Review Article

冷休克蛋白在人类癌症中作用的新见解:与易感性、预后和治疗前景的关系

卷 29, 期 38, 2022

发表于: 02 August, 2022

页: [5965 - 5978] 页: 14

弟呕挨: 10.2174/0929867329666220601142924

价格: $65

摘要

肿瘤细胞的微环境是其表型改变的中心。这种环境的基本要素之一是热调节。据报道,局部温度升高可增强肿瘤细胞对化疗和放疗的反应性。冷休克蛋白是通过一个或多个冷休克结构域的存在而鉴定的RNA/DNA结合蛋白。在人类中,这组蛋白质中研究最好的组分被称为Y盒结合蛋白,如Y盒结合蛋白质-1(YB-1),但其他几种蛋白质已被识别。这些蛋白质的生物学功能从转录、翻译和剪接的控制延伸到外体RNA含量的调节。一些发现将冷休克蛋白表达谱的改变与肿瘤疾病相关。在这篇综述中,我们总结了冷休克蛋白在癌症发病和扩散中的致病性参与的数据。此外,冷休克蛋白在诊断、预后和作为癌症治疗靶点方面的可能用途也暴露了出来。

关键词: 冷休克蛋白、癌症、肿瘤微环境、热应激、预后、microRNA。

[1]
Guan, K.; Nayernia, K.; Maier, L.S.; Wagner, S.; Dressel, R.; Lee, J.H.; Nolte, J.; Wolf, F.; Li, M.; Engel, W.; Hasenfuss, G. Pluripotency of spermatogonial stem cells from adult mouse testis. Nature, 2006, 440, 1199-1203.
[2]
Dewhirst, M.W.; Vujaskovic, Z.; Jones, E.; Thrall, D. Re-setting the biologic rationale for thermal therapy. Int. J. Hyperthermia, 2005, 21, 779-790.
[3]
Shamovsky, I.; Nudler, E. New insights into the mechanism of heat shock response activation. Cell. Mol. Life Sci., 2008, 65, 855-861.
[4]
Jones, P.G.; Inouye, M. The cold-shock response--a hot topic. Mol. Microbiol., 1994, 11(5), 811-818.
[5]
Gottesman, S. Chilled in translation: adapting to bacterial climate change. Mol. Cell, 2018, 70(2), 193-194.
[6]
Graumann, P.L.; Marahiel, M.A. A superfamily of proteins that contain the cold shock domain. Trends Biochem. Sci., 1998, 23(8), 286-290.
[7]
Brandt, S.; Raffetseder, U.; Djudjaj, S.; Schreiter, A.; Kadereit, B.; Michele, M.; Pabst, M.; Zhu, C.; Mertens, P.R. Cold shock Y-box protein-1 participates in signaling circuits with auto-regulatory activities. Eur. J. Cell Biol., 2011, 91(6-7), 464-471.
[8]
Lasham, A.; Print, C.G.; Woolley, A.G.; Dunn, S.E.; Braithwaite, A.W. YB-1: oncoprotein, prognostic marker and therapeutic target? Biochem. J., 2013, 449(1), 11-23.
[9]
Keto-Timonen, R.; Hietala, N.; Palonen, E.; Hakakorpi, A.; Lindström, M.; Korkeala, H. Cold Shock Proteins: A Minireview with Special Emphasis on Csp-family of Enteropathogenic Yersinia. Front. Microbiol., 2016, 7, 1151.
[10]
Ambros, V. A hierarchy of regulatory genes controls a larva-to-adult developmental switch in C. elegans. Cell, 1989, 57(1), 49-57.
[11]
Snyder, E.; Soundararajan, R.; Sharma, M.; Dearth, A.; Smith, B.; Braun, R.E. Compound heterozygosity for Y box proteins causes sterility due to loss of translational repression. PLoS Genet., 2015, 11(12), e1005690.
[12]
Berghella, L.; De Angelis, L.; De Buysscher, T.; Mortazavi, A.; Biressi, S.; Forcales, S.V.; Sirabella, D.; Cossu, G.; Wold, B.J. A highly conserved molecular switch binds MSY-3 to regulate myogenin repression in postnatal muscle. Genes Dev., 2008, 22(15), 2125-2138.
[13]
Lima, W.R.; Parreira, K.S.; Devuyst, O.; Caplanusi, A.; N’Kuli, F.; Marien, B.; Van Der Smissen, P.; Alves, P.M.; Verroust, P.; Christensen, E.I.; Terzi, F.; Matter, K.; Balda, M.S.; Pierreux, C.E.; Courtoy, P.J. ZONAB promotes proliferation and represses differentiation of proximal tubule epithelial cells. J. Am. Soc. Nephrol., 2010, 21(3), 478-488.
[14]
Hasegawa, S.L.; Doetsch, P.W.; Hamilton, K.K.; Martin, A.M.; Okenquist, S.A.; Lenz, J.; Boss, J.M. DNA binding properties of YB-1 and dbpA: binding to doublestranded, single-stranded, and abasic site containing DNAs. Nucleic Acids Res., 1991, 19(18), 4915-4920.
[15]
Zhu, C.; Sauter, E.; Schreiter, A.; van Roeyen, C.R.; Ostendorf, T.; Floege, J.; Gembardt, F.; Hugo, C.P.; Isermann, B.; Lindquist, J.A.; Mertens, P.R. Cold shock proteins mediate GN with Mesangio proliferation. J. Am. Soc. Nephrol., 2016, 27(12), 3678-3689.
[16]
Groblewski, G.E.; Yoshida, M.; Bragado, M.J.; Ernst, S.A.; Leykam, J.; Williams, J.A. Purification and characterization of a novel physiological substrate for calcineurin in mammalian cells. J. Biol. Chem., 1998, 273(35), 22738-22744.
[17]
Schafer, C.; Steffen, H.; Krzykowski, K.J.; Goke, B.; Groblewski, G.E. CRHSP-24 phosphorylation is regulated by multiple signaling pathways in pancreatic acinar cells. Am. J. Physiol. Gastrointest. Liver Physiol., 2003, 285(4), G726-G734.
[18]
Pfeiffer, J.R.; McAvoy, B.L.; Fecteau, R.E.; Deleault, K.M.; Brooks, S.A. CARHSP1 is required for effective tumor necrosis factor alpha mRNA stabilization and localizes to processing bodies and exosomes. Mol. Cell. Biol., 2011, 31(2), 277-286.
[19]
Anderson, E.C.; Catnaigh, P.O. Regulation of the expression and activity of Unr in mammalian cells. Biochem. Soc. Trans., 2015, 43(6), 1241-1246.
[20]
Ray, S.; Catnaigh, P.O.; Anderson, E.C. Post-transcriptional regulation of gene expression by Unr. Biochem. Soc. Trans., 2015, 43(3), 323-327.
[21]
Boussadia, O.; Amiot, F.; Cases, S.; Triqueneaux, G.; Jacquemin-Sablon, H.; Dautry, F. Transcription of unr (upstream of N-ras) down-modulates N-ras expression in-vivo. FEBS Lett., 1997, 420(1), 20-24.
[22]
Jacquemin-Sablon, H.; Triqueneaux, G.; Deschamps, S.; le Maire, M.; Doniger, J.; Dautry, F. Nucleic acid binding and intracellular localization of unr, a protein with five cold shock domains. Nucleic Acids Res., 1994, 22(13), 2643-2650.
[23]
Frye, B.C.; Halfter, S.; Djudjaj, S.; Muehlenberg, P.; Weber, S.; Raffetseder, U.; En-Nia, A.; Knott, H.; Baron, J.M.; Dooley, S. Y-box protein-1 is actively secreted through a non-classical pathway and acts as an extracellular mitogen. EMBO Rep., 2009, 10(7), 783-789.
[24]
Tacke, F.; Kanig, N.; En-Nia, A.; Kaehne, T.; Eberhardt, C.S.; Shpacovitch, V.; Trautwein, C.; Mertens, P.R. Y-box protein-1/p18 fragment identifies malignancies in patients with chronic liver disease. BMC Cancer, 2011, 11, 185.
[25]
Gulow, K.; Bienert, D.; Haas, I.G. BiP is feed-back regulated by control of protein translation efficiency. J. Cell Sci., 2002, 115(Pt 11), 2443-2452.
[26]
Allegra, A.; Sant’antonio, E.; Penna, G.; Alonci, A.; D’Angelo, A.; Russo, S.; Cannavò, A.; Gerace, D.; Musolino, C. Novel therapeutic strategies in multiple myeloma: role of the heat shock protein inhibitors. Eur. J. Haematol., 2011, 86(2), 93-110.
[http://dx.doi.org/10.1111/j.1600-0609.2010.01558.x]
[27]
Murdaca, G.; Allegra, A.; Paladin, F.; Calapai, F.; Musolino, C.; Gangemi, S. Involvement of alarmins in the pathogenesis and progression of multiple myeloma. Int. J. Mol. Sci., 2021, 22(16), 9039.
[http://dx.doi.org/ 10.3390/ijms22169039]
[28]
Bernhardt, A.; Fehr, A.; Brandt, S.; Jerchel, S.; Ballhause, T.M.; Philipsen, L.; Stolze, S.; Geffers, R.; Wenig, H.; Fischer, K.D. Inflammatory cell infiltration and resolution of kidney inflammation is orchestrated by the cold-shock protein Y-box binding protein-1. Kidney Int., 2017, 92, 1157-1177.
[29]
Evdokimova, V.; Ruzanov, P.; Anglesio, M.S.; Sorokin, A.V.; Ovchinnikov, L.P.; Buckley, J.; Triche, T.J.; Sonenberg, N.; Sorensen, P.H. Akt-mediated YB-1 phosphorylation activates translation of silent mRNA species. Mol. Cell. Biol., 2006, 26(1), 277-292.
[30]
Kohno, K.; Izumi, H.; Uchiumi, T.; Ashizuka, M.; Kuwano, M. The pleiotropic functions of the Y-box-binding protein, YB-1. BioEssays, 2003, 25(7), 691-698.
[31]
Harada, M.; Hu, B.; Lu, J.; Wang, J.; Rinke, A.E.; Wu, Z.; Liu, T.; Phan, S.H. The dual distinct role of telomerase in repression of senescence and myofibroblast differentiation. Aging (Albany NY), 2021, 13(13), 16957-16973.
[http://dx.doi.org/ 10.18632/aging.203246]
[32]
Basaki, Y.; Hosoi, F.; Oda, Y.; Fotovati, A.; Maruyama, Y.; Oie, S.; Ono, M.; Izumi, H.; Kohno, K.; Sakai, K.; Shimoyama, T.; Nishio, K.; Kuwano, M. Akt dependent nuclear localization of Y-box-binding protein 1 in acquisition of malignant characteristics by human ovarian cancer cells. Oncogene, 2007, 26(19), 2736-2746.
[33]
En-Nia, A.; Yilmaz, E.; Klinge, U.; Lovett, D.H.; Stefanidis, I.; Mertens, P.R. Transcription factor YB-1 mediates DNA polymerase alpha gene expression. J. Biol. Chem., 2005, 280(9), 7702-7711.
[34]
Schittek, B.; Psenner, K.; Sauer, B.; Meier, F.; Iftner, T.; Garbe, C. The increased expression of Y box-binding protein 1 in melanoma stimulates proliferation and tumor invasion, antagonizes apoptosis and enhances chemoresistance. Int. J. Cancer, 2007, 120(10), 2110-2118.
[35]
Yoshimatsu, T.; Uramoto, H.; Oyama, T.; Yashima, Y.; Gu, C.; Morita, M.; Sugio, K.; Kohno, K.; Yasumoto, K. Y-box-binding protein-1 expression is not correlated with p53 expression but with proliferating cell nuclear antigen expression in non-small cell lung cancer. Anticancer Res., 2005, 25(5), 3437-3443.
[36]
Fan, L.; Jones, S.N.; Padden, C.; Shen, Q.; Newburger, P.E. Nuclease sensitive element binding protein 1 gene disruption results in early embryonic lethality. J. Cell. Biochem., 2006, 99(1), 140-145.
[37]
Lu, Z.H.; Books, J.T.; Ley, T.J. Cold shock domain family members YB-1 and MSY4 share essential functions during murine embryogenesis. Mol. Cell. Biol., 2006, 26(22), 8410-8417.
[38]
Yu, J.; Vodyanik, M.A.; Smuga-Otto, K.; Antosiewicz-Bourget, J.; Frane, J.L.; Tian, S.; Nie, J.; Jonsdottir, G.A.; Ruotti, V.; Stewart, R.; Slukvin, I.I.; Thomson, J.A. Induced pluripotent stem cell lines derived from human somatic cells. Science, 2007, 318(5858), 1917-1920.
[39]
Bargou, R.C.; Jurchott, K.; Wagener, C.; Bergmann, S.; Metzner, S.; Bommert, K.; Mapara, M.Y.; Winzer, K.J.; Dietel, M.; Dorken, B. Nuclear localization and increased levels of transcription factor YB-1 in primary human breast cancers are associated with intrinsic MDR1 gene expression. Nat. Med., 1997, 3(4), 447-450.
[40]
Bergmann, S.; Royer-Pokora, B.; Fietze, E.; Jurchott, K.; Hildebrandt, B.; Trost, D.; Leenders, F.; Claude, J.C.; Theuring, F.; Bargou, R. YB-1 provokes breast cancer through the induction of chromosomal instability that emerges from mitotic failure and centrosome amplification. Cancer Res., 2005, 65(10), 4078-4087.
[41]
Bommert, K.S.; Effenberger, M.; Leich, E.; Kuspert, M.; Murphy, D.; Langer, C.; Moll, R.; Janz, S.; Mottok, A.; Weissbach, S. The feed-forward loop between YB-1 and MYC is essential for multiple myeloma cell survival. Leukemia, 2012, 27(2), 441-450.
[42]
Sinnberg, T.; Sauer, B.; Holm, P.; Spangler, B.; Kuphal, S.; Bosserhoff, A.; Schittek, B. MAPK and PI3K/AKT mediated YB-1 activation promotes melanoma cell proliferation which is counteracted by an autoregulatory loop. Exp. Dermatol., 2012, 21(4), 265-270.
[43]
Kosnopfel, C.; Sinnberg, T.; Schittek, B. Y-box binding protein 1--a prognostic marker and target in tumour therapy. Eur. J. Cell Biol., 2014, 93(1-2), 61-70.
[44]
Chattopadhyay, R.; Das, S.; Maiti, A.K.; Boldogh, I.; Xie, J.; Hazra, T.K.; Kohno, K.; Mitra, S.; Bhakat, K.K. Regulatory role of human AP-endonuclease (APE1/Ref-1) in YB-1-mediated activation of the multidrug resistance gene MDR1. Mol. Cell. Biol., 2008, 28(23), 7066-7080.
[45]
Kuwano, M.; Oda, Y.; Izumi, H.; Yang, S.J.; Uchiumi, T.; Iwamoto, Y.; Toi, M.; Fujii, T.; Yamana, H.; Kinoshita, H. The role of nuclear Y-box binding protein 1 as a global marker in drug resistance. Mol. Cancer Ther., 2004, 3(11), 1485-1492.
[46]
Shen, H.; Xu, W.; Luo, W.; Zhou, L.; Yong, W.; Chen, F.; Wu, C.; Chen, Q.; Han, X. Upregulation of mdr1 gene is related to activation of the MAPK/ERK signal transduction pathway and YB-1 nuclear translocation in B-cell lymphoma. Exp. Hematol., 2011, 39(5), 558-569.
[47]
Setoguchi, K.; Cui, L.; Hachisuka, N.; Obchoei, S.; Shinkai, K.; Hyodo, F.; Kato, K.; Wada, F.; Yamamoto, T.; Harada-Shiba, M.; Obika, S.; Nakano, K. Antisense oligonucleotides targeting Y-box binding Protein-1 inhibit tumor angiogenesis by downregulating Bcl-xL-VEGFR2/-tie axes. Mol. Ther. Nucleic Acids, 2017, 9, 170-181.
[48]
Miao, X.; Wu, Y.; Wang, Y.; Zhu, X.; Yin, H.; He, Y.; Li, C.; Liu, Y.; Lu, X.; Chen, Y. Y-box-binding protein-1 (yb-1) promotes cell proliferation, adhesion and drug resistance in diffuse large b-cell lymphoma. Exp. Cell Res., 2016, 346, 157-166.
[49]
Guo, T.; Zhao, S.; Wang, P.; Xue, X.; Zhang, Y.; Yang, M.; Li, N.; Li, Z.; Xu, L.; Jiang, L. Yb-1 regulates tumor growth by promoting macc1/c-met pathway in human lung adenocarcinoma. Oncotarget, 2017, 8, 48110.
[50]
Wang, H.; Sun, R.; Chi, Z.; Li, S.; Hao, L. Silencing of y-box binding protein-1 by rna interference inhibits proliferation, invasion, and metastasis, and enhances sensitivity to cisplatin through nf-kB signaling pathway in human neuroblastoma sh-sy5y cells. Mol. Cell. Biochem., 2017, 433, 1-12.
[51]
Chao, H-M.; Huang, H-X.; Chang, P-H.; Tseng, K-C.; Miyajima, A.; Chern, E. Y-box binding protein-1 promotes hepatocellular carcinoma-initiating cell progression and tumorigenesis via Wnt/β-catenin pathway. Oncotarget, 2017, 8, 2604.
[52]
Gong, H.; Gao, S.; Yu, C.; Li, M.; Liu, P.; Zhang, G.; Song, J.; Zheng, J. Effect and mechanism of yb-1 knockdown on glioma cell growth, migration, and apoptosis. Acta Biochim. Biophys. Sin. (Shanghai), 2020, 52, 168-179.
[53]
Wang, Y.; Wang, Y.; Xu, L.; Lu, X.; Fu, D.; Su, J.; Geng, H.; Qin, G.; Chen, R.; Quan, C. Cd4+ t cells promote renal cell carcinoma proliferation via modulating ybx1. Exp. Cell Res., 2018, 363, 95-101.
[54]
Johnson, T.G.; Schelch, K.; Mehta, S.; Burgess, A.; Reid, G. Why be one protein when you can affect many? The multiple roles of yb-1 in lung cancer and mesothelioma. Front. Cell Dev. Biol., 2019, 7, 221.
[55]
Lim, W.K.; Lyashenko, E.; Califano, A. Master regulators used as breast cancer metastasis classifier. Pac. Symp. Biocomput., 2009, 504-515.
[56]
Homer, C.; Knight, D.A.; Hananeia, L.; Sheard, P.; Risk, J.; Lasham, A.; Royds, J.A.; Braithwaite, A.W. Y-box factor yb1 controls p53 apoptotic function. Oncogene, 2005, 24, 8314-8325.
[57]
Davies, A.H.; Barrett, I.; Pambid, M.R.; Hu, K.; Stratford, A.L.; Freeman, S.; Berquin, I.M.; Pelech, S.; Hieter, P.; Maxwell, C. Yb-1 evokes susceptibility to cancer through cytokinesis failure, mitotic dysfunction and her2 amplification. Oncogene, 2011, 30, 3649-3660.
[58]
Lasham, A.; Mehta, S.Y.; Fitzgerald, S.J.; Woolley, A.G.; Hearn, J.I.; Hurley, D.G.; Ruza, I.; Algie, M.; Shelling, A.N.; Braithwaite, A.W. A novel egr-1 dependent mechanism for yb-1 modulation of paclitaxel response in a triple negative breast cancer cell line. Int. J. Cancer, 2016, 139, 1157-1170.
[59]
Tong, H.; Zhao, K.; Zhang, J.; Zhu, J.; Xiao, J. Yb-1 modulates the drug resistance of glioma cells by activation of mdm2/p53 pathway. Drug Des. Devel. Ther., 2019, 13, 317.
[60]
Jürchott, K.; Bergmann, S.; Stein, U.; Walther, W.; Janz, M.; Manni, I.; Piaggio, G.; Fietze, E.; Dietel, M.; Royer, H-D. Yb-1 as a cell cycle regulated transcription factor facilitating cyclin a and cyclin b1 gene expression. J. Biol. Chem., 2003, 278(30), 27988-27996.
[61]
Basaki, Y.; Taguchi, K-I.; Izumi, H.; Murakami, Y.; Kubo, T.; Hosoi, F.; Watari, K.; Nakano, K.; Kawaguchi, H.; Ohno, S. Y-box binding protein-1 (yb-1) promotes cell cycle progression through cdc6-dependent pathway in human cancer cells. Eur. J. Cancer, 2010, 46, 954-965.
[62]
Khandelwal, P.; Padala, M.K.; Cox, J.; Guntaka, R.V. The terminal domain of y-box binding protiens-1 induces cell cycle arrest in g2/m phase by binding to cyclin d1. Int. J. Cell. Biol., 2009, 2009, 243532.
[63]
Guarino, A.M.; Troiano, A.; Pizzo, E.; Bosso, A.; Vivo, M.; Pinto, G.; Amoresano, A.; Pollice, A.; La Mantia, G.; Calabrò, V. Oxidative stress causes enhanced secretion of yb-1 protein that restrains proliferation of receiving cells. Genes (Basel), 2018, 9, 513.
[64]
Kotake, Y.; Arikawa, N.; Tahara, K.; Maru, H.; Naemura, M. Y-box binding protein 1 is involved in regulating the g2/m phase of the cell cycle. Anticancer Res., 2017, 37, 1603-1608.
[65]
Sutherland, B.W.; Kucab, J.; Wu, J.; Lee, C.; Cheang, M.C.; Yorida, E.; Turbin, D.; Dedhar, S.; Nelson, C.; Pollak, M.; Leighton Grimes, H.; Miller, K.; Badve, S.; Huntsman, D.; Blake-Gilks, C.; Chen, M.; Pallen, C.J.; Dunn, S.E. Akt phosphorylates the Y-box binding protein 1 at Ser102 located in the cold shock domain and affects the anchorage independent growth of breast cancer cells. Oncogene, 2005, 24(26), 4281-4292.
[66]
Das, S.; Chattopadhyay, R.; Bhakat, K.K.; Boldogh, I.; Kohno, K.; Prasad, R.; Wilson, S.H.; Hazra, T.K. Stimulation of NEIL2-mediated oxidized base excision repair via YB-1 interaction during oxidative stress. J. Biol. Chem., 2007, 282(39), 28474-28484.
[67]
Evdokimova, V.; Ovchinnikov, L.P.; Sorensen, P.H. Y-box binding protein 1: providing a new angle on translational regulation. Cell Cycle, 2006, 5(11), 1143-1147.
[68]
Evdokimova, V.; Ruzanov, P.; Imataka, H.; Raught, B.; Svitkin, Y.; Ovchinnikov, L.P.; Sonenberg, N. The major mRNA-associated protein YB-1 is a potent 5′ cap-dependent mRNA stabilizer. EMBO J., 2001, 20(19), 5491-5502.
[69]
Shiota, M.; Izumi, H.; Onitsuka, T.; Miyamoto, N.; Kashiwagi, E.; Kidani, A.; Yokomizo, A.; Naito, S.; Kohno, K. Twist promotes tumor cell growth through YB-1 expression. Cancer Res., 2008, 68(1), 98-105.
[70]
Tiwari, A.; Rebholz, S.; Maier, E.; Dehghan Harati, M.; Zips, D.; Sers, C.; Rodemann, H.P.; Toulany, M. Stress-Induced Phosphorylation of Nuclear YB-1 Depends on Nuclear Trafficking of p90 Ribosomal S6 Kinase. Int. J. Mol. Sci., 2018, 19(8), 2441.
[http://dx.doi.org/10.3390/ijms19082441]
[71]
Lasham, A.; Moloney, S.; Hale, T.; Homer, C.; Zhang, Y.F.; Murison, J.G.; Braithwaite, A.W.; Watson, J. The Y-box-binding protein, YB1, is a potential negative regulator of the p53 tumor suppressor. J. Biol. Chem., 2003, 278(37), 35516-35523.
[http://dx.doi.org/10.1074/jbc.M303920200]
[72]
Kashihara, M.; Azuma, K.; Kawahara, A.; Basaki, Y.; Hattori, S.; Yanagawa, T.; Terazaki, Y.; Takamori, S.; Shirouzu, K.; Aizawa, H. Nuclear Ybox binding protein-1, a predictive marker of prognosis, is correlated with expression of HER2/ErbB2 and HER3/ErbB3 in non-small cell lung cancer. J. Thorac. Oncol., 2009, 4, 1066-1074.
[73]
Hyogotani, A.; Ito, K.; Yoshida, K.; Izumi, H.; Kohno, K.; Amamo, J. Association of nuclear YB- 1 localization with lung resistance-related protein and epidermal growth factor receptor expression in lung cancer. Clin. Lung Cancer, 2012, 13, 375-384.
[74]
Shibata, T.; Kan, H.; Murakami, Y.; Ureshino, H.; Watari, K.; Kawahara, A.; Kage, M.; Hattori, S.; Ono, M.; Kuwano, M. Y-box binding protein-1 contributes to both HER2/ErbB2 expression and lapatinib sensitivity in human gastric cancer cells. Mol. Cancer Ther., 2013, 12, 737-746.
[75]
Wu, J.; Lee, C.; Yokom, D.; Jiang, H.; Cheang, M.C.; Yorida, E.; Turbin, D.; Berquin, I.M.; Mertens, P.R.; Iftner, T. Disruption of the Y-box binding protein-1 results in suppression of the epidermal growth factor receptor and HER-2. Cancer Res., 2006, 66, 4872-4879.
[76]
Fujii, T.; Kawahara, A.; Basaki, Y.; Hattori, S.; Nakashima, K.; Nakano, K.; Shirouzu, K.; Kohno, K.; Yanagawa, T.; Yamana, H. Expression of HER2 and estrogen receptor alpha depends upon nuclear localization of Y-box binding protein-1 in human breast cancers. Cancer Res., 2008, 68, 1504-1512.
[77]
Nishio, S.; Ushijima, K.; Yamaguchi, T.; Sasajima, Y.; Tsuda, H.; Kasamatsu, T.; Kage, M.; Ono, M.; Kuwano, M.; Kamura, T. Nuclear Y-box-binding protein-1 is a poor prognostic marker and related to epidermal growth factor receptor in uterine cervical cancer. Gynecol. Oncol., 2014, 132(3), 703-708.
[http://dx.doi.org/10.1016/j.ygyno.2014.01.045]
[78]
Berquin, I.M.; Pang, B.; Dziubinski, M.L.; Scott, L.M.; Chen, Y.Q.; Nolan, G.P.; Ethier, S.P. Y-box-binding protein 1 confers EGF independence to human mammary epithelial cells. Oncogene, 2005, 24(19), 3177-3186.
[79]
Sakura, H.; Maekawa, T.; Imamoto, F.; Yasuda, K.; Ishii, S. Two human genes isolated by a novel method encode DNA-binding proteins containing a common region of homology. Gene, 1988, 73(2), 499-507.
[80]
Huo, M.; Yu, K.; Zheng, Y.; Liu, L.; Zhao, H.; Li, X.; Huang, C.; Zhang, J. Integrated bioinformatics analysis revealed the regulation of angiogenesis by tumor cells in hepatocellular carcinoma. Biosci. Rep., 2021, 41(7)
[81]
Quartarone, E.; Alonci, A.; Allegra, A.; Bellomo, G.; Calabrò, L.; D’Angelo, A.; Del Fabro, V.; Grasso, A.; Cincotta, M.; Musolino, C. Differential levels of soluble angiopoietin-2 and Tie-2 in patients with haematological malignancies. Eur. J. Haematol., 2006, 77(6), 480-485.
[http://dx.doi.org/10.1111/j.0902-4441.2006.t01-1-EJH2795.x]
[82]
Takahashi, M.; Shimajiri, S.; Izumi, H.; Hirano, G.; Kashiwagi, E.; Yasuniwa, Y.; Wu, Y.; Han, B.; Akiyama, M.; Nishizawa, S.; Sasaguri, Y.; Kohno, K. Y-box binding protein-1 is a novel molecular target for tumor vessels. Cancer Sci., 2010, 101(6), 1367-1373.
[http://dx.doi.org/ 10.1111/j.1349-7006.2010.01534.x]
[83]
Musolino, C.; Allegra, A.; Saija, A.; Alonci, A.; Russo, S.; Spatari, G.; Penna, G.; Gerace, D.; Cristani, M.; David, A.; Saitta, S.; Gangemi, S. Changes in advanced oxidation protein products, advanced glycation end products, and s-nitrosylated proteins, in patients affected by polycythemia vera and essential thrombocythemia. Clin. Biochem., 2012, 45(16-17), 1439-1443.
[http://dx.doi.org/10.1016/j.clinbiochem.2012.07.100]
[84]
Allegra, A.; Speciale, A.; Molonia, M.S.; Guglielmo, L.; Musolino, C.; Ferlazzo, G.; Costa, G.; Saija, A.; Cimino, F. Curcumin ameliorates the in-vitro efficacy of carfilzomib in human multiple myeloma U266 cells targeting p53 and NF-κB pathways. Toxicol. in-vitro, 2018, 47, 186-194.
[http://dx.doi.org/10.1016/j.tiv.2017.12.001]
[85]
Imbesi, S.; Musolino, C.; Allegra, A.; Saija, A.; Morabito, F.; Calapai, G.; Gangemi, S. Oxidative stress in oncohematologic diseases: an update. Expert Rev. Hematol., 2013, 6(3), 317-325.
[http://dx.doi.org/10.1586/ehm.13.21]
[86]
Obulhasim, G.; Yasen, M.; Kajino, K.; Mogushi, K.; Tanaka, S.; Mizushima, H.; Tanaka, H.; Arii, S.; Hino, O. Up-regulation of dbpA mRNA in hepatocellular carcinoma associated with metabolic syndrome. Hepatol. Int., 2013, 7(1), 215-225.
[http://dx.doi.org/10.1007/s12072-012-9357-4]
[87]
Tang, C.; Wang, Y.; Lan, D.; Feng, X.; Zhu, X.; Nie, P.; Yue, H. Analysis of gene expression profiles reveals the regulatory network of cold-inducible RNA-binding protein mediating the growth of BHK-21 cells. Cell Biol. Int., 2015, 39(6), 678-689.
[http://dx.doi.org/10.1002/cbin.10438]
[88]
Jiang, S.; Baltimore, D. RNA-binding protein Lin28 in cancer and immunity. Cancer Lett., 2016, 375(1), 108-113.
[89]
Evans, J.R.; Mitchell, S.A.; Spriggs, K.A.; Ostrowski, J.; Bomsztyk, K.; Ostarek, D.; Willis, A.E. Members of the poly (rC) binding protein family stimulate the activity of the c-myc internal ribosome entry segment in-vitro and in-vivo. Oncogene, 2003, 22(39), 8012-8020.
[90]
Grosset, C.; Chen, C.Y.; Xu, N.; Sonenberg, N.; Jacquemin-Sablon, H.; Shyu, A.B. A mechanism for translationally coupled mRNA turnover: interaction between the poly(a) tail and a c-fos RNA coding determinant via a protein complex. Cell, 2000, 103(1), 29-40.
[91]
Wurth, L.; Papasaikas, P.; Olmeda, D.; Bley, N.; Calvo, G.T.; Guerrero, S.; Cerezo-Wallis, D.; Martinez-Useros, J.; Garcia-Fernandez, M.; Huttelmaier, S.; Soengas, M.S.; Gebauer, F. UNR/CSDE1 drives a post-transcriptional program to promote melanoma invasion and metastasis. Cancer Cell, 2016, 30(5), 694-707.
[92]
Evdokimova, V.; Tognon, C.; Ng, T.; Ruzanov, P.; Melnyk, N.; Fink, D.; Sorokin, A.; Ovchinnikov, L.P.; Davicioni, E.; Triche, T.J.; Sorensen, P.H. Translational activation of snail1 and other developmentally regulated transcription factors by YB-1 promotes an epithelial-mesenchymal transition. Cancer Cell, 2009, 15, 402-415.
[93]
Hsieh, A.C.; Liu, Y.; Edlind, M.P.; Ingolia, N.T.; Janes, M.R.; Sher, A.; Shi, E.Y.; Stumpf, C.R.; Christensen, C.; Bonham, M.J. The translational landscape of mTOR signalling steers cancer initiation and metastasis. Nature, 2012, 485, 55-61.
[94]
Heffler, E.; Allegra, A.; Pioggia, G.; Picardi, G.; Musolino, C.; Gangemi, S. MicroRNA profiling in asthma: potential biomarkers and therapeutic targets. Am. J. Respir. Cell Mol. Biol., 2017, 57(6), 642-650.
[http://dx.doi.org/10.1165/rcmb.2016-0231TR]
[95]
Allegra, A.; Musolino, C.; Tonacci, A.; Pioggia, G.; Gangemi, S. Interactions between the MicroRNAs and microbiota in cancer development: Roles and therapeutic opportunities. Cancers (Basel), 2020, 12(4), 805.
[http://dx.doi.org/10.3390/cancers12040805]
[96]
Allegra, A.; Alonci, A.; Campo, S.; Penna, G.; Petrungaro, A.; Gerace, D.; Musolino, C. Circulating microRNAs: new biomarkers in diagnosis, prognosis and treatment of cancer. Int. J. Oncol., 2012, 41(6), 1897-1912.
[http://dx.doi.org/10.3892/ijo.2012.1647]
[97]
Blenkiron, C.; Hurley, D.G.; Fitzgerald, S.; Print, C.G.; Lasham, A. Links between the oncoprotein YB-1 and small non-coding RNAs in breast cancer. PLoS One, 2013, 8(11), e80171.
[http://dx.doi.org/10.1371/journal.pone.0080171]
[98]
Das Gupta, A.; Krawczynska, N.; Nelson, E.R. Extracellular vesicles-the next frontier in endocrinology. Endocrinology, 2021, 162(9), bqab133.
[http://dx.doi.org/10.1210/endocr/bqab133]
[99]
Shurtleff, M.J.; Temoche-Diaz, M.M.; Karfilis, K.V.; Ri, S.; Schekman, R. Y-box protein 1 is required to sort microRNAs into exosomes in cells and in a cell-free reaction. eLife, 2016, 5, e19276.
[100]
Shurtleff, M.J.; Yao, J.; Qin, Y.; Nottingham, R.M.; Temoche-Diaz, M.M.; Schekman, R.; Lambowitz, A.M. Broad role for YBX1 in defining the small noncoding RNA composition of exosomes. Proc. Natl. Acad. Sci., 2017, 114(43), E8987-E8995.
[101]
Decker, C.J.; Parker, R. P-bodies and stress granules: possible roles in the control of translation and mRNA degradation. Cold Spring Harb. Perspect. Biol., 2012, 4(9), a012286.
[102]
Kedersha, N.; Anderson, P. Mammalian stress granules and processing bodies. Methods Enzymol., 2007, 431, 61-81.
[103]
Somasekharan, S.P.; El-Naggar, A.; Leprivier, G.; Cheng, H.; Hajee, S.; Grunewald, T.G.; Zhang, F.; Ng, T.; Delattre, O.; Evdokimova, V. YB-1 regulates stress granule formation and tumor progression by translationally activating G3BP1. J. Cell Biol., 2015, 208(7), 913-929.
[104]
Wang, L.; Wang, P.; Su, X.; Zhao, B. Circ_0001658 promotes the proliferation and metastasis of osteosarcoma cells via regulating miR-382-5p/YB-1 axis. Cell Biochem. Funct., 2020, 38(1), 77-86 .
[http://dx.doi.org/ 10.1002/cbf.3452]
[105]
Chen, J.; Han, S.; Chen, J.; Hu, P.; Zeng, Z.; Hu, Y.; Xiong, H.; Ke, Z.; Zhang, Y.; Xu, F.; Zhao, G. A reciprocal feedback of miR-548ac/YB-1/Snail induces EndMT of HUVECs during acidity microenvironment. Cancer Cell Int., 2021, 21(1), 692 .
[http://dx.doi.org/10.1186/s12935-021-02388-8]
[106]
Mehta, S.; Algie, M.; Al-Jabry, T.; McKinney, C.; Kannan, S.; Verma, C.S.; Ma, W.; Zhang, J.; Bartolec, T.K.; Masamsetti, V.P. Critical Role for Cold Shock Protein YB-1 in Cytokinesis. Cancers (Basel), 2020, 12(9), 2473.
[http://dx.doi.org/10.3390/cancers12092473]
[107]
Habibi, G.; Leung, S.; Law, J.H.; Gelmon, K.; Masoudi, H.; Turbin, D.; Pollak, M.; Nielsen, T.O.; Huntsman, D.; Dunn, S.E. Redefining prognostic factors for breast cancer: Yb-1 is a stronger predictor of relapse and disease-specific survival than estrogen receptor or her-2 across all tumor subtypes. Breast Cancer Res., 2008, 10, R86.
[108]
Lasham, A.; Samuel, W.; Cao, H.; Patel, R.; Mehta, R.; Stern, J.L.; Reid, G.; Woolley, A.G.; Miller, L.D.; Black, M.A. Yb-1, the e2f pathway, and regulation of tumor cell growth. J. Natl. Cancer Inst., 2011, 104, 133-146.
[109]
Woolley, A.G.; Algie, M.; Samuel, W.; Harfoot, R.; Wiles, A.; Hung, N.A.; Tan, P-H.; Hains, P.; Valova, V.A.; Huschtscha, L. Prognostic association of yb-1 expression in breast cancers: A matter of antibody. PLoS One, 2011, 6, e20603.
[110]
Ferreira, A.R.; Bettencourt, M.; Alho, I.; Costa, A.L.; Sousa, A.R.; Mansinho, A.; Abreu, C.; Pulido, C.; Macedo, D.; Vendrell, I.; Pacheco, T.R.; Costa, L.; Casimiro, S. Serum YB-1 (Y-box binding protein 1) as a biomarker of bone disease progression in patients with breast cancer and bone metastases. J. Bone Oncol., 2017, 6, 16-21.
[http://dx.doi.org/10.1016/j.jbo.2017.01.002]
[111]
Rohr, I.; Braicu, E.I.; En-Nia, A.; Heinrich, M.; Richter, R.; Chekerov, R.; Dechend, R.; Heidecke, H.; Dragun, D.; Schäfer, R.; Gorny, X.; Lindquist, J.A.; Brandt, S.; Sehouli, J.; Mertens, P.R. Y-box protein-1/p18 as novel serum marker for ovarian cancer diagnosis: A study by the tumor bank ovarian cancer (TOC). Cytokine, 2016, 85, 157-164.
[http://dx.doi.org/10.1016/j.cyto.2016.06.021]
[112]
Castellana, B.; Aasen, T.; Moreno-Bueno, G.; Dunn, S.E.; Ramón y Cajal, S. Interplay between YB-1 and IL-6 promotes the metastatic phenotype in breast cancer cells. Oncotarget, 2015, 6(35), 38239-38256 .
[http://dx.doi.org/10.18632/oncotarget.5664]
[113]
Wu, Q.; Parry, G. Hepsin and prostate cancer. Front. Biosci., 2007, 12, 5052-5059.
[114]
Zhang, C.; Zhang, M.; Wu, Q.; Peng, J.; Ruan, Y.; Gu, J. Hepsin inhibits CDK11p58 IRES activity by suppressing unr expression and eIF-2alpha phosphorylation in prostate cancer. Cell. Signal., 2015, 27(4), 789-797.
[115]
Martinez-Useros, J.; Georgiev-Hristov, T.; Fernandez-Acenero, M.J. UNR/CDSE1 expression as prognosis biomarker in resectable pancreatic ductal adenocarcinoma patients: a proof of-concept. PLoS One, 2017, 12(8), e0182044.
[116]
Tacke, F.; Galm, O.; Kanig, N.; Yagmur, E.; Brandt, S.; Lindquist, J.A.; Eberhardt, C.S.; Raffetseder, U.; Mertens, P.R. High prevalence of Y-box protein-1/p18 fragment in plasma of patients with malignancies of different origin. BMC Cancer, 2014, 14, 33.
[http://dx.doi.org/10.1186/1471-2407-14-33]
[117]
Janz, M.; Harbeck, N.; Dettmar, P.; Berger, U.; Schmidt, A.; Jurchott, K.; Schmitt, M.; Royer, H.D. Y-box factor YB-1 predicts drug resistance and patient outcome in breast cancer independent of clinically relevant tumor biologic factors HER2, uPA and PAI-1. Int. J. Cancer, 2002, 97(3), 278-282.
[118]
Shibahara, K.; Sugio, K.; Osaki, T.; Uchiumi, T.; Maehara, Y.; Kohno, K.; Yasumoto, K.; Sugimachi, K.; Kuwano, M. Nuclear expression of the Ybox binding protein, YB-1, as a novel marker of disease progression in non-small cell lung cancer. Clin. Cancer Res., 2001, 7(10), 3151-3155.
[119]
Kamura, T.; Yahata, H.; Amada, S.; Ogawa, S.; Sonoda, T.; Kobayashi, H.; Mitsumoto, M.; Kohno, K.; Kuwano, M.; Nakano, H. Is nuclear expression of Y box-binding protein-1 a new prognostic factor in ovarian serous adenocarcinoma? Cancer, 1999, 85(11), 2450-2454.
[120]
Gimenez-Bonafe, P.; Fedoruk, M.N.; Whitmore, T.G.; Akbari, M.; Ralph, J.L.; Ettinger, S.; Gleave, M.E.; Nelson, C.C. YB-1 is upregulated during prostate cancer tumor progression and increases P-glycoprotein activity. Prostate, 2004, 59(3), 337-349.
[121]
Oda, Y.; Ohishi, Y.; Saito, T.; Hinoshita, E.; Uchiumi, T.; Kinukawa, N.; Iwamoto, Y.; Kohno, K.; Kuwano, M.; Tsuneyoshi, M. Nuclear expression of Y-box-binding protein-1 correlates with P-glycoprotein and topoisomerase II alpha expression, and with poor prognosis in synovial sarcoma. J. Pathol., 2003, 199(2), 251-258.
[122]
Oda, Y.; Kohashi, K.; Yamamoto, H.; Tamiya, S.; Kohno, K.; Kuwano, M.; Iwamoto, Y.; Tajiri, T.; Taguchi, T.; Tsuneyoshi, M. Different expression profiles of Y-box-binding protein-1 and multidrug resistance-associated proteins between alveolar and embryonal rhabdomyosarcoma. Cancer Sci., 2008, 99(4), 726-732.
[123]
Oda, Y.; Ohishi, Y.; Basaki, Y.; Kobayashi, H.; Hirakawa, T.; Wake, N.; Ono, M.; Nishio, K.; Kuwano, M.; Tsuneyoshi, M. Prognostic implications of the nuclear localization of Y-box-binding protein-1 and CXCR4 expression in ovarian cancer: their correlation with activated Akt, LRP/MVP and P-glycoprotein expression. Cancer Sci., 2007, 98(7), 1020-1026.
[124]
Oda, Y.; Sakamoto, A.; Shinohara, N.; Ohga, T.; Uchiumi, T.; Kohno, K.; Tsuneyoshi, M.; Kuwano, M.; Iwamoto, Y. Nuclear expression of YB-1 protein correlates with P-glycoprotein expression in human osteosarcoma. Clin. Cancer Res., 1998, 4(9), 2273-2277.
[125]
Saji, H.; Toi, M.; Saji, S.; Koike, M.; Kohno, K.; Kuwano, M. Nuclear expression of YB-1 protein correlates with P-glycoprotein expression in human breast carcinoma. Cancer Lett., 2003, 190(2), 191-197.
[126]
Dahl, E.; En-Nia, A.; Wiesmann, F.; Krings, R.; Djudjaj, S.; Breuer, E.; Fuchs, T.; Wild, P.J.; Hartmann, A.; Dunn, S.E.; Mertens, P.R. Nuclear detection of Y-box protein-1 (YB-1) closely associates with progesterone receptor negativity and is a strong adverse survival factor in human breast cancer. BMC Cancer, 2009, 9, 410 .
[http://dx.doi.org/10.1186/1471-2407-9-410]
[127]
Chatterjee, M.; Rancso, C.; Stuhmer, T.; Eckstein, N.; Andrulis, M.; Gerecke, C.; Lorentz, H.; Royer, H.D.; Bargou, R.C. The Y-box binding protein YB-1 is associated with progressive disease and mediates survival and drug resistance in multiple myeloma. Blood, 2008, 111, 3714-3722.
[128]
Higashi, K.; Tomigahara, Y.; Shiraki, H.; Miyata, K.; Mikami, T. Kimura, T.; Moro, T.; Inagaki, Y.; Kaneko, H. A novel small compound that promotes nuclear translocation of YB-1 ameliorates experimental hepatic fibrosis in mice. J. Biol. Chem., 2011, 286(6), 4485-4492.
[129]
Higashi, K.; Inagaki, Y.; Fujimori, K.; Nakao, A.; Kaneko, H.; Nakatsuka, I. Interferon gamma interferes with transforming growth factor-beta signaling through direct interaction of YB-1 with Smad3. J. Biol. Chem., 2003, 278(44), 43470-43479.
[130]
Syed, D.N.; Adhami, V.M.; Khan, M.I.; Mukhtar, H. Inhibition of Akt/mTOR signaling by the dietary flavonoid fisetin. Anticancer. Agents Med. Chem., 2013, 13(7), 995-1001.
[131]
Gieseler-Halbach, S.; Meltendorf, S.; Pierau, M.; Weinert, S.; Heidel, F.H.; Fischer, T.; Handschuh, J.; Braun-Dullaeus, R.C.; Schrappe, M.; Lindquist, J.A. RSK-mediated nuclear accumulation of the cold-shock Y-box protein-1 controls proliferation of T cells and T-ALL blasts. Cell Death Differ., 2017, 24(2), 371-383.
[132]
Kato, M.; Wang, L.; Putta, S.; Wang, M.; Yuan, H.; Sun, G.; Lanting, L.; Todorov, I.; Rossi, J.J.; Natarajan, R. Post-transcriptional up-regulation of Tsc-22 by Ybx1, a target of miR-216a, mediates TGF-{beta}-induced collagen expression in kidney cells. J. Biol. Chem., 2010, 285(44), 34004-34015 .
[http://dx.doi.org/10.1074/jbc.M110.165027]
[133]
Zhu, X.; Li, Y.; Shen, H.; Li, H.; Long, L.; Hui, L.; Xu, W. miR-137 restoration sensitizes multidrug-resistant MCF-7/ADM cells to anticancer agents by targeting YB-1. Acta Biochim. Biophys. Sin. (Shanghai), 2013, 45(2), 80-86.
[http://dx.doi.org/10.1093/abbs/gms099]
[134]
Zeng, Y.; Kulkarni, P.; Inoue, T.; Getzenberg, R.H. Down-regulating cold shock protein genes impairs cancer cell survival and enhances chemosensitivity. J. Cell. Biochem., 2009, 107(1), 179-188.
[http://dx.doi.org/10.1002/jcb.22114]
[135]
Zhang, Y.; Wu, Y.; Mao, P.; Li, F.; Han, X.; Zhang, Y.; Jiang, S.; Chen, Y.; Huang, J.; Liu, D.; Zhao, Y.; Ma, W.; Songyang, Z. Cold-inducible RNA-binding protein CIRP/hnRNP A18 regulates telomerase activity in a temperature-dependent manner. Nucleic Acids Res., 2016, 44(2), 761-775 .
[http://dx.doi.org/10.1093/nar/gkv1465]
[136]
Meeker, A.K.; Coffey, D.S. Telomerase: a promising marker of biological immortality of germ, stem, and cancer cells. A review. Biochemistry (Mosc.), 1997, 62, 1323-1331.
[137]
Sakurai, T.; Yada, N.; Watanabe, T.; Arizumi, T.; Hagiwara, S.; Ueshima, K.; Nishida, N.; Fujita, J.; Kudo, M. Cold-inducible RNA-binding protein promotes the development of liver cancer. Cancer Sci., 2015, 106(4), 352-358.
[http://dx.doi.org/10.1111/cas.12611]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy