31000807]
[32]
Eren-Oruklu, M.; Cinar, A.; Quinn, L. Hypoglycemia prediction with subject-specific recursive time-series models. J. Diabetes Sci. Technol., 2010, 4(1), 25-33.
[http://dx.doi.org/10.1177/193229681000400104] [PMID: 20167164]
[33]
Turksoy, K.; Bayrak, E.S.; Quinn, L.; Littlejohn, E.; Cinar, A. Multivariable adaptive closed-loop control of an artificial pancreas without meal and activity announcement. Diabetes Technol. Ther., 2013, 15(5), 386-400.
[http://dx.doi.org/10.1089/dia.2012.0283] [PMID: 23544672]
[34]
Rodríguez-Rodríguez, I.; Chatzigiannakis, I.; Rodríguez, J.V.; Maranghi, M.; Gentili, M.; Zamora-Izquierdo, M.Á. Utility of big data in predicting short-term blood glucose levels in type 1 diabetes mellitus through machine learning techniques. Sensors, 2019, 19(20), E4482.
[http://dx.doi.org/10.3390/s19204482] [PMID: 31623111]
[35]
Yang, J.; Li, L.; Shi, Y.; Xie, X. An ARIMA model with adaptive orders for predicting blood glucose concentrations and hypoglycemia. IEEE J. Biomed. Health Inform., 2018, 23(3), 1251-1260.
[http://dx.doi.org/10.1109/JBHI.2018.2840690] [PMID: 29993728]
[36]
Daskalaki, E.; Prountzou, A.; Diem, P.; Mougiakakou, S.G. Real-time adaptive models for the personalized prediction of glycemic profile in type 1 diabetes patients. Diabetes Technol. Ther., 2012, 14(2), 168-174.
[http://dx.doi.org/10.1089/dia.2011.0093] [PMID: 21992270]
[37]
Wang, Y.; Wu, X.; Mo, X. A novel adaptive-weighted-average framework for blood glucose prediction. Diabetes Technol. Ther., 2013, 15(10), 792-801.
[http://dx.doi.org/10.1089/dia.2013.0104] [PMID: 23883406]
[38]
Huzooree, G. Glucose prediction data analytics for diabetic patients monitoring. In: 1st International Conference on Next Generation Computing Applications, Jul 19-21Mauritius2017.
[http://dx.doi.org/10.1109/NEXTCOMP.2017.8016197]
[39]
Xie, J.; Wang, Q. Benchmarking machine learning algorithms on blood glucose prediction for type I diabetes in comparison with classical time-series models. IEEE Trans. Biomed. Eng., 2020, 67(11), 3101-3124.
[http://dx.doi.org/10.1109/TBME.2020.2975959] [PMID: 32091990]
[40]
Daskalaki, E.; Nørgaard, K.; Züger, T.; Prountzou, A.; Diem, P.; Mougiakakou, S. An early warning system for hypoglycemic/hyperglycemic events based on fusion of adaptive prediction models. J. Diabetes Sci. Technol., 2013, 7(3), 689-698.
[http://dx.doi.org/10.1177/193229681300700314] [PMID: 23759402]
[41]
Botwey, R.H.; Daskalaki, E.; Diem, P.; Mougiakakou, S.G. Multimodel data fusion to improve an early warning system for hypo- /hyperglycemic events. In: 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2014 Aug 26-30, Chicago, IL, USA, 2014, pp. 4843-4846.
[http://dx.doi.org/10.1109/EMBC.2014.6944708]
[42]
Wang, Q.; Harsh, S.; Molenaar, P.; Freeman, K. Developing personalized empirical models for type-I diabetes: An extended kalman filter approach. In: IEEE American Control Conference, 2013 June 17-19Washington, DC, USA2013.
[http://dx.doi.org/10.1109/ACC.2013.6580278]
[43]
Li, P.; Yu, L.; Wang, J.; Guo, L.; Fang, Q. Effect of meal intake on the quality of empirical dynamic models for type 1 diabetes. In: IEEE International Symposium on Bioelectronics and Bioinformatics, 2014, pp. 11-14.
[http://dx.doi.org/10.1109/ISBB.2014.6820942]
[44]
Otoom, M.; Alshraideh, H.; Almasaeid, H.M.; López-de-Ipiña, D.; Bravo, J. Real-time statistical modeling of blood sugar. J. Med. Syst., 2015, 39(10), 123.
[http://dx.doi.org/10.1007/s10916-015-0301-8] [PMID: 26303151]
[45]
Boiroux, D.; Duun-Henriksen, A.K.; Schmidt, S.; Nørgaard, K.; Madsbad, S.; Skyggebjerg, O.; Jensen, P.R.; Poulsen, N.K.; Madsen, H.; Jørgensen, J.B. Overnight control of blood glucose in people with type 1 diabetes. IFAC Proc., 2012, 45(18), 73-78.
[http://dx.doi.org/10.3182/20120829-3-HU-2029.00106]
[46]
Nielsen, M. Neural Networks and Deep Learning. 2019. Available from: https://static.latexstudio.net/article/2018/0912/neuralnetworksanddeeplearning.pdf
[47]
Cai, T.; Gao, R.; Hou, J.; Chen, S.; Wang, D.; He, D.; Zhang, Z.; Wang, L A gram-gauss-newton method learning overparameterized deep neural networks for regression problems arXiv, 2019, 2019, arXiv:1905.11675.
[48]
Fu, X.; Li, S.; Fairbank, M.; Wunsch, D.C.; Alonso, E. Training recurrent neural networks with the levenberg-marquardt algorithm for optimal control of a grid-connected converter. IEEE Trans. Neural Netw. Learn. Syst., 2015, 26(9), 1900-1912.
[http://dx.doi.org/10.1109/TNNLS.2014.2361267] [PMID: 25330496]
[49]
Carrillo-Moreno, J.; Pérez-Gandía, C.; Sendra-Arranz, R.; García-Sáez, G.; Hernando, M.E.; Gutiérrez, Á. Long short-term memory neural network for glucose prediction. Neural Comput. Appl., 2020, 33, 4191-4203.
[http://dx.doi.org/10.1007/s00521-020-05248-0]
[50]
Bertachi, A.; Biagi, L.; Contreras, I.; Luo, N.; Vehí, J. Prediction of blood glucose levels and nocturnal hypoglycemia using physiological models and artificial neural networks. CEUR Workshop Proc., 2018, 2148, 85-90.
[51]
Martinsson, J. Blood glucose prediction with variance estimation using recurrent neural networks. Nat. Lib. Med., 2019, 4(1), 1-18.
[52]
Munoz-Organero, M. Deep physiological model for blood glucose prediction in T1DM patients. Sensors, 2020, 20(14), 1-17.
[http://dx.doi.org/10.3390/s20143896] [PMID: 32668724]
[53]
Alfian, G.; Syafrudin, M.; Anshari, M.; Benes, F.; Atmaji, F.T.D.; Fahrurrozi, I.; Hidayatullah, A.F.; Rhee, J. Blood glucose prediction model for type 1 diabetes based on artificial neural network with time-domain features. Biocybern. Biomed. Eng., 2020, 40(4), 1586-1599.
[http://dx.doi.org/10.1016/j.bbe.2020.10.004]
[54]
Karim, R.A.H.; Vassányi, I.; Kósa, I. After-meal blood glucose level prediction using an absorption model for neural network training. Comput. Biol. Med., 2020, 125, 103956.
[http://dx.doi.org/10.1016/j.compbiomed.2020.103956] [PMID: 32861049]
[55]
D’Antoni, F.; Merone, M.; Piemonte, V.; Iannello, G.; Soda, P. Auto-regressive time delayed jump neural network for blood glucose levels forecasting. Knowl. Base. Syst., 2020, 203, 106134.
[http://dx.doi.org/10.1016/j.knosys.2020.106134]
[56]
Aliberti, A.; Pupillo, I.; Terna, S.; MacIi, E.; Di Cataldo, S.; Patti, E.; Acquaviva, A. A multi-patient data-driven approach to blood glucose prediction. IEEE Access, 2019, 7, 69311-69325.
[http://dx.doi.org/10.1109/ACCESS.2019.2919184]
[57]
Ben Ali, J.; Hamdi, T.; Fnaiech, N.; Di Costanzo, V.; Fnaiech, F.; Ginoux, J.M. Continuous blood glucose level prediction of type 1 diabetes based on artificial neural network. Biocybern. Biomed. Eng., 2018, 38(4), 828-840.
[http://dx.doi.org/10.1016/j.bbe.2018.06.005]
[58]
Frandes, M.; Timar, B.; Lungeanu, D. A risk based neural network approach for predictive modeling of blood glucose dynamics. Stud. Health Technol. Inform., 2016, 228, 577-581.
[http://dx.doi.org/10.3233/978-1-61499-678-1-577] [PMID: 27577449]
[59]
Zecchin, C.; Facchinetti, A.; Sparacino, G.; Cobelli, C. How much is short-term glucose prediction in type 1 diabetes improved by adding insulin delivery and meal content information to CGM data? A proof-of-concept study. J. Diabetes Sci. Technol., 2016, 10(5), 1149-1160.
[http://dx.doi.org/10.1177/1932296816654161] [PMID: 27381030]
[60]
Zecchin, C.; Facchinetti, A.; Sparacino, G.; Cobelli, C. Jump neural network for online short-time prediction of blood glucose from continuous monitoring sensors and meal information. Comput. Methods Programs Biomed., 2014, 113(1), 144-152.
[http://dx.doi.org/10.1016/j.cmpb.2013.09.016] [PMID: 24192453]
[61]
Zecchin, C.; Facchinetti, A.; Sparacino, G.; De Nicolao, G.; Cobelli, C. Neural network incorporating meal information improves accuracy of short-time prediction of glucose concentration. IEEE Trans. Biomed. Eng., 2012, 59(6), 1550-1560.
[http://dx.doi.org/10.1109/TBME.2012.2188893] [PMID: 22374344]
[62]
Zarkogianni, K.; Mitsis, K.; Arredondo, M.T.; Fico, G.; Fioravanti, A.; Nikita, K.S. Neuro-fuzzy based glucose prediction model for patients with type 1 diabetes mellitus. In: IEEE-EMBS International Conference on Biomedical and Health Informatics, 2014 June 01-04Valencia, Spain2014.
[http://dx.doi.org/10.1109/BHI.2014.6864351]
[63]
Pappada, S.M.; Cameron, B.D.; Rosman, P.M.; Bourey, R.E.; Papadimos, T.J.; Olorunto, W.; Borst, M.J. Neural network-based real-time prediction of glucose in patients with insulin-dependent diabetes. Diabetes Technol. Ther., 2011, 13(2), 135-141.
[http://dx.doi.org/10.1089/dia.2010.0104] [PMID: 21284480]
[64]
Pérez-Gandía, C.; Facchinetti, A.; Sparacino, G.; Cobelli, C.; Gómez, E.J.; Rigla, M.; de Leiva, A.; Hernando, M.E. Artificial neural network algorithm for online glucose prediction from continuous glucose monitoring. Diabetes Technol. Ther., 2010, 12(1), 81-88.
[http://dx.doi.org/10.1089/dia.2009.0076] [PMID: 20082589]
[65]
Shanthi, S.; Balamurugan, P.; Kumar, D. Performance comparison of featured neural network with gradient descent and levenberg-marquart algorithm trained neural networks for prediction of blood glucose values with continuous glucose monitoring sensor data. In: International Conference on Emerging Trends in Science, Engineering and Technology (INCOSET), June 1-4Tiruchirappalli, India2014.
[http://dx.doi.org/10.1109/INCOSET.2012.6513938]
[66]
Robertson, G.; Lehmann, E.D.; Sandham, W.; Hamilton, D. Blood glucose prediction using artificial neural networks trained with the AIDA diabetes simulator: A proof-of-concept pilot study. J. Electr. Comput. Eng., 2011, 2011, 681786.
[http://dx.doi.org/10.1155/2011/681786]
[67]
Liu, W.; Principe, J.C.; Haykin, S. Kernel adaptive filtering: A comprehensive introduction; John Wiley & Sons, Inc., 2011.
[http://dx.doi.org/10.1002/9780470608593]
[68]
Yu, X.; Rashid, M.; Feng, J.; Hobbs, N.; Hajizadeh, I.; Samadi, S.; Sevil, M.; Lazaro, C.; Maloney, Z.; Littlejohn, E.; Quinn, L.; Cinar, A. Online glucose prediction using computationally efficient sparse kernel filtering algorithms in type-1 diabetes. IEEE Trans. Control Syst. Technol., 2020, 28(1), 3-15.
[http://dx.doi.org/10.1109/TCST.2018.2843785] [PMID: 32699492]
[69]
Georga, E.I.; Principe, J.C.; Rizos, E.C.; Fotiadis, D.I. Kernel-based adaptive learning improves accuracy of glucose predictive modelling in type 1 diabetes: A proof-of-concept study. Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS, 2017, pp. 2765- 2768.
[http://dx.doi.org/10.1109/EMBC.2017.8037430]
[70]
Zhao, S.; Chen, B.; Zhu, P.; Príncipe, J.C. Fixed budget quantized kernel least-mean-square algorithm. Signal Processing, 2013, 93(9), 2759-2770.
[http://dx.doi.org/10.1016/j.sigpro.2013.02.012]
[71]
Chen, B.; Zhao, S.; Zhu, P.; Príncipe, J.C. Quantized kernel least mean square algorithm. IEEE Trans. Neural Netw. Learn. Syst., 2012, 23(1), 22-32.
[http://dx.doi.org/10.1109/TNNLS.2011.2178446] [PMID: 24808453]
[72]
Georga, E.I.; Príncipe, J.C.; Fotiadis, D.I. Short-term prediction of glucose in type 1 diabetes using kernel adaptive filters. Med. Biol. Eng. Comput., 2019, 57(1), 27-46.
[http://dx.doi.org/10.1007/s11517-018-1859-3] [PMID: 29967934]
[73]
Georga, E.I.; Principe, J.C.; Polyzos, D.; Fotiadis, D.I. Non-linear dynamic modeling of glucose in type 1 diabetes with kernel adaptive filters. In: 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Aug 16-20Jeju, Korea2016.
[http://dx.doi.org/10.1109/EMBC.2016.7592070]
[74]
Georga, E.I.; Protopappas, V.C.; Ardigò, D.; Marina, M.; Zavaroni, I.; Polyzos, D.; Fotiadis, D.I. Multivariate prediction of subcutaneous glucose concentration in type 1 diabetes patients based on support vector regression. IEEE J. Biomed. Health Inform., 2013, 17(1), 71-81.
[http://dx.doi.org/10.1109/TITB.2012.2219876] [PMID: 23008265]
[75]
Plis, K.; Bunescu, R.; Marling, C.; Shubrook, J.; Schwartz, F. A machine learning ap-proach to predicting blood glucose levels for diabetes. AAAI Work. -. Tech. Rep., 2014, 2014, 35-39.
[76]
Georga, E.I.; Protopappas, V.C.; Polyzos, D.; Fotiadis, D.I. Evaluation of short-term predictors of glucose concentration in type 1 diabetes combining feature ranking with regression models. Med. Biol. Eng. Comput., 2015, 53(12), 1305-1318.
[http://dx.doi.org/10.1007/s11517-015-1263-1] [PMID: 25773366]
[77]
Reymann, M.P.; Dorschky, E.; Groh, B.H.; Martindale, C.; Blank, P.; Eskofier, B.M. Blood glucose level prediction based on support vector regression using mobile platforms. Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS, Aug 16-20, Orlando, FL, USA,, 2016, pp. 2990-2993.
[http://dx.doi.org/10.1109/EMBC.2016.7591358]
[78]
Hamdi, T.; Ben Ali, J.; Di Costanzo, V.; Fnaiech, F.; Moreau, E.; Ginoux, J.M. Accurate prediction of continuous blood glucose based on support vector regression and differential evolution algorithm. Biocybern. Biomed. Eng., 2018, 38(2), 362-372.
[http://dx.doi.org/10.1016/j.bbe.2018.02.005]
[79]
Georga, E.I.; Protopappas, V.C.; Bellos, C.V.; Fotiadis, D.I. Wearable systems and mobile applications for diabetes disease management. Health Technol., 2014, 4(2), 101-112.
[http://dx.doi.org/10.1007/s12553-014-0082-y]
[80]
Rusin, M.; Årsand, E.; Hartvigsen, G. Functionalities and input methods for recording food intake: A systematic review. Int. J. Med. Inform., 2013, 82(8), 653-664.
[http://dx.doi.org/10.1016/j.ijmedinf.2013.01.007] [PMID: 23415822]
[81]
Damiano, E.R.; McKeon, K.; El-Khatib, F.H.; Zheng, H.; Nathan, D.M.; Russell, S.J. A comparative effectiveness analysis of three continuous glucose monitors: The navigator, G4 platinum, and enlite. J. Diabetes Sci. Technol., 2014, 8(4), 699-708.
[http://dx.doi.org/10.1177/1932296814532203] [PMID: 24876423]
[82]
Damiano, E.R.; El-Khatib, F.H.; Zheng, H.; Nathan, D.M.; Russell, S.J. A comparative effectiveness analysis of three continuous glucose monitors. Diabetes Care, 2013, 36(2), 251-259.
[http://dx.doi.org/10.2337/dc12-0070] [PMID: 23275350]
[83]
Marling, C.; Bunescu, R. The OhioT1DM dataset for blood glucose level prediction. CEUR Workshop Proc., 2018, 2148, 60-63.
[PMID: 33584164]
[84]
Marling, C.; Bunescu, R.M. The OhioT1DM dataset for blood glucose level prediction: Up-date 2020. CEUR Workshop Proceeding , 2020, 2675, 71-74. https://pubmed.ncbi.nlm.nih.gov/33584164/
[85]
Dubosson, F.; Ranvier, J-E.; Bromuri, S.; Calbimonte, J-P.; Ruiz, J.; Schumacher, M. The open D1NAMO dataset: A multi-modal dataset for research on non-invasive type 1 diabetes management. 2021. Available from: https://zenodo.org/search?page= 1&size=20&q=D1NAMO (Accessed August 25, 2022).
[86]
Dubosson, F.; Ranvier, J.E.; Bromuri, S.; Calbimonte, J.P.; Ruiz, J.; Schumacher, M. The open D1NAMO dataset: A multi-modal dataset for research on non-invasive type 1 diabetes management. Inform. Med. Unlocked, 2018, 13(5), 92-100.
[http://dx.doi.org/10.1016/j.imu.2018.09.003]
[87]
ClinicalTrials.gov. Evaluation of counter-regulatory hormone responses during hypogly-cemia and the accuracy of continuous glucose monitors in children with T1DM. 2018. Available from: https://clinicaltrials.gov/ct2/show/NCT00607139
[88]
J.C. Health Research (JCHR). Diabetes research studies. Available from: https://public.jaeb.org/datasets/diabetes (Accessed on: May 18, 2022).
[89]
Kingma, D.P.; Ba, J.L. Adam: A method for stochastic optimization. arXiv, 2014, 2014, 1412.6980.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy