Generic placeholder image

Recent Patents on Anti-Cancer Drug Discovery

Editor-in-Chief

ISSN (Print): 1574-8928
ISSN (Online): 2212-3970

Review Article

Green Synthesized Nanoparticles as a Plausible Therapeutic Strategy Against Hepatocellular Carcinoma: An Update on its Preclinical and Clinical Relevance

Author(s): Gopika Chandrababu, Sunil Kumar Sah, Ayana R. Kumar, Sabitha M and Lekshmi R. Nath*

Volume 18, Issue 3, 2023

Published on: 04 August, 2022

Page: [268 - 291] Pages: 24

DOI: 10.2174/1574892817666220523124437

Price: $65

Abstract

Green nanotechnology can offer notable advantages over the conventional drug delivery methods in terms of improved drug stability, drug-carrying capacity, site-specificity, and feasibility to apply different routes of administration with less systemic toxicities. Metal nanoparticles bio fabricated with phytoconstituents and microbial extracts have gained significant interest for the treatment of various solid tumors including hepatocellular carcinoma. Hepatocellular carcinoma (HCC) is an aggressive cancer with a very poor prognosis. The current treatments of HCC fails to provide tumor specificity, causing many systemic toxicities and poor overall survival benefits especially for patients in advanced and terminal stages. A novel therapeutic approach with maximal therapeutic effect and minimum adverse effects are urgently required for HCC patients. Green synthesized metal nanoparticles offer significant anticancer effects along with minimal systemic toxicities because of their site-specific delivery into the tumor microenvironment (TME). Green synthesized metal nanoparticles can therefore be a highly beneficial strategy for the treatment of HCC if properly validated with preclinical and clinical studies. This review focuses on the preclinical evidence of the most widely studied green metal nanoparticles such as green synthesized silver nanoparticles, gold nanoparticles and selenium nanoparticles. We have also summarised the clinical studies and the patents approved for nanoparticles against HCC.

Keywords: Hepatocellular carcinoma, green nanoparticles, green synthesis, phytofabrications, gold nanoparticles, silver nanoparticles.

[1]
Wang CH, Wey KC, Mo LR, Chang KK, Lin RC, Kuo JJ. Current trends and recent advances in diagnosis, therapy, and prevention of hepatocellular carcinoma. Asian Pac J Cancer Prev 2015; 16(9): 3595-604.
[http://dx.doi.org/10.7314/APJCP.2015.16.9.3595] [PMID: 25987009]
[2]
Malarvizhi GL, Retnakumari AP, Nair S, Koyakutty M. Transferrin targeted core-shell nanomedicine for combinatorial delivery of doxorubicin and sorafenib against hepatocellular carcinoma. Nanomedicine 2014; 10(8): 1649-59.
[http://dx.doi.org/10.1016/j.nano.2014.05.011] [PMID: 24905399]
[3]
Elnaggar MH, Abushouk AI, Hassan AHE. et al. Nanomedicine as a putative approach for active targeting of hepatocellular carcinoma. Semin Cancer Biol 2021; 69: 91-9.
[http://dx.doi.org/10.1016/j.semcancer.2019.08.016] [PMID: 31421265]
[4]
World Health Organization. Cancer today International Agency for research 2020; 1-2.
[5]
Hamza AA, Heeba GH, Hamza S, Abdalla A, Amin A. Standardized extract of ginger ameliorates liver cancer by reducing proliferation and inducing apoptosis through inhibition oxidative stress/ inflammation pathway. Biomed Pharmacother 2021; 134, 111102.
[http://dx.doi.org/10.1016/j.biopha.2020.111102] [PMID: 33338743]
[6]
Niederau C, Fischer R, Sonnenberg A, Stremmel W, Trampisch HJ, Strohmeyer G. Survival and causes of death in cirrhotic and in noncirrhotic patients with primary hemochromatosis. N Engl J Med 1985; 313(20): 1256-62.
[http://dx.doi.org/10.1056/NEJM198511143132004] [PMID: 4058506]
[7]
Donato F, Tagger A, Chiesa R. et al. Hepatitis B and C virus infection, alcohol drinking, and hepatocellular carcinoma: A casecontrol study in Italy. Brescia HCC Study. Hepatology 1997; 26(3): 579-84.
[http://dx.doi.org/10.1002/hep.510260308] [PMID: 9303486]
[8]
Chen CH, Chen YY, Chen GH. et al. Hepatitis B virus transmission and hepatocarcinogenesis: A 9 year retrospective cohort of 13676 relatives with hepatocellular carcinoma. J Hepatol 2004; 40(4): 653-9.
[http://dx.doi.org/10.1016/j.jhep.2003.12.002] [PMID: 15030982]
[9]
Grant BF, Dawson DA, Stinson FS, Chou SP, Dufour MC, Pickering RP. The 12-month prevalence and trends in DSM-IV alcohol abuse and dependence: United States, 1991-1992 and 2001-2002. Drug Alcohol Depend 2004; 74(3): 223-34.
[http://dx.doi.org/10.1016/j.drugalcdep.2004.02.004] [PMID: 15194200]
[10]
Valean S, Acalovschi M, Dumitrascu DL, Ciobanu L, Nagy G, Chira R. Hepatocellular carcinoma in patients with autoimmune hepatitis - a systematic review of the literature published between 1989-2016. Med Pharm Rep 2019; 92(2): 99-105.
[http://dx.doi.org/10.15386/mpr-1228] [PMID: 31086834]
[11]
Zenouzi R, Weismüller TJ, Hübener P. et al. Low risk of hepatocellular carcinoma in patients with primary sclerosing cholangitis with cirrhosis. Clin Gastroenterol Hepatol 2014; 12(10): 1733-8.
[http://dx.doi.org/10.1016/j.cgh.2014.02.008] [PMID: 24530461]
[12]
Zoller H, Tilg H. Nonalcoholic fatty liver disease and hepatocellular carcinoma. Metabolism 2016; 65(8): 1151-60.
[http://dx.doi.org/10.1016/j.metabol.2016.01.010] [PMID: 26907206]
[13]
Davis GL, Dempster J, Meler JD. et al. Hepatocellular carcinoma: Management of an increasingly common problem. Proc Bayl Univ Med Cent 2008; 21(3): 266-80.
[http://dx.doi.org/10.1080/08998280.2008.11928410] [PMID: 18628926]
[14]
Amin A, Mahmoud-Ghoneim D. Texture analysis of liver fibrosis microscopic images: A study on the effect of biomarkers. Acta Biochim Biophys Sin (Shanghai) 2011; 43(3): 193-203.
[http://dx.doi.org/10.1093/abbs/gmq129] [PMID: 21258076]
[15]
Chen Z, Xie H, Hu M. et al. Recent progress in treatment of hepatocellular carcinoma. Am J Cancer Res 2020; 10(9): 2993-3036.
[PMID: 33042631]
[16]
Bijukumar D, Girish CM, Sasidharan A, Nair S, Koyakutty M. Transferrin-conjugated biodegradable graphene for targeted radiofrequency ablation of hepatocellular carcinoma. ACS Biomater Sci Eng 2015; 1(12): 1211-9.
[http://dx.doi.org/10.1021/acsbiomaterials.5b00184] [PMID: 33429667]
[17]
Kudo M, Trevisani F, Abou-Alfa GK, Rimassa L. Hepatocellular carcinoma: Therapeutic guidelines and medical treatment. Liver Cancer 2016; 6(1): 16-26.
[http://dx.doi.org/10.1159/000449343] [PMID: 27995084]
[18]
Galle PR, Forner A, Llovet JM. et al. EASL Clinical Practice Guidelines: Management of hepatocellular carcinoma. J Hepatol 2018; 69(1): 182-236.
[http://dx.doi.org/10.1016/j.jhep.2018.03.019] [PMID: 29628281]
[19]
Bruix J, Sherman M. Management of hepatocellular carcinoma: An update. Hepatology 2011; 53(3): 1020-2.
[http://dx.doi.org/10.1002/hep.24199] [PMID: 21374666]
[20]
Chan LL, Chan SL. Treatment of high-burden hepatocellular carcinoma: An oncologist perspective. Hepatoma Res 2018; 4(2): 1.
[http://dx.doi.org/10.20517/2394-5079.2017.49]
[21]
Kumar AR, Devan AR, Nair B, Nath LR. Anti-VEGF mediated immunomodulatory role of phytochemicals: Scientific exposition for plausible HCC treatment. Curr Drug Targets 2021; 22(11): 1288-316.
[http://dx.doi.org/10.2174/1389450122666210203194036] [PMID: 33538672]
[22]
Devan AR, Kumar AR, Nair B. et al. Insights into an immunotherapeutic approach to combat multidrug resistance in hepatocellular carcinoma. Pharmaceuticals (Basel) 2021; 14(7): 656.
[http://dx.doi.org/10.3390/ph14070656] [PMID: 34358082]
[23]
Juaid N, Amin A, Abdalla A. et al. Anti-hepatocellular carcinoma biomolecules: Molecular targets insights. Int J Mol Sci 2021; 22(19): 10774.
[http://dx.doi.org/10.3390/ijms221910774] [PMID: 34639131]
[24]
Tang W, Chen Z, Zhang W. et al. The mechanisms of sorafenib resistance in hepatocellular carcinoma: Theoretical basis and therapeutic aspects. Signal Transduct Target Ther 2020; 5(1): 87.
[http://dx.doi.org/10.1038/s41392-020-0187-x] [PMID: 32532960]
[25]
Personeni N, Pressiani T, Rimassa L. Lenvatinib for the treatment of unresectable hepatocellular carcinoma: Evidence to date. J Hepatocell Carcinoma 2019; 6: 31-9.
[http://dx.doi.org/10.2147/JHC.S168953] [PMID: 30775342]
[26]
Yau T, Hsu C, Kim TY. et al. Nivolumab in advanced hepatocellular carcinoma: Sorafenib-experienced Asian cohort analysis. J Hepatol 2019; 71(3): 543-52.
[http://dx.doi.org/10.1016/j.jhep.2019.05.014] [PMID: 31176752]
[27]
Piñero F, Silva M, Iavarone M. Sequencing of systemic treatment for hepatocellular carcinoma: Second line competitors. World J Gastroenterol 2020; 26(16): 1888-900.
[http://dx.doi.org/10.3748/wjg.v26.i16.1888] [PMID: 32390700]
[28]
Niu L, Liu L, Yang S, Ren J, Lai PBS, Chen GG. New insights into sorafenib resistance in hepatocellular carcinoma: Responsible mechanisms and promising strategies. Biochim Biophys Acta Rev Cancer 2017; 1868(2): 564-70.
[http://dx.doi.org/10.1016/j.bbcan.2017.10.002] [PMID: 29054475]
[29]
Choudhari AS, Mandave PC, Deshpande M, Ranjekar P, Prakash O. Phytochemicals in cancer treatment: From preclinical studies to clinical practice. Front Pharmacol 2020; 10: 1614.
[http://dx.doi.org/10.3389/fphar.2019.01614] [PMID: 32116665]
[30]
Amin A, Farrukh A, Murali C. et al. Saffron and its major ingredients’ effect on colon cancer cells with mismatch repair deficiency and microsatellite instability. Molecules 2021; 26(13): 3855.
[http://dx.doi.org/10.3390/molecules26133855] [PMID: 34202689]
[31]
Li Y, Martin RCG II. Herbal medicine and hepatocellular carcinoma: Applications and challenges. Evid Based Complement Alternat Med 2011; 2011, 541209.
[http://dx.doi.org/10.1093/ecam/neq044] [PMID: 21799681]
[32]
El-Dakhly SM, Salama AAA, Hassanin SOM, Yassen NN, Hamza AA, Amin A. Aescin and diosmin each alone or in low dose- combination ameliorate liver damage induced by carbon tetrachloride in rats. BMC Res Notes 2020; 13(1): 259.
[http://dx.doi.org/10.1186/s13104-020-05094-2] [PMID: 32460808]
[33]
Ibrahim HM, Aly AA, Taha GM, El-Alfy EA. Production of antibacterial cotton fabrics via green treatment with nontoxic natural biopolymer gelatin. Egypt J Chem 2020; 63(Part 2): 655-96.
[34]
Narayanan S, Binulal NS, Mony U, Manzoor K, Nair S, Menon D. Folate targeted polymeric ‘green’ nanotherapy for cancer. Nanotechnology 2010; 21(28), 285107.
[http://dx.doi.org/10.1088/0957-4484/21/28/285107] [PMID: 20585151]
[35]
Ranjan A, Ramachandran S, Gupta N. et al. Role of phytochemicals in cancer prevention. Int J Mol Sci 2019; 20(20): 1-17.
[http://dx.doi.org/10.3390/ijms20204981] [PMID: 31600949]
[36]
Habli Z, Toumieh G, Fatfat M, Rahal ON, Gali-Muhtasib H. Emerging cytotoxic alkaloids in the battle against cancer: Overview of molecular mechanisms. Molecules 2017; 22(2): 1-22.
[http://dx.doi.org/10.3390/molecules22020250] [PMID: 28208712]
[37]
Sayed N, Khurana A, Godugu C. Pharmaceutical perspective on the translational hurdles of phytoconstituents and strategies to overcome. J Drug Deliv Sci Technol 2019; 53, 101201.
[http://dx.doi.org/10.1016/j.jddst.2019.101201]
[38]
Murali C, Mudgil P, Gan CY. et al. Camel whey protein hydrolysates induced G2/M cellcycle arrest in human colorectal carcinoma. Sci Rep 2021; 11(1): 7062.
[http://dx.doi.org/10.1038/s41598-021-86391-z] [PMID: 33782460]
[39]
Kamal H, Jafar S, Mudgil P, Murali C, Amin A, Maqsood S. Inhibitory properties of camel whey protein hydrolysates toward liver cancer cells, dipeptidyl peptidase-IV, and inflammation. J Dairy Sci 2018; 101(10): 8711-20.
[http://dx.doi.org/10.3168/jds.2018-14586] [PMID: 30122417]
[40]
Al-Shamsi M, Amin A, Adeghate E. Effect of vitamin C on liver and kidney functions in normal and diabetic rats. Ann N Y Acad Sci 2006; 1084(1): 371-90.
[http://dx.doi.org/10.1196/annals.1372.031] [PMID: 17151316]
[41]
Al-Shamsi M, Amin A, Adeghate E. Vitamin E ameliorates some biochemical parameters in normal and diabetic rats. Ann N Y Acad Sci 2006; 1084(1): 411-31.
[http://dx.doi.org/10.1196/annals.1372.033] [PMID: 17151319]
[42]
Mathew BT, Raji S, Dagher S. et al. Bilirubin detoxification using different phytomaterials: Characterization and in vitro studies. Int J Nanomedicine 2018; 13: 2997-3010.
[http://dx.doi.org/10.2147/IJN.S160968] [PMID: 29872292]
[43]
Pan Z, Zhuang J, Ji C, Cai Z, Liao W, Huang Z. Curcumin inhibits hepatocellular carcinoma growth by targeting VEGF expression. Oncol Lett 2018; 15(4): 4821-6.
[http://dx.doi.org/10.3892/ol.2018.7988] [PMID: 29552121]
[44]
Zhang B, Yin X, Sui S. Resveratrol inhibited the progression of human hepatocellular carcinoma by inducing autophagy via regulating p53 and the phosphoinositide 3 kinase/protein kinase B pathway. Oncol Rep 2018; 40(5): 2758-65.
[http://dx.doi.org/10.3892/or.2018.6648] [PMID: 30132535]
[45]
Mao J, Yang H, Cui T. et al. Combined treatment with sorafenib and silibinin synergistically targets both HCC cells and cancer stem cells by enhanced inhibition of the phosphorylation of STAT3/ERK/AKT. Eur J Pharmacol 2018; 832(639): 39-49.
[http://dx.doi.org/10.1016/j.ejphar.2018.05.027] [PMID: 29782854]
[46]
Chiu CM, Huang SY, Chang SF, Liao KF, Chiu SC. Synergistic antitumor effects of tanshinone IIA and sorafenib or its derivative SC-1 in hepatocellular carcinoma cells. OncoTargets Ther 2018; 11: 1777-85.
[http://dx.doi.org/10.2147/OTT.S161534] [PMID: 29636623]
[47]
Ventola CL, Bharali DJ, Mousa SA. The nanomedicine revolution: Part 1: Emerging concepts. pharmacy and therapeutics. Pharmacol Ther 2010; 128(9): 512-25.
[48]
Gwinn MR, Vallyathan V. Nanoparticles: Health effects--pros and cons. Environ Health Perspect 2006; 114(12): 1818-25.
[http://dx.doi.org/10.1289/ehp.8871] [PMID: 17185269]
[49]
Hua S, Wu SY. Editorial: Advances and challenges in nanomedicine. Front Pharmacol 2018; 9: 1397.
[http://dx.doi.org/10.3389/fphar.2018.01397] [PMID: 30555328]
[50]
El-Kharrag R, Amin A, Hisaindee S, Greish Y, Karam SM. Development of a therapeutic model of precancerous liver using crocincoated magnetite nanoparticles. Int J Oncol 2017; 50(1): 212-22.
[http://dx.doi.org/10.3892/ijo.2016.3769] [PMID: 27878253]
[51]
Onoue S, Yamada S, Chan HK. Nanodrugs: Pharmacokinetics and safety. Int J Nanomedicine 2014; 9(1): 1025-37.
[http://dx.doi.org/10.2147/IJN.S38378] [PMID: 24591825]
[52]
Ventola CL. Progress in nanomedicine: Approved and investigational nanodrugs. Pharmacol Ther 2017; 42(12): 742-55.
[PMID: 29234213]
[53]
Patra JK, Das G, Fraceto LF. et al. Nano based drug delivery systems: Recent developments and future prospects 10 Technology 1007 Nanotechnology 03 Chemical Sciences 0306 Physical Chemistry (incl. Structural) 03 Chemical Sciences 0303 Macromolecular and Materials Chemistry 11 Medical and He. J Nanobiotechnology 2018; 16(1): 1-33.
[PMID: 29321058]
[54]
Pal G, Rai P, Pandey A. Green synthesis of nanoparticles: A greener approach for a cleaner future.In: Shukla AK, Iravani S, Eds Green Synthesis, Characterization and Applications of Nanoparticles. Amsterdam, Netherlands: Elsevier Inc. 2019; pp. 1-26.
[http://dx.doi.org/10.1016/B978-0-08-102579-6.00001-0]
[55]
Bakr MM, Taha MA, Osman H, Ibrahim HM. Novel green printing of cotton, wool and polyester fabrics with natural safflower dye nanoparticles. Egypt J Chem 2021; 64(11): 6221-30.
[http://dx.doi.org/10.21608/ejchem.2021.75163.3695]
[56]
Xing H, Hwang K, Lu Y. Recent developments of liposomes as nanocarriers for theranostic applications. Theranostics 2016; 6(9): 1336-52.
[http://dx.doi.org/10.7150/thno.15464] [PMID: 27375783]
[57]
Singh J, Jain K, Mehra NK, Jain NK. Dendrimers in anticancer drug delivery: Mechanism of interaction of drug and dendrimers. Artif Cells Nanomed Biotechnol 2016; 44(7): 1626-34.
[http://dx.doi.org/10.3109/21691401.2015.1129625] [PMID: 26747336]
[58]
Maiti D, Tong X, Mou X, Yang K. Carbon-based nanomaterials for biomedical applications: A recent study. Front Pharmacol 2019; 9: 1401.
[http://dx.doi.org/10.3389/fphar.2018.01401] [PMID: 30914959]
[59]
Mondal S, Roy N, Laskar RA. et al. Biogenic synthesis of Ag, Au and bimetallic Au/Ag alloy nanoparticles using aqueous extract of mahogany (Swietenia mahogani JACQ.) leaves. Colloids Surf B Biointerfaces 2011; 82(2): 497-504.
[http://dx.doi.org/10.1016/j.colsurfb.2010.10.007] [PMID: 21030220]
[60]
El Shafey AM. Green synthesis of metal and metal oxide nanoparticles from plant leaf extracts and their applications: A review. Green Process Synth 2020; 9(1): 304-39.
[http://dx.doi.org/10.1515/gps-2020-0031]
[61]
Patra S, Mukherjee S, Barui AK, Ganguly A, Sreedhar B, Patra CR. Green synthesis, characterization of gold and silver nanoparticles and their potential application for cancer therapeutics. Mater Sci Eng C 2015; 53: 298-309.
[http://dx.doi.org/10.1016/j.msec.2015.04.048] [PMID: 26042718]
[62]
Ravindra P. Protein-mediated synthesis of gold nanoparticles. Mater Sci Eng B Solid-State Mater Adv Technol 2009; 163(2): 93-8.
[http://dx.doi.org/10.1016/j.mseb.2009.05.013]
[63]
Javed R, Zia M, Naz S, Aisida SO, Ain NU, Ao Q. Role of capping agents in the application of nanoparticles in biomedicine and environ-mental remediation: Recent trends and future prospects. J Nanobiotechnology 2020; 18(1): 172.
[http://dx.doi.org/10.1186/s12951-020-00704-4] [PMID: 33225973]
[64]
Nazarbek G, Kutzhanova A, Nurtay L. et al. Nano-evolution and protein-based enzymatic evolution predicts novel types of natural product nanozymes of traditional Chinese medicine: Cases of herbzymes of Taishan-Huangjing (Rhizoma polygonati) and Goji (Lycium chinense). Nanoscale Adv 2021; 3(23): 6728-38.
[http://dx.doi.org/10.1039/D1NA00475A]
[65]
Karmous I, Pandey A, Haj KB, Chaoui A. Efficiency of the green synthesized nanoparticles as new tools in cancer therapy: Insights on plant-based bioengineered nanoparticles, biophysical properties, and anticancer roles. Biol Trace Elem Res 2020; 196(1): 330-42.
[http://dx.doi.org/10.1007/s12011-019-01895-0] [PMID: 31512171]
[66]
Roschangar F, Sheldon RA, Senanayake CH. Overcoming barriers to green chemistry in the pharmaceutical industry-the Green Aspiration LevelTM concept. Green Chem 2015; 17(2): 752-68.
[http://dx.doi.org/10.1039/C4GC01563K]
[67]
El-kharrag R, Abdel Halim SS, Amin A, Greish YE. Synthesis and characterization of chitosan-coated magnetite nanoparticles using a modified wet method for drug delivery applications. Int J Polym Mater 2019; 68(1-3): 73-82.
[http://dx.doi.org/10.1080/00914037.2018.1525725]
[68]
El-kharrag R, Amin A, Greish YE. Synthesis and characterization of mesoporous sodium dodecyl sulfate-coated magnetite nanoparticles. J Ceram Sci Technol 2011; 2(4): 203-10.
[69]
Singh P, Kim YJ, Zhang D, Yang DC. Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol 2016; 34(7): 588-99.
[http://dx.doi.org/10.1016/j.tibtech.2016.02.006] [PMID: 26944794]
[70]
Iqbal P, Preece JA, Mendes PM. Nanotechnology: The “Top-Down” and “Bottom-Up” Approaches.In: Supramolecular Chemistry Hoboken. New Jersey: John Wiley & Sons 2012.
[http://dx.doi.org/10.1002/9780470661345.smc195]
[71]
Aryal S, Park H, Leary JF, Key J. Top-down fabrication-based nano/microparticles for molecular imaging and drug delivery. Int J Nanomedicine 2019; 14: 6631-44.
[http://dx.doi.org/10.2147/IJN.S212037] [PMID: 31695361]
[72]
Bayat F, Tajalli H. Nanosphere lithography: The effect of chemical etching and annealing sequence on the shape and spectrum of nano-metal arrays. Heliyon 2020; 6(2), e03382.
[http://dx.doi.org/10.1016/j.heliyon.2020.e03382] [PMID: 32072062]
[73]
Kim M, Osone S, Kim T, Higashi H, Seto T. Synthesis of nanoparticles by laser ablation: A review Kona 2017; 2017(34): 80-90.
[http://dx.doi.org/10.14356/kona.2017009]
[74]
Prasad Yadav T, Manohar Yadav R, Pratap Singh D. Mechanical milling: A top down approach for the synthesis of nanomaterials and nanocomposites. Nanosci Nanotechnol 2012; 2(3): 22-48.
[http://dx.doi.org/10.5923/j.nn.20120203.01]
[75]
Asanithi P, Chaiyakun S, Limsuwan P. Growth of silver nanoparticles by DC magnetron sputtering. J Nanomater 2012; 2012, 963609.
[http://dx.doi.org/10.1155/2012/963609]
[76]
Singh J, Dutta T, Kim K-H, Rawat M, Samddar P, Kumar P. ‘Green’ synthesis of metals and their oxide nanoparticles: Applications for environmental remediation. J Nanobiotechnology 2018; 16(1): 84.
[http://dx.doi.org/10.1186/s12951-018-0408-4] [PMID: 30373622]
[77]
Piszczek P, Radtke A. Silver nanoparticles fabricated using chemical vapor deposition and atomic layer deposition techniques: Properties, applications and perspectives: Review. In:Seehra M, Bristow A, Eds. Noble and Precious Metals- Properties, Nanoscale Effects and Applications. London: IntechOpen 2018.
[http://dx.doi.org/10.5772/intechopen.71571]
[78]
M. S, D. G, M. S. Synthesis of nanostructured magnesium oxide by sol gel method and its characterization. Int J Pharm Sci Res 2018; 9(4): 1576-81.
[79]
Reau A, Guizard B, Mengeot C, Boulanger L, Ténégal F. Large scale production of nanoparticles by laser pyrolysis. Mater Sci Forum 2007; 534–536: 85-8.
[http://dx.doi.org/10.4028/www.scientific.net/MSF.534-536.85]
[80]
Ghaffarian HR, Saiedi M, Sayyadnejad MA, Rashidi MA. Synthesis of ZnO nanoparticles by spray pyrolysis method. Iran J Chem Chem Eng 2011; 30(1): 1-6.
[81]
Gahlawat G, Choudhury AR. A review on the biosynthesis of metal and metal salt nanoparticles by microbes. RSC Advances 2019; 9(23): 12944-67.
[http://dx.doi.org/10.1039/C8RA10483B]
[82]
Bhainsa KC, D’Souza SF. Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids Surf B Biointerfaces 2006; 47(2): 160-4.
[http://dx.doi.org/10.1016/j.colsurfb.2005.11.026] [PMID: 16420977]
[83]
Yadav A, Kon K, Kratosova G, Duran N, Ingle AP, Rai M. Fungi as an efficient mycosystem for the synthesis of metal nanoparticles: Progress and key aspects of research. Biotechnol Lett 2015; 37(11): 2099-120.
[http://dx.doi.org/10.1007/s10529-015-1901-6] [PMID: 26164702]
[84]
Skalickova S, Baron M, Sochor J. Nanoparticles biosynthesized by yeast: A review of their application. Kvas Prum 2017; 63(6): 290-2.
[http://dx.doi.org/10.18832/kp201727]
[85]
Zhang X, Qu Y, Shen W. et al. Biogenic synthesis of gold nanoparticles by yeast Magnusiomyces ingens LH-F1 for catalytic reduction of nitrophenols. Colloids Surf A Physicochem Eng Asp 2016; 497: 280-5.
[http://dx.doi.org/10.1016/j.colsurfa.2016.02.033]
[86]
Mukherjee S, Nethi SK. Biological synthesis of nanoparticles using bacteria.In: Panpatte D, Jhala Y, Eds Nanotechnology for Agriculture Singapore: Springer. 2019; pp. 37-51.
[http://dx.doi.org/10.1007/978-981-32-9370-0_3]
[87]
Tsekhmistrenko SI, Bityutskyy VS, Tsekhmistrenko OS, Horalskyi LP, Tymoshok NO, Spivak MY. Bacterial synthesis of nanoparticles: A green approach. Biosyst Divers 2020; 28(1): 9-17.
[http://dx.doi.org/10.15421/012002]
[88]
Uzair B, Liaqat A, Iqbal H. et al. Green and costeffective synthesis of metallic nanoparticles by algae: Safe methods for translational medicine. Bioengineering (Basel) 2020; 7(4): 1-22.
[http://dx.doi.org/10.3390/bioengineering7040129] [PMID: 33081248]
[89]
Khanna P, Kaur A, Goyal D. Algae-based metallic nanoparticles: Synthesis, characterization and applications. J Microbiol Methods 2019; 163, 105656.
[http://dx.doi.org/10.1016/j.mimet.2019.105656] [PMID: 31220512]
[90]
Kumar H, Bhardwaj K, Kuča K. et al. Flower-based green synthesis of metallic nanoparticles: Applications beyond fragrance. Nanomaterials (Basel) 2020; 10(4): 766.
[http://dx.doi.org/10.3390/nano10040766] [PMID: 32316212]
[91]
Čuk N, Šala M, Gorjanc M. Development of antibacterial and UV protective cotton fabrics using plant food waste and alien invasive plant extracts as reducing agents for the in-situ synthesis of silver nanoparticles. Cellulose 2021; 28(5): 3215-33.
[http://dx.doi.org/10.1007/s10570-021-03715-y]
[92]
Akl M. Awwad and Mohammad W. Amer. Green synthesis of copper nanoparticles by Citrus limon fruits extract, characterization and antibacterial activity. Chem Int 2021; 7(1): 1-8.
[93]
Sahu D, Kannan GM, Tailang M, Vijayaraghavan R. In vitro cytotoxicity of nanoparticles: A comparison between particle size and cell type. J Nanosci 2016; 2016: 1-9.
[http://dx.doi.org/10.1155/2016/4023852]
[94]
Rawat M, Yadukrishnan P, Kumar N. Mechanisms of action of nanoparticles in living systems.In: Pankaj SA, Ed Microbial Biotechnology in Environmental Monitoring and Cleanup Hershey, PA: IGI Global. 2018; pp. 220-36.
[http://dx.doi.org/10.4018/978-1-5225-3126-5.ch014]
[95]
Shi H, Hudson LG, Liu KJ. Oxidative stress and apoptosis in metal ion-induced carcinogenesis. Free Radic Biol Med 2004; 37(5): 582-93.
[http://dx.doi.org/10.1016/j.freeradbiomed.2004.03.012] [PMID: 15288116]
[96]
Chiang HM, Xia Q, Zou X. et al. Nanoscale ZnO induces cytotoxicity and DNA damage in human cell lines and rat primary neuronal cells. J Nanosci Nanotechnol 2012; 12(3): 2126-35.
[http://dx.doi.org/10.1166/jnn.2012.5758] [PMID: 22755030]
[97]
Bin-Jumah MN, Al-Abdan M, Al-Basher G, Alarifi S. Molecular mechanism of cytotoxicity, genotoxicity, and anticancer potential of green gold nanoparticles on human liver normal and cancerous cells. Dose Response 2020; 18(2), 1559325820912154.
[http://dx.doi.org/10.1177/1559325820912154] [PMID: 32284699]
[98]
Ullah I, Khalil AT, Ali M. et al. Green-synthesized silver nanoparticles induced apoptotic cell death in MCF-7 breast cancer cells by gen-erating reactive oxygen species and activating caspase 3 and 9 enzyme activities. Oxid Med Cell Longev 2020; 2020, 1215395.
[http://dx.doi.org/10.1155/2020/1215395] [PMID: 33082906]
[99]
Al-Rubaye HI, Al-Rubaye BK, Al-Abodi EE, Yousif EI. Green Chemistry Synthesis of Modified Silver Nanoparticles. J Phys Conf Ser 2020; 1664(1): 1-26.
[http://dx.doi.org/10.1088/1742-6596/1664/1/012080]
[100]
Loo YY, Rukayadi Y, Nor-Khaizura MAR. et al. In vitro antimicrobial activity of green synthesized silver nanoparticles against selected Gram-negative foodborne pathogens. Front Microbiol 2018; 9: 1555.
[http://dx.doi.org/10.3389/fmicb.2018.01555] [PMID: 30061871]
[101]
Hamouda T, Ibrahim HM, Kafafy HH, Mashaly HM, Mohamed NH, Aly NM. Preparation of cellulose-based wipes treated with antimicro-bial and antiviral silver nanoparticles as novel effective high-performance coronavirus fighter. Int J Biol Macromol 2021; 181: 990-1002.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.04.071] [PMID: 33864870]
[102]
Rajoriya P, Misra P, Singh VK, Shukla PK, Ramteke PW. Green synthesis of silver nanoparticles. Biotech Today An Int J Biol Sci 2017; 7(1): 7.
[http://dx.doi.org/10.5958/2322-0996.2017.00001.1]
[103]
Blanco J, Tomás-Hernández S, García T. et al. Oral exposure to silver nanoparticles increases oxidative stress markers in the liver of male rats and deregulates the insulin signalling pathway and p53 and cleaved caspase 3 protein expression. Food Chem Toxicol 2018; 115: 398-404.
[http://dx.doi.org/10.1016/j.fct.2018.03.039] [PMID: 29604305]
[104]
Azhar NA, Ghozali SZ, Abu Bakar SA, Lim V, Ahmad NH. Suppressing growth, migration, and invasion of human hepatocellular carci-noma HepG2 cells by Catharanthus roseus silver nanoparticles. Toxicol Vitr 2020; 67, 104910.
[http://dx.doi.org/10.1016/j.tiv.2020.104910] [PMID: 32526345]
[105]
Singh A, Dar MY, Joshi B, Sharma B, Shrivastava S, Shukla S. Phytofabrication of Silver nanoparticles: Novel Drug to overcome hepatocellular ailments. Toxicol Rep 2018; 5: 333-42.
[http://dx.doi.org/10.1016/j.toxrep.2018.02.013] [PMID: 29854602]
[106]
Castro-Aceituno V, Ahn S, Simu SY. et al. Anticancer activity of silver nanoparticles from Panax ginseng fresh leaves in human cancer cells. Biomed Pharmacother 2016; 84: 158-65.
[http://dx.doi.org/10.1016/j.biopha.2016.09.016] [PMID: 27643558]
[107]
Dhayalan M, Denison MIJ, Ayyar M, Gandhi NN, Krishnan K, Abdulhadi B. Biogenic synthesis, characterization of gold and silver nanoparticles from Coleus forskohlii and their clinical importance. J Photochem Photobiol B 2018; 183: 251-7.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.04.042] [PMID: 29734113]
[108]
Ovais M, Khalil AT, Raza A. et al. Multifunctional theranostic applications of biocompatible green-synthesized colloidal nanoparticles. Appl Microbiol Biotechnol 2018; 102(10): 4393-408.
[http://dx.doi.org/10.1007/s00253-018-8928-2] [PMID: 29594356]
[109]
Pandian AMK, Karthikeyan C, Rajasimman M, Dinesh MG. Synthesis of silver nanoparticle and its application. Ecotoxicol Environ Saf 2015; 121: 211-7.
[http://dx.doi.org/10.1016/j.ecoenv.2015.03.039] [PMID: 25866204]
[110]
Kumar B, Smita K, Seqqat R, Benalcazar K, Grijalva M, Cumbal L. In vitro evaluation of silver nanoparticles cytotoxicity on Hepatic can-cer (Hep-G2) cell line and their antioxidant activity: Green approach for fabrication and application. J Photochem Photobiol B 2016; 159: 8-13.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.03.011] [PMID: 27010841]
[111]
Bello BA, Khan SA, Khan JA, Syed FQ, Anwar Y, Khan SB. Antiproliferation and antibacterial effect of biosynthesized AgNps from leaves extract of Guiera senegalensis and its catalytic reduction on some persistent organic pollutants. J Photochem Photobiol B 2017; 175: 99-108.
[http://dx.doi.org/10.1016/j.jphotobiol.2017.07.031] [PMID: 28865320]
[112]
He Y, Li X, Wang J. et al. Synthesis, characterization and evaluation cytotoxic activity of silver nanoparticles synthesized by Chinese herbal Cornus officinalis via environment friendly approach. Environ Toxicol Pharmacol 2017; 56(August): 56-60.
[http://dx.doi.org/10.1016/j.etap.2017.08.035] [PMID: 28886426]
[113]
Nalavothula R, Alwala J, Nagati VB, Manthurpadigya PR. Biosynthesis of silver nanoparticles using impatiens balsamina leaf extracts and its characterization and cytotoxic studies using human cell lines. Int J Chemtech Res 2015; 7(5): 2460-8.
[114]
Rathi Sre PR, Reka M, Poovazhagi R, Arul Kumar M, Murugesan K. Antibacterial and cytotoxic effect of biologically synthesized silver nanoparticles using aqueous root extract of Erythrina indica lam. Spectrochim Acta A Mol Biomol Spectrosc 2015; 135: 1137-44.
[http://dx.doi.org/10.1016/j.saa.2014.08.019] [PMID: 25189525]
[115]
Rajkumar T, Sapi A, Das G, Debnath T, Ansari A, Patra JK. Biosynthesis of silver nanoparticle using extract of Zea mays (corn flour) and investigation of its cytotoxicity effect and radical scavenging potential. J Photochem Photobiol B 2019; 193(193): 1-7.
[http://dx.doi.org/10.1016/j.jphotobiol.2019.01.008] [PMID: 30776484]
[116]
Saratale RG, Benelli G, Kumar G, Kim DS, Saratale GD. Bio-fabrication of silver nanoparticles using the leaf extract of an ancient herbal medicine, dandelion (Taraxacum officinale), evaluation of their antioxidant, anticancer potential, and antimicrobial activity against phyto-pathogens. Environ Sci Pollut Res Int 2018; 25(11): 10392-406.
[http://dx.doi.org/10.1007/s11356-017-9581-5] [PMID: 28699009]
[117]
Guo D, Dou D, Ge L, Huang Z, Wang L, Gu N. A caffeic acid mediated facile synthesis of silver nanoparticles with powerful anticancer activity. Colloids Surf B Biointerfaces 2015; 134: 229-34.
[http://dx.doi.org/10.1016/j.colsurfb.2015.06.070] [PMID: 26208293]
[118]
Prasannaraj G, Sahi SV, Ravikumar S, Venkatachalam P. Enhanced cytotoxicity of biomolecules loaded metallic silver nanoparticles against human liver (HepG2) and prostate (PC3) cancer cell lines. J Nanosci Nanotechnol 2016; 16(5): 4948-59.
[http://dx.doi.org/10.1166/jnn.2016.12336] [PMID: 27483851]
[119]
Castro Aceituno V, Ahn S, Simu SY, Wang C, Mathiyalagan R, Yang DC. Silver nanoparticles from Dendropanax morbifera Léveille inhibit cell migration, induce apoptosis, and increase generation of reactive oxygen species in A549 lung cancer cells. Vitr Cell Dev Biol - Anim 2016; 52(10): 1012-9.
[http://dx.doi.org/10.1007/s11626-016-0057-6]
[120]
Patra JK, Das G, Kumar A, Ansari AZ, Kim H, Shin HS. Photomediated biosynthesis of silver nanoparticles using the non-edible accrescent fruiting calyx of physalis peruviana L. Fruits and investigation of its radical scavenging potential and cytotoxicity activities. J Photochem Photobiol B Biol 2018; 188: 116-25.
[121]
Padinjarathil H, Joseph MM, Unnikrishnan BS. et al. Galactomannan endowed biogenic silver nanoparticles exposed enhanced cancer cytotoxicity with excellent biocompatibility. Int J Biol Macromol 2018; 118(Pt A): 1174-82.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.06.194] [PMID: 30001604]
[122]
Usmani A, Mishra A, Jafri A, Arshad M, Siddiqui MA. Green synthesis of silver nanocomposites of Nigella sativa seeds extract for hepa-tocellular carcinoma. Curr Nanomater 2019; 4(3): 191-200.
[http://dx.doi.org/10.2174/2468187309666190906130115]
[123]
Paul Das M, Rebecca Livingstone J, Veluswamy P, Das J. Exploration of Wedelia chinensis leaf-assisted silver nanoparticles for antioxidant, antibacterial and in vitro cytotoxic applications. J Food Drug Anal 2018; 26(2): 917-25.
[http://dx.doi.org/10.1016/j.jfda.2017.07.014] [PMID: 29567263]
[124]
Pathak M, Kumar V, Pathak P, Majee R, Ramteke PW, Verma A. Green synthesis of silver nanoparticles using Scindapsus officinalis (Gajpipli): In-vitro cytotoxic activity against HepG-2 & MCF-7 cancer cell lines. Preprints 2019; 1-23.
[125]
Abbasi BH, Nazir M, Muhammad W. et al. A Comparative Evaluation of the Antiproliferative Activity against HepG2 liver carcinoma cells of plant-derived silver nanoparticles from basil extracts with contrasting anthocyanin contents. Biomolecules 2019; 9(8), E320.
[http://dx.doi.org/10.3390/biom9080320] [PMID: 31366167]
[126]
Jaganathan A, Murugan K, Panneerselvam C. et al. Earthwormmediated synthesis of silver nanoparticles: A potent tool against hepatocellular carcinoma, Plasmodium falciparum parasites and malaria mosquitoes. Parasitol Int 2016; 65(3): 276-84.
[http://dx.doi.org/10.1016/j.parint.2016.02.003] [PMID: 26873539]
[127]
Rajeshkumar S, Malarkodi C, Vanaja M, Annadurai G. Anticancer and enhanced antimicrobial activity of biosynthesizd silver nanoparti-cles against clinical pathogens. J Mol Struct 2016; 1116: 165-73.
[http://dx.doi.org/10.1016/j.molstruc.2016.03.044]
[128]
Hamed AA, Kabary H, Khedr M, Emam AN. Antibiofilm, antimicrobial and cytotoxic activity of extracellular green-synthesized silver nanoparticles by two marine-derived actinomycete. RSC Advances 2020; 10(17): 10361-7.
[http://dx.doi.org/10.1039/C9RA11021F]
[129]
Abd-Elnaby HM, Abo-Elala GM, Abdel-Raouf UM, Hamed MM. Antibacterial and anticancer activity of extracellular synthesized silver nanoparticles from marine Streptomyces rochei MHM13. Egypt J Aquat Res 2016; 42(3): 301-12.
[http://dx.doi.org/10.1016/j.ejar.2016.05.004]
[130]
El Kassas HY, Attia AA. Bactericidal application and cytotoxic activity of biosynthesized silver nanoparticles with an extract of the red seaweed Pterocladiella capillacea on the HepG2 cell line. Asian Pac J Cancer Prev 2014; 15(3): 1299-306.
[http://dx.doi.org/10.7314/APJCP.2014.15.3.1299] [PMID: 24606456]
[131]
Priya K, Vijayakumar M, Janani B. Chitosan-mediated synthesis of biogenic silver nanoparticles (AgNPs), nanoparticle characterisation and in vitro assessment of anticancer activity in human hepatocellular carcinoma HepG2 cells. Int J Biol Macromol 2020; 149: 844-52.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.02.007] [PMID: 32027896]
[132]
Vijayakumar M, Priya K, Ilavenil S, et al. Shrimp shells extracted chitin in silver nanoparticle synthesis: Expanding its prophecy towards anticancer activity in human hepatocellular carcinoma HepG2 cells. Int J Biol Macromol 2020; 165(Pt A): 1402-9.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.10.032] [PMID: 33045301]
[133]
Aziz N, Faraz M, Sherwani MA, Fatma T, Prasad R. Illuminating the anticancerous efficacy of a new fungal chassis for silver nanoparticle synthesis. Front Chem 2019; 7: 65.
[http://dx.doi.org/10.3389/fchem.2019.00065] [PMID: 30800654]
[134]
Khalid M, Khalid N, Ahmed I, Hanif R, Ismail M, Janjua HA. Comparative studies of three novel freshwater microalgae strains for syn-thesis of silver nanoparticles: Insights of characterization, antibacterial, cytotoxicity and antiviral activities. J Appl Phycol 2017; 29(4): 1851-63.
[http://dx.doi.org/10.1007/s10811-017-1071-0]
[135]
Ebrahiminezhad A, Bagheri M, Taghizadeh SM, Berenjian A, Ghasemi Y. Biomimetic synthesis of silver nanoparticles using microalgal secretory carbohydrates as a novel anticancer and antimicrobial. Adv Nat Sci Nanosci Nanotechnol 2016; 7(1), 015018.
[http://dx.doi.org/10.1088/2043-6262/7/1/015018]
[136]
Ibrahim HM, Reda MM, Klingner A. Preparation and characterization of green carboxymethylchitosan (CMCS) - Polyvinyl alcohol (PVA) electrospun nanofibers containing gold nanoparticles (AuNPs) and its potential use as biomaterials. Int J Biol Macromol 2020; 151: 821-9.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.02.174] [PMID: 32084475]
[137]
Rao PV, Nallappan D, Madhavi K, Rahman S, Jun Wei L, Gan SH. Phytochemicals and biogenic metallic nanoparticles as anticancer agents. Oxid Med Cell Longev 2016; 2016, 3685671.
[http://dx.doi.org/10.1155/2016/3685671] [PMID: 27057273]
[138]
Barabadi H, Webster TJ, Vahidi H. et al. Green nanotechnologybased gold nanomaterials for hepatic cancer therapeutics: A systematic review. Iran J Pharm Res 2020; 19(3): 3-17.
[PMID: 33680005]
[139]
Zhao W, Li J, Zhong C, Zhang X, Bao Y. Green synthesis of gold nanoparticles from Dendrobium officinale and its anticancer effect on liver cancer. Drug Deliv 2021; 28(1): 985-94.
[http://dx.doi.org/10.1080/10717544.2021.1921079] [PMID: 34042555]
[140]
Ismail EH, Saqer AMA, Assirey E, Naqvi A, Okasha RM. Successful green synthesis of gold nanoparticles using a Corchorus olitorius extract and their antiproliferative effect in cancer cells. Int J Mol Sci 2018; 19(9): 1-14.
[http://dx.doi.org/10.3390/ijms19092612] [PMID: 30177647]
[141]
Awad MA, Eisa NE, Virk P. et al. Green synthesis of gold nanoparticles: Preparation, characterization, cytotoxicity, and anti-bacterial activities. Mater Lett 2019; 256, 126608.
[http://dx.doi.org/10.1016/j.matlet.2019.126608]
[142]
Boomi P, Ganesan RM, Poorani G, Gurumallesh Prabu H, Ravikumar S, Jeyakanthan J. Biological synergy of greener gold nanoparticles by using Coleus aromaticus leaf extract. Mater Sci Eng C 2019; 99(99): 202-10.
[http://dx.doi.org/10.1016/j.msec.2019.01.105] [PMID: 30889692]
[143]
Ghramh HA, Khan KA, Ibrahim EH. Biological activities of Euphorbia peplus leaves ethanolic extract and the extract fabricated gold na-noparticles (AuNPs). Molecules 2019; 24(7), E1431.
[http://dx.doi.org/10.3390/molecules24071431] [PMID: 30978998]
[144]
Khandanlou R, Murthy V, Saranath D, Damani H. Synthesis and characterization of gold-conjugated Backhousia citriodora nanoparticles and their anticancer activity against MCF-7 breast and HepG2 liver cancer cell lines. J Mater Sci 2018; 53(5): 3106-18.
[http://dx.doi.org/10.1007/s10853-017-1756-4]
[145]
Park SY, Kim B, Cui Z, Park G, Choi YW. Beomjin Kim, Cui Z, Park G, Choi YW. Anti-metastatic effect of gold nanoparticleconjugated Maclura tricuspidata extract on human hepatocellular carcinoma cells. Int J Nanomedicine 2020; 15: 5317-31.
[http://dx.doi.org/10.2147/IJN.S246724] [PMID: 32904434]
[146]
Gupta S, Hemlata H, Tejavath KK. Synthesis, characterization and comparative anticancer potential of phytosynthesized mono and bimetallic nanoparticles using Moringa oleifera aqueous leaf extract. Beilstein Arch 2020; 1: 1-16.
[http://dx.doi.org/10.3762/bxiv.2020.95.v1]
[147]
Balashanmugam P, Durai P, Balakumaran MD, Kalaichelvan PT. Phytosynthesized gold nanoparticles from C. roxburghii DC. leaf and their toxic effects on normal and cancer cell lines. J Photochem Photobiol B 2016; 165: 163-73.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.10.013] [PMID: 27855358]
[148]
Borah D, Hazarika M, Tailor P. et al. Starch-templated biosynthesis of gold nanoflowers for in vitro antimicrobial and anticancer activities. Appl Nanosci 2018; 8(3): 241-53.
[http://dx.doi.org/10.1007/s13204-018-0793-x]
[149]
Benassi E, Fan H, Sun Q. et al. Generation of particle assemblies mimicking enzymatic activity by processing of herbal food: The case of Rhizoma polygonati and other natural ingredients in traditional Chinese medicine. Nanoscale Adv 2021; 3(8): 2222-35.
[http://dx.doi.org/10.1039/D0NA00958J]
[150]
Li L, Zhang W, Desikan Seshadri VD, Cao G. Synthesis and characterization of gold nanoparticles from Marsdenia tenacissima and its anticancer activity of liver cancer HepG2 cells. Artif Cells Nanomed Biotechnol 2019; 47(1): 3029-36.
[http://dx.doi.org/10.1080/21691401.2019.1642902] [PMID: 31328556]
[151]
Ashokkumar T, Prabhu D, Geetha R. et al. Apoptosis in liver cancer (HepG2) cells induced by functionalized gold nanoparticles. Colloids Surf B Biointerfaces 2014; 123: 549-56.
[http://dx.doi.org/10.1016/j.colsurfb.2014.09.051] [PMID: 25444656]
[152]
Majumdar M, Biswas SC, Choudhury R. et al. Synthesis of gold nanoparticles using Citrus macroptera fruit extract: Antibiofilm and anti-cancer activity. ChemistrySelect 2019; 4(19): 5714-23.
[http://dx.doi.org/10.1002/slct.201804021]
[153]
Muthukumar T. Sudhakumari, Sambandam B, Aravinthan A, Sastry TP, Kim J-H. Sudhakumari, Sambandam B, Aravinthan A, Sastry TP, Kim J-H. Sudhakumari, Sambandam B, Aravinthan A, Sastry TP, Kim JH. Green synthesis of gold nanoparticles and their enhanced synergistic antitumor activity using HepG2 and MCF7 cells and its antibacterial effects. Process Biochem 2016; 51(3): 384-91.
[http://dx.doi.org/10.1016/j.procbio.2015.12.017]
[154]
Lee YJ, Ahn EY, Park Y. Shape-dependent cytotoxicity and cellular uptake of gold nanoparticles synthesized using green tea extract. Nanoscale Res Lett 2019; 14(1): 129.
[http://dx.doi.org/10.1186/s11671-019-2967-1] [PMID: 30976946]
[155]
Nandhini JT, Ezhilarasan D, Rajeshkumar S. An ecofriendly synthesized gold nanoparticles induces cytotoxicity via apoptosis in HepG2 cells. Environ Toxicol 2020; 36(1): 24-32.
[http://dx.doi.org/10.1002/tox.23007] [PMID: 32794643]
[156]
Shanmugasundaram T, Radhakrishnan M, Gopikrishnan V, Kadirvelu K, Balagurunathan R. Biocompatible silver, gold and silver/gold alloy nanoparticles for enhanced cancer therapy: In vitro and in vivo perspectives. Nanoscale 2017; 9(43): 16773-90.
[http://dx.doi.org/10.1039/C7NR04979J] [PMID: 29072767]
[157]
Kalpana D, Srikanth K, Tirupathi Pichiah PB, Cha YS, Lee YS. Synthesis, characterization and in vitro cytotoxicity of gold nanoparticles using cultural filtrate of low shear modeled microgravity and normal gravity cultured K. pneumoniae. Macromol Res 2014; 22(5): 487-93.
[http://dx.doi.org/10.1007/s13233-014-2072-3]
[158]
Singh M, Saurav K, Majouga A. et al. The cytotoxicity and cellular stress by temperature-fabricated polyshaped gold nanoparticles using marine macroalgae, Padina gymnospora. Biotechnol Appl Biochem 2015; 62(3): 424-32.
[http://dx.doi.org/10.1002/bab.1271] [PMID: 25041078]
[159]
Ajdari Z, Rahman H, Shameli K. et al. Novel gold nanoparticles reduced by Sargassum glaucescens: Preparation, characterization and anticancer activity. Molecules 2016; 21(3): 123.
[http://dx.doi.org/10.3390/molecules21030123] [PMID: 26938520]
[160]
Rajeshkumar S, Kumar SV, Malarkodi C, Vanaja M, Paulkumar K, Annadurai G. Optimized synthesis of gold nanoparticles using green chemical process and its in vitro anticancer activity against HepG2 an A549 cell lines. Mech Mater Sci Eng 2017; 9: 1-6.
[161]
El Domany EB, Essam TM, Ahmed AE, Farghali AA. Biosynthesis physico-chemical optimization of gold nanoparticles as anti-cancer and synergetic antimicrobial activity using Pleurotus ostreatus fungus. J Appl Pharm Sci 2018; 8(5): 119-28.
[162]
Ji Y, Cao Y, Song Y. Green synthesis of gold nanoparticles using a Cordyceps militaris extract and their antiproliferative effect in liver cancer cells (HepG2). Artif Cells Nanomed Biotechnol 2019; 47(1): 2737-45.
[http://dx.doi.org/10.1080/21691401.2019.1629952] [PMID: 31304798]
[163]
Tawfik TM, El-Masry AMA. Preparation of chitosan nanoparticles and its utilization as novel powerful enhancer for both dyeing properties and antimicrobial activity of cotton fabrics. Biointerface Res Appl Chem 2021; 11(5): 13652-66.
[http://dx.doi.org/10.33263/BRIAC115.1365213666]
[164]
Salem DS, Sliem MA, El-Sesy M, Shouman SA, Badr Y. Improved chemo-photothermal therapy of hepatocellular carcinoma using chitosan-coated gold nanoparticles. J Photochem Photobiol B 2018; 182: 92-9.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.03.024] [PMID: 29653312]
[165]
Krishnan V, Loganathan C, Thayumanavan P. Green synthesized selenium nanoparticle as carrier and potent delivering agent of sallyl glutathione: Anticancer effect against hepatocarcinoma cell line (HepG2) through induction of cell cycle arrest and apoptosis. J Drug Deliv Sci Technol 2019; 53, 101207.
[http://dx.doi.org/10.1016/j.jddst.2019.101207]
[166]
Xia Y, Zhong J, Zhao M. et al. Galactose-modified selenium nanoparticles for targeted delivery of doxorubicin to hepatocellular carcinoma. Drug Deliv 2019; 26(1): 1-11.
[http://dx.doi.org/10.1080/10717544.2018.1556359] [PMID: 31928356]
[167]
First-in-Human Safety and Tolerability Study of MTL-CEBPA in Patients With Advanced Liver Cancer - Full Text View - Clinical- Trials.gov. [cited 2021 Sep 22].
[168]
Radiotherapy With Iron Oxide Nanoparticles (SPION) on MR-Linac for Primary & Metastatic Hepatic Cancers - Full Text View - ClinicalTrials.gov. 2020. [cited 2021 Sep 22]. Available from: https://clinicaltrials.gov/ct2/show/NCT04682847
[169]
Phase Ib/2, Multicenter, Dose Escalation Study of DCR-MYC in Patients With Hepatocellular Carcinoma - Full Text View - ClinicalTrials. gov. [cited 2022 Jan 18]. Available from: https://clinicaltrials.gov/ct2/show/NCT02314052
[170]
NBTXR3, Radiation Therapy, Ipilimumab, and Nivolumab for the Treatment of Lung and/or Liver Metastases From Solid Malignancy - Full Text View - ClinicalTrials.gov. [cited 2022 Jan 18]. 2020. Available from: https://clinicaltrials.gov/ct2/show/NCT05039632
[171]
Ihns DA, Schmidt W, Richter FR. Proteolytic enzyme cleaner US5861366, 1999.
[172]
Adokoh CK, Quan S, Hitt M, Darkwa J, Kumar P, Narain R. Synthesis and evaluation of glycopolymeric decorated gold nanoparticles functionalized with gold-triphenyl phosphine as anti-cancer agents. Biomacromolecules 2014; 15(10): 3802-10.
[http://dx.doi.org/10.1021/bm5010977] [PMID: 25162942]
[173]
Mirkin CA, Omary RA, Eifler A. et al. Localized delivery of gold nanoparticles for therapeutic and diagnostic applications. United States patent application US 13/388,630., 2012 Nov 1;
[174]
Mitragotri S, Lammers T, Bae YH. et al. Drug delivery research for the future: Expanding the nano horizons and beyond. J Control Release 2017; 246: 183-4.
[http://dx.doi.org/10.1016/j.jconrel.2017.01.011] [PMID: 28110715]
[175]
Wechsler ME, Ramirez JEV, Peppas NA. 110th anniversary: Nanoparticle mediated drug delivery for the treatment of Alzheimer’s disease: Crossing the blood-brain barrier. Ind Eng Chem Res 2019; 58(33): 15079-87.
[http://dx.doi.org/10.1021/acs.iecr.9b02196] [PMID: 32982041]
[176]
Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov 2021; 20(2): 101-24.
[http://dx.doi.org/10.1038/s41573-020-0090-8] [PMID: 33277608]
[177]
Barabadi H, Ovais M, Shinwari ZK, Saravanan M. Anti-cancer green bionanomaterials: Present status and future prospects. Green Chem Lett Rev 2017; 10(4): 285-314.
[http://dx.doi.org/10.1080/17518253.2017.1385856]
[178]
Prakash S, Soni N. Synthesis of gold nanoparticles by the fungus Aspergillus niger and its efficacy against mosquito larvae. Reports Para-sitol 2012; 2012: 1-7.
[http://dx.doi.org/10.2147/RIP.S29033]
[179]
El-Aziz A, Mahmoud MA, Metwaly HA. Biosynthesis of silver nanoparticles using Fusarium solani. Dig J Nanomater Biostruct 2015; 10(2): 655-62.
[180]
Barabadi H, Honary S, Ebrahimi P, Mohammadi MA, Alizadeh A, Naghibi F. Microbial mediated preparation, characterization and optimi-zation of gold nanoparticles. Braz J Microbiol 2015; 45(4): 1493-501.
[http://dx.doi.org/10.1590/S1517-83822014000400046] [PMID: 25763059]
[181]
Del Pino P, Pelaz B, Zhang Q, Maffre P, Nienhaus GU, Parak WJ. Protein corona formation around nanoparticles - From the past to the future. Mater Horiz 2014; 1(3): 301-13.
[http://dx.doi.org/10.1039/C3MH00106G]
[182]
Rampado R, Crotti S, Caliceti P, Pucciarelli S, Agostini M. Recent advances in understanding the protein corona of nanoparticles and in the formulation of “stealthy” nanomaterials. Front Bioeng Biotechnol 2020; 8: 166.
[http://dx.doi.org/10.3389/fbioe.2020.00166] [PMID: 32309278]
[183]
Baig B, Halim SA, Farrukh A, Greish Y, Amin A. Current status of nanomaterial-based treatment for hepatocellular carcinoma. Biomed Pharmacother 2019; 116, 108852.
[http://dx.doi.org/10.1016/j.biopha.2019.108852] [PMID: 30999152]
[184]
Barua S, Mitragotri S. Challenges associated with penetration of nanoparticles across cell and tissue barriers: A review of current status and future prospects. Nano Today 2014; 9(2): 223-43.
[http://dx.doi.org/10.1016/j.nantod.2014.04.008] [PMID: 25132862]
[185]
Park JH, Gu L, von Maltzahn G, Ruoslahti E, Bhatia SN, Sailor MJ. Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat Mater 2009; 8(4): 331-6.
[http://dx.doi.org/10.1038/nmat2398] [PMID: 19234444]
[186]
Rengan AK, Bukhari AB, Pradhan A. et al. In vivo analysis of biodegradable liposome gold nanoparticles as efficient agents for photo-thermal therapy of cancer. Nano Lett 2015; 15(2): 842-8.
[http://dx.doi.org/10.1021/nl5045378] [PMID: 25554860]
[187]
Manikandan R, Manikandan B, Raman T. et al. Biosynthesis of silver nanoparticles using ethanolic petals extract of Rosa indica and characterization of its antibacterial, anticancer and antiinflammatory activities. Spectrochim Acta A Mol Biomol Spectrosc 2015; 138: 120-9.
[http://dx.doi.org/10.1016/j.saa.2014.10.043] [PMID: 25481491]
[188]
Moreira R, Granja A, Pinheiro M, Reis S. Nanomedicine interventions in clinical trials for the treatment of metastatic breast cancer. Appl Sci (Basel) 2021; 11(4): 1-13.
[http://dx.doi.org/10.3390/app11041624]
[189]
Zheng D, Wang J, Guo S, Zhao Z, Wang F. Formulations, pharmacodynamic and clinical studies of nanoparticles for lung cancer therapy - an overview. Curr Drug Metab 2018; 19(9): 759-67.
[http://dx.doi.org/10.2174/1389200219666180305145345] [PMID: 29512452]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy