Generic placeholder image

Current Women`s Health Reviews

Editor-in-Chief

ISSN (Print): 1573-4048
ISSN (Online): 1875-6581

Review Article

The Functional Role of the Renin-Angiotensin System in Preeclampsia

Author(s): Leta Melaku*

Volume 19, Issue 3, 2023

Published on: 10 August, 2022

Article ID: e180522204982 Pages: 15

DOI: 10.2174/1573404818666220518141003

Price: $65

Abstract

The renin-angiotensin system (RAS) is a signaling pathway that acts as a major regulator in human physiology. To sidestep the major intimidations of low blood volume and low blood pressure, the diverse actions of Ang II/ACE/AT1R can be viewed as a useful response in maintaining homeostasis. The deleterious action of the Ang II/ACE/AT1R axis is endogenously counterbalanced by ACE 2/Ang 1-7/MasR. Yet, over activation of the Ang II/ACE/AT1R axis may lead to hypertension. Preeclampsia is characterized by hypertension with proteinuria or end-organ dysfunction after 20 weeks of gestation. The early-onset sort is more genuine and capable of high maternal and fetal dismalness and mortality rates than the late-onset sort of preeclampsia. Various theories for the pathogenesis of preeclampsia are, the exact underlying molecular mechanisms remain unclear but are likely to be multifactorial. Later studies of RAS in preeclampsia have highlighted the need for thorough research on this topic. There is an increase in the levels of circulating angiotensinogen during the first 20 weeks of gestation. At the beginning of the pregnancy, there is an increment of prorenin by 4 - 5 times. Renin synthesis in preeclampsia is suppressed. PE pregnant women have higher levels of prorenin receptor expression in their placental tissue than normal pregnant women. AT1 receptor autoantibodies are also observed. Ang II is raised in normal pregnancies as a result of higher levels of angiotensinogen and renin. Preeclampsia causes a decrease in angiotensin-(1-7) levels. Aldosterone is also relatively low in pregnancies complicated by preeclampsia.

Keywords: RAS, ACE, ACE 2, angiotensin II, angiotensin 1-7, prorenin, renin, AT1 receptor autoantibodies, aldosterone, preeclampsia.

Graphical Abstract
[1]
Piepho, R.W.; Beal, J. An overview of antihypertensive therapy in the 20th century. J. Clin. Pharmacol., 2000, 40(9), 967-977.
[http://dx.doi.org/10.1177/00912700022009693] [PMID: 10975068]
[2]
Paul, M.; Poyan Mehr, A.; Kreutz, R. Physiology of local renin-angiotensin systems. Physiol. Rev., 2006, 86(3), 747-803.
[http://dx.doi.org/10.1152/physrev.00036.2005] [PMID: 16816138]
[3]
Tigerstedt, R.; Bergman, P. Niere und Kreislauf (kidney and circulation). Skand. Arch. Physiol., 1898, 8(1), 223-238.
[http://dx.doi.org/10.1111/j.1748-1716.1898.tb00272.x]
[4]
Atlas, S.A. The renin-angiotensin aldosterone system: Pathophysiological role and pharmacologic inhibition. J. Manag. Care Pharm., 2007, 13(8)(Suppl. B), 9-20.
[http://dx.doi.org/10.18553/jmcp.2007.13.s8-b.9] [PMID: 17970613]
[5]
DiBona, G.F.; Kopp, U.C. Neural control of renal function. Physiol. Rev., 1997, 77(1), 75-197.
[http://dx.doi.org/10.1152/physrev.1997.77.1.75] [PMID: 9016301]
[6]
Brown, M. Direct renin inhibition-a new way of targeting the renin system. J. Renin Angiotensin Aldosterone Syst., 2006, 7(Suppl. 2), S7-S11.
[http://dx.doi.org/10.3317/jraas.2006.035]
[7]
Braun-Menendez, E.; Page, I.H. Suggested revision of nomenclature: Angiotensin. Science, 1958, 127(3292), 242.
[http://dx.doi.org/10.1126/science.127.3292.242.b] [PMID: 17750687]
[8]
Ferrario, C.M. Role of angiotensin II in cardiovascular disease therapeutic implications of more than a century of research. J. Renin Angiotensin Aldosterone Syst., 2006, 7(1), 3-14.
[http://dx.doi.org/10.3317/jraas.2006.003] [PMID: 17083068]
[9]
Morgan, L.; Broughton Pipkin, F.; Kalsheker, N. Angiotensinogen: Molecular biology, biochemistry and physiology. Int. J. Biochem. Cell Biol., 1996, 28(11), 1211-1222.
[http://dx.doi.org/10.1016/S1357-2725(96)00086-6] [PMID: 9022280]
[10]
Brasier, A.R.; Li, J. Mechanisms for inducible control of angiotensinogen gene transcription. Hypertension, 1996, 27(3 Pt 2), 465-475.
[http://dx.doi.org/10.1161/01.HYP.27.3.465] [PMID: 8613188]
[11]
Skeggs, L.T., Jr; Kahn, J.R.; Lentz, K.; Shumway, N.P. The preparation, purification, and amino acid sequence of a polypeptide renin substrate. J. Exp. Med., 1957, 106(3), 439-453.
[http://dx.doi.org/10.1084/jem.106.3.439] [PMID: 13463253]
[12]
Ondetti, M.; Cushman, D.; Rubin, B. In Chronicles of Drug Discovery; Bindra, J.S.; Lednicer, D., Eds.; John Wiley and Sons Inc: New York, USA, 1983, p. 1.
[13]
Garrison, J.; Peach, M. In the pharmacological basis of therapeutics. McGrawHill Book Co: Singapore; , 1992.
[14]
Moskowitz, D.W. Pathophysiologic implications of angiotensin I-converting enzyme as a mechanosensor: Diabetes. Diabetes Technol. Ther., 2003, 5(2), 189-199.
[http://dx.doi.org/10.1089/152091503321827858] [PMID: 12871609]
[15]
Carey, R.M.; Siragy, H.M. Newly recognized components of the renin-angiotensin system: Potential roles in cardiovascular and renal regulation. Endocr. Rev., 2003, 24(3), 261-271.
[http://dx.doi.org/10.1210/er.2003-0001] [PMID: 12788798]
[16]
Santos, R.A.; Brosnihan, K.B.; Chappell, M.C.; Pesquero, J.; Chernicky, C.L.; Greene, L.J.; Ferrario, C.M. Converting enzyme activity and angiotensin metabolism in the dog brainstem. Hypertension, 1988, 11(2 Pt 2), I153-I157.
[http://dx.doi.org/10.1161/01.HYP.11.2_Pt_2.I153] [PMID: 2831145]
[17]
Schiavone, M.T.; Santos, R.A.; Brosnihan, K.B.; Khosla, M.C.; Ferrario, C.M. Release of vasopressin from the rat hypothalamo-neurohypophysial system by angiotensin-(1-7) heptapeptide. Proc. Natl. Acad. Sci. , 1988, 85(11), 4095-4098.
[http://dx.doi.org/10.1073/pnas.85.11.4095] [PMID: 3375255]
[18]
Santos, R.A.; Ferreira, A.J.; Pinheiro, S.V.; Sampaio, W.O.; Touyz, R.; Campagnole-Santos, M.J. Angiotensin-(1-7) and its receptor as a potential targets for new cardiovascular drugs. Expert Opin. Investig. Drugs, 2005, 14(8), 1019-1031.
[http://dx.doi.org/10.1517/13543784.14.8.1019] [PMID: 16050794]
[19]
Ferrario, C.M. Angiotensin-converting enzyme 2 and angiotensin-(1-7): An evolving story in cardiovascular regulation. Hypertension, 2006, 47(3), 515-521.
[http://dx.doi.org/10.1161/01.HYP.0000196268.08909.fb] [PMID: 16365192]
[20]
Bader, M. Tissue renin-angiotensin-aldosterone systems: Targets for pharmacological therapy. Annu. Rev. Pharmacol. Toxicol., 2010, 50(1), 439-465.
[http://dx.doi.org/10.1146/annurev.pharmtox.010909.105610] [PMID: 20055710]
[21]
Tipnis, S.R.; Hooper, N.M.; Hyde, R.; Karran, E.; Christie, G.; Turner, A.J. A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase. J. Biol. Chem., 2000, 275(43), 33238-33243.
[http://dx.doi.org/10.1074/jbc.M002615200] [PMID: 10924499]
[22]
Donoghue, M.; Hsieh, F.; Baronas, E.; Godbout, K.; Gosselin, M.; Stagliano, N.; Donovan, M.; Woolf, B.; Robison, K.; Jeyaseelan, R.; Breitbart, R.E.; Acton, S. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ. Res., 2000, 87(5), E1-E9.
[http://dx.doi.org/10.1161/01.RES.87.5.e1] [PMID: 10969042]
[23]
Crackower, M.A.; Sarao, R.; Oudit, G.Y.; Yagil, C.; Kozieradzki, I.; Scanga, S.E.; Oliveira-dos-Santos, A.J.; da Costa, J.; Zhang, L.; Pei, Y.; Scholey, J.; Ferrario, C.M.; Manoukian, A.S.; Chappell, M.C.; Backx, P.H.; Yagil, Y.; Penninger, J.M. Angiotensin-converting enzyme 2 is an essential regulator of heart function. Nature, 2002, 417(6891), 822-828.
[http://dx.doi.org/10.1038/nature00786] [PMID: 12075344]
[24]
Guy, J.L.; Jackson, R.M.; Acharya, K.R.; Sturrock, E.D.; Hooper, N.M.; Turner, A.J. Angiotensin-Converting Enzyme-2 (ACE2): Comparative modeling of the active site, specificity requirements, and chloride dependence. Biochemistry, 2003, 42(45), 13185-13192.
[http://dx.doi.org/10.1021/bi035268s] [PMID: 14609329]
[25]
Oudit, G.Y.; Crackower, M.A.; Backx, P.H.; Penninger, J.M. The role of ACE2 in cardiovascular physiology. Trends Cardiovasc. Med., 2003, 13(3), 93-101.
[http://dx.doi.org/10.1016/S1050-1738(02)00233-5] [PMID: 12691672]
[26]
Gembardt, F.; Sterner-Kock, A.; Imboden, H.; Spalteholz, M.; Reibitz, F.; Schultheiss, H.P.; Siems, W.E.; Walther, T. Organ-specific distribution of ACE2 mRNA and correlating peptidase activity in rodents. Peptides, 2005, 26(7), 1270-1277.
[http://dx.doi.org/10.1016/j.peptides.2005.01.009] [PMID: 15949646]
[27]
Zhang, H.; Wada, J.; Hida, K.; Tsuchiyama, Y.; Hiragushi, K.; Shikata, K.; Wang, H.; Lin, S.; Kanwar, Y.S.; Makino, H. Collectrin, a collecting duct-specific transmembrane glycoprotein, is a novel homolog of ACE2 and is developmentally regulated in embryonic kidneys. J. Biol. Chem., 2001, 276(20), 17132-17139.
[http://dx.doi.org/10.1074/jbc.M006723200] [PMID: 11278314]
[28]
Danilczyk, U.; Sarao, R.; Remy, C.; Benabbas, C.; Stange, G.; Richter, A.; Arya, S.; Pospisilik, J.A.; Singer, D.; Camargo, S.M.; Makrides, V.; Ramadan, T.; Verrey, F.; Wagner, C.A.; Penninger, J.M. Essential role for collectrin in renal amino acid transport. Nature, 2006, 444(7122), 1088-1091.
[http://dx.doi.org/10.1038/nature05475] [PMID: 17167413]
[29]
Verrey, F.; Singer, D.; Ramadan, T.; Vuille-dit-Bille, R.N.; Mariotta, L.; Camargo, S.M. Kidney amino acid transport. Pflugers Arch., 2009, 458(1), 53-60.
[http://dx.doi.org/10.1007/s00424-009-0638-2] [PMID: 19184091]
[30]
Akpinar, P.; Kuwajima, S.; Krützfeldt, J.; Stoffel, M. Tmem27: A cleaved and shed plasma membrane protein that stimulates pancreatic beta cell proliferation. Cell Metab., 2005, 2(6), 385-397.
[http://dx.doi.org/10.1016/j.cmet.2005.11.001] [PMID: 16330324]
[31]
Fukui, K.; Yang, Q.; Cao, Y.; Takahashi, N.; Hatakeyama, H.; Wang, H.; Wada, J.; Zhang, Y.; Marselli, L.; Nammo, T.; Yoneda, K.; Onishi, M.; Higashiyama, S.; Matsuzawa, Y.; Gonzalez, F.J.; Weir, G.C.; Kasai, H.; Shimomura, I.; Miyagawa, J.; Wollheim, C.B.; Yamagata, K. The HNF-1 target collectrin controls insulin exocytosis by SNARE complex formation. Cell Metab., 2005, 2(6), 373-384.
[http://dx.doi.org/10.1016/j.cmet.2005.11.003] [PMID: 16330323]
[32]
Guang, C.; Phillips, R.D.; Jiang, B.; Milani, F. Three key proteases--Angiotensin-I-Converting Enzyme (ACE), ACE2 and renin--within and beyond the renin-angiotensin system. Arch. Cardiovasc. Dis., 2012, 105(6-7), 373-385.
[http://dx.doi.org/10.1016/j.acvd.2012.02.010] [PMID: 22800722]
[33]
Kuba, K.; Imai, Y.; Penninger, J.M. Multiple functions of angiotensin-converting enzyme 2 and its relevance in cardiovascular diseases. Circ. J., 2013, 77(2), 301-308.
[http://dx.doi.org/10.1253/circj.CJ-12-1544] [PMID: 23328447]
[34]
Clarke, N.E.; Turner, A.J. Angiotensin-converting enzyme 2: The first decade. Int. J. Hypertens., 2012, 2012307315
[http://dx.doi.org/10.1155/2012/307315] [PMID: 22121476]
[35]
Guy, J.L.; Jackson, R.M.; Jensen, H.A.; Hooper, N.M.; Turner, A.J. Identification of critical active-site residues in Angiotensin-Converting Enzyme-2 (ACE2) by site-directed mutagenesis. FEBS J., 2005, 272(14), 3512-3520.
[http://dx.doi.org/10.1111/j.1742-4658.2005.04756.x] [PMID: 16008552]
[36]
Towler, P.; Staker, B.; Prasad, S.G.; Menon, S.; Tang, J.; Parsons, T.; Ryan, D.; Fisher, M.; Williams, D.; Dales, N.A.; Patane, M.A.; Pantoliano, M.W. ACE2 X-ray structures reveal a large hinge-bending motion important for inhibitor binding and catalysis. J. Biol. Chem., 2004, 279(17), 17996-18007.
[http://dx.doi.org/10.1074/jbc.M311191200] [PMID: 14754895]
[37]
Xia, H.; Lazartigues, E. Angiotensin-converting enzyme 2 in the brain: Properties and future directions. J. Neurochem., 2008, 107(6), 1482-1494.
[http://dx.doi.org/10.1111/j.1471-4159.2008.05723.x] [PMID: 19014390]
[38]
Keidar, S.; Kaplan, M.; Gamliel-Lazarovich, A. ACE2 of the heart: From angiotensin I to angiotensin (1-7). Cardiovasc. Res., 2007, 73(3), 463-469.
[http://dx.doi.org/10.1016/j.cardiores.2006.09.006] [PMID: 17049503]
[39]
Durvasula, R.V.; Petermann, A.T.; Hiromura, K.; Blonski, M.; Pippin, J.; Mundel, P.; Pichler, R.; Griffin, S.; Couser, W.G.; Shankland, S.J. Activation of a local tissue angiotensin system in podocytes by mechanical strain. Kidney Int., 2004, 65(1), 30-39.
[http://dx.doi.org/10.1111/j.1523-1755.2004.00362.x] [PMID: 14675034]
[40]
Huang, X.R.; Chen, W.Y.; Truong, L.D.; Lan, H.Y. Chymase is upregulated in diabetic nephropathy: Implications for an alternative pathway of angiotensin II-mediated diabetic renal and vascular disease. J. Am. Soc. Nephrol., 2003, 14(7), 1738-1747.
[http://dx.doi.org/10.1097/01.ASN.0000071512.93927.4E] [PMID: 12819233]
[41]
Smithies, O.; Kim, H.S.; Takahashi, N.; Edgell, M.H. Importance of quantitative genetic variations in the etiology of hypertension. Kidney Int., 2000, 58(6), 2265-2280.
[http://dx.doi.org/10.1046/j.1523-1755.2000.00411.x] [PMID: 11115061]
[42]
Krege, J.H.; Kim, H.S.; Moyer, J.S.; Jennette, J.C.; Peng, L.; Hiller, S.K.; Smithies, O. Angiotensin-converting enzyme gene mutations, blood pressures, and cardiovascular homeostasis. Hypertension, 1997, 29(1 Pt 2), 150-157.
[http://dx.doi.org/10.1161/01.HYP.29.1.150] [PMID: 9039095]
[43]
Peach, M.J. Renin-angiotensin system: Biochemistry and mechanisms of action. Physiol. Rev., 1977, 57(2), 313-370.
[http://dx.doi.org/10.1152/physrev.1977.57.2.313] [PMID: 191856]
[44]
Reudelhuber, T.L. A place in our hearts for the lowly angiotensin 1-7 peptide? Hypertension, 2006, 47(5), 811-815.
[http://dx.doi.org/10.1161/01.HYP.0000209020.69734.73] [PMID: 16520407]
[45]
Wolf, G.; Mentzel, S.; Assmann, K.J.; Aminopeptidase, A.; Aminopeptidase, A. A key enzyme in the intrarenal degradation of angiotensin II. Exp. Nephrol., 1997, 5(5), 364-369.
[PMID: 9386971]
[46]
Reudelhuber, T.L. The renin-angiotensin system: Peptides and enzymes beyond angiotensin II. Curr. Opin. Nephrol. Hypertens., 2005, 14(2), 155-159.
[http://dx.doi.org/10.1097/00041552-200503000-00011] [PMID: 15687842]
[47]
Vickers, C.; Hales, P.; Kaushik, V.; Dick, L.; Gavin, J.; Tang, J.; Godbout, K.; Parsons, T.; Baronas, E.; Hsieh, F.; Acton, S.; Patane, M.; Nichols, A.; Tummino, P. Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase. J. Biol. Chem., 2002, 277(17), 14838-14843.
[http://dx.doi.org/10.1074/jbc.M200581200] [PMID: 11815627]
[48]
Urata, H.; Kinoshita, A.; Misono, K.S.; Bumpus, F.M.; Husain, A. Identification of a highly specific chymase as the major angiotensin II-forming enzyme in the human heart. J. Biol. Chem., 1990, 265(36), 22348-22357.
[http://dx.doi.org/10.1016/S0021-9258(18)45712-2] [PMID: 2266130]
[49]
Roks, A.; Buikema, H.; Pinto, Y.M.; van Gilst, W.H. The renin-angiotensin system and vascular function. The role of angiotensin II, angiotensin-converting enzyme, and alternative conversion of angiotensin I. Heart Vessels, 1997, 12(Suppl. 12), 119-124.
[PMID: 9476561]
[50]
Stanton, A. Therapeutic potential of renin inhibitors in the management of cardiovascular disorders. Am. J. Cardiovasc. Drugs, 2003, 3(6), 389-394.
[http://dx.doi.org/10.2165/00129784-200303060-00002] [PMID: 14728059]
[51]
Touyz, R.M. The role of angiotensin II in regulating vascular structural and functional changes in hypertension. Curr. Hypertens. Rep., 2003, 5(2), 155-164.
[http://dx.doi.org/10.1007/s11906-003-0073-2] [PMID: 12642016]
[52]
Schelling, P.; Fischer, H.; Ganten, D. Angiotensin and cell growth: A link to cardiovascular hypertrophy? J. Hypertens., 1991, 9(1), 3-15.
[http://dx.doi.org/10.1097/00004872-199109010-00002] [PMID: 1848256]
[53]
Touyz, R.M.; Tabet, F.; Schiffrin, E.L. Redox-dependent signalling by angiotensin II and vascular remodelling in hypertension. Clin. Exp. Pharmacol. Physiol., 2003, 30(11), 860-866.
[http://dx.doi.org/10.1046/j.1440-1681.2003.03930.x] [PMID: 14678251]
[54]
Vaughan, D.E. Angiotensin, fibrinolysis, and vascular homeostasis. Am. J. Cardiol., 2001, 87(8A), 18C-24C.
[http://dx.doi.org/10.1016/S0002-9149(01)01509-0] [PMID: 11334764]
[55]
Lijnen, P.J.; Petrov, V.V.; Fagard, R.H. Angiotensin II-induced stimulation of collagen secretion and production in cardiac fibroblasts is mediated via angiotensin II subtype 1 receptors. J. Renin Angiotensin Aldosterone Syst., 2001, 2(2), 117-122.
[http://dx.doi.org/10.3317/jraas.2001.012] [PMID: 11881110]
[56]
Masaki, H.; Kurihara, T.; Yamaki, A.; Inomata, N.; Nozawa, Y.; Mori, Y.; Murasawa, S.; Kizima, K.; Maruyama, K.; Horiuchi, M.; Dzau, V.J.; Takahashi, H.; Iwasaka, T.; Inada, M.; Matsubara, H. Cardiac-specific overexpression of angiotensin II AT2 receptor causes attenuated response to AT1 receptor-mediated pressor and chronotropic effects. J. Clin. Invest., 1998, 101(3), 527-535.
[http://dx.doi.org/10.1172/JCI1885] [PMID: 9449684]
[57]
Horiuchi, M.; Akishita, M.; Dzau, V.J. Recent progress in angiotensin II type 2 receptor research in the cardiovascular system. Hypertension, 1999, 33(2), 613-621.
[http://dx.doi.org/10.1161/01.HYP.33.2.613] [PMID: 10024316]
[58]
Levy, B.I. How to explain the differences between renin angiotensin system modulators. Am. J. Hypertens., 2005, 18(9 Pt 2), 134S-141S.
[http://dx.doi.org/10.1016/j.amjhyper.2005.05.005] [PMID: 16125050]
[59]
Lautrette, A.; Li, S.; Alili, R.; Sunnarborg, S.W.; Burtin, M.; Lee, D.C.; Friedlander, G.; Terzi, F. Angiotensin II and EGF receptor cross-talk in chronic kidney diseases: A new therapeutic approach. Nat. Med., 2005, 11(8), 867-874.
[http://dx.doi.org/10.1038/nm1275] [PMID: 16041383]
[60]
Carey, R.M. Update on the role of the AT2 receptor. Curr. Opin. Nephrol. Hypertens., 2005, 14(1), 67-71.
[http://dx.doi.org/10.1097/00041552-200501000-00011] [PMID: 15586018]
[61]
Albiston, A.L.; McDowall, S.G.; Matsacos, D.; Sim, P.; Clune, E.; Mustafa, T.; Lee, J.; Mendelsohn, F.A.; Simpson, R.J.; Connolly, L.M.; Chai, S.Y. Evidence that the angiotensin IV (AT(4)) receptor is the enzyme insulin-regulated aminopeptidase. J. Biol. Chem., 2001, 276(52), 48623-48626.
[http://dx.doi.org/10.1074/jbc.C100512200] [PMID: 11707427]
[62]
Nguyen, G.; Delarue, F.; Burcklé, C.; Bouzhir, L.; Giller, T.; Sraer, J.D. Pivotal role of the renin/prorenin receptor in angiotensin II production and cellular responses to renin. J. Clin. Invest., 2002, 109(11), 1417-1427.
[http://dx.doi.org/10.1172/JCI0214276] [PMID: 12045255]
[63]
Ichihara, A.; Hayashi, M.; Kaneshiro, Y.; Suzuki, F.; Nakagawa, T.; Tada, Y.; Koura, Y.; Nishiyama, A.; Okada, H.; Uddin, M.N.; Nabi, A.H.; Ishida, Y.; Inagami, T.; Saruta, T. Inhibition of diabetic nephropathy by a decoy peptide corresponding to the “handle” region for nonproteolytic activation of prorenin. J. Clin. Invest., 2004, 114(8), 1128-1135.
[http://dx.doi.org/10.1172/JCI21398] [PMID: 15489960]
[64]
Mirabito Colafella, K.M.; Danser, A.H.J. Recent advances in angiotensin research. Hypertension, 2017, 69(6), 994-999.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.117.08931] [PMID: 28461598]
[65]
Jackson, L.; Eldahshan, W.; Fagan, S.C.; Ergul, A. Within the brain: The renin angiotensin system. Int. J. Mol. Sci., 2018, 19(3), 876.
[http://dx.doi.org/10.3390/ijms19030876] [PMID: 29543776]
[66]
Muñoz-Durango, N.; Fuentes, C.A.; Castillo, A.E.; González-Gómez, L.M.; Vecchiola, A.; Fardella, C.E.; Kalergis, A.M. Role of the renin-angiotensin-aldosterone system beyond blood pressure regulation: Molecular and cellular mechanisms involved in end-organ damage during arterial hypertension. Int. J. Mol. Sci., 2016, 17(7), 797.
[http://dx.doi.org/10.3390/ijms17070797] [PMID: 27347925]
[67]
Kotwani, P.; Kwarisiima, D.; Clark, T.D.; Kabami, J.; Geng, E.H.; Jain, V.; Chamie, G.; Petersen, M.L.; Thirumurthy, H.; Kamya, M.R.; Charlebois, E.D.; Havlir, D.V. Epidemiology and awareness of hypertension in a rural Ugandan community: A cross-sectional study. BMC Public Health, 2013, 13(1), 1151.
[http://dx.doi.org/10.1186/1471-2458-13-1151] [PMID: 24321133]
[68]
Chow, C.K.; Teo, K.K.; Rangarajan, S.; Islam, S.; Gupta, R.; Avezum, A.; Bahonar, A.; Chifamba, J.; Dagenais, G.; Diaz, R.; Kazmi, K.; Lanas, F.; Wei, L.; Lopez-Jaramillo, P.; Fanghong, L.; Ismail, N.H.; Puoane, T.; Rosengren, A.; Szuba, A.; Temizhan, A.; Wielgosz, A.; Yusuf, R.; Yusufali, A.; McKee, M.; Liu, L.; Mony, P.; Yusuf, S. Prevalence, awareness, treatment, and control of hypertension in rural and urban communities in high-, middle-, and low-income countries. JAMA, 2013, 310(9), 959-968.
[http://dx.doi.org/10.1001/jama.2013.184182] [PMID: 24002282]
[69]
Hypertension in pregnancy. Report of the American College of Obstetricians and Gynecologists’ Task Force on Hypertension in Pregnancy. Obstet. Gynecol., 2013, 122(5), 1122-1131.
[PMID: 24150027]
[70]
Brown, M.A.; Magee, L.A.; Kenny, L.C.; Karumanchi, S.A.; McCarthy, F.P.; Saito, S.; Hall, D.R.; Warren, C.E.; Adoyi, G.; Ishaku, S. The hypertensive disorders of pregnancy: ISSHP classification, diagnosis & management recommendations for international practice. Pregnancy Hypertens., 2018, 13, 291-310.
[http://dx.doi.org/10.1016/j.preghy.2018.05.004] [PMID: 29803330]
[71]
Cunningham, G.; MacDonald, P.; Gant, N.; Leveno, K.; Gilstrap, L. Hypertensive disorders in pregnancy. In: Williams Obstetrics, 19th ed; Appleton and Lange: Norwalk, CT, 1993; pp. 763-817.
[72]
Gathiram, P.; Moodley, J. Pre-eclampsia: Its pathogenesis and pathophysiolgy. Cardiovasc. J. S. Afr., 2016, 27(2), 71-78.
[http://dx.doi.org/10.5830/CVJA-2016-009] [PMID: 27213853]
[73]
Ukah, U.V.; Payne, B.; Hutcheon, J.A.; Ansermino, J.M.; Ganzevoort, W.; Thangaratinam, S.; Magee, L.A.; von Dadelszen, P. Assessment of the fullPIERS risk prediction model in women with early-onset preeclampsia. Hypertension, 2018, 71(4), 659-665.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.117.10318] [PMID: 29440330]
[74]
von Dadelszen, P.; Magee, L.A.; Roberts, J.M. Subclassification of preeclampsia. Hypertens. Pregnancy, 2003, 22(2), 143-148.
[http://dx.doi.org/10.1081/PRG-120021060] [PMID: 12908998]
[75]
van der Merwe, J.L.; Hall, D.R.; Wright, C.; Schubert, P.; Grové, D. Are early and late preeclampsia distinct subclasses of the disease--what does the placenta reveal? Hypertens. Pregnancy, 2010, 29(4), 457-467.
[http://dx.doi.org/10.3109/10641950903572282] [PMID: 20701467]
[76]
Valensise, H.; Vasapollo, B.; Gagliardi, G.; Novelli, G.P. Early and late preeclampsia: Two different maternal hemodynamic states in the latent phase of the disease. Hypertension, 2008, 52(5), 873-880.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.108.117358] [PMID: 18824660]
[77]
Huppertz, B. Placental origins of preeclampsia: Challenging the current hypothesis. Hypertension, 2008, 51(4), 970-975.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.107.107607] [PMID: 18259009]
[78]
Sohlberg, S.; Mulic-Lutvica, A.; Lindgren, P.; Ortiz-Nieto, F.; Wikström, A.K.; Wikström, J. Placental perfusion in normal pregnancy and early and late preeclampsia: A magnetic resonance imaging study. Placenta, 2014, 35(3), 202-206.
[http://dx.doi.org/10.1016/j.placenta.2014.01.008] [PMID: 24529946]
[79]
Wataganara, T.; Leetheeragul, J.; Pongprasobchai, S.; Sutantawibul, A.; Phatihattakorn, C.; Angsuwathana, S. Prediction and prevention of pre-eclampsia in Asian subpopulation. J. Obstet. Gynaecol. Res., 2018, 44(5), 813-830.
[http://dx.doi.org/10.1111/jog.13599] [PMID: 29442407]
[80]
Egbor, M.; Ansari, T.; Morris, N.; Green, C.J.; Sibbons, P.D. Morphometric placental villous and vascular abnormalities in early- and late-onset pre-eclampsia with and without fetal growth restriction. BJOG, 2006, 113(5), 580-589.
[http://dx.doi.org/10.1111/j.1471-0528.2006.00882.x] [PMID: 16579806]
[81]
Dahlstrøm, B.; Romundstad, P.; Øian, P.; Vatten, L.J.; Eskild, A. Placenta weight in pre-eclampsia. Acta Obstet. Gynecol. Scand., 2008, 87(6), 608-611.
[http://dx.doi.org/10.1080/00016340802056178] [PMID: 18568459]
[82]
Duley, L. The global impact of pre-eclampsia and eclampsia. Semin. Perinatol., 2009, 33(3), 130-137.
[http://dx.doi.org/10.1053/j.semperi.2009.02.010] [PMID: 19464502]
[83]
Villa, P.M.; Laivuori, H.; Kajantie, E.; Kaaja, R. Free fatty acid profiles in preeclampsia. Prostaglandins Leukot. Essent. Fatty Acids, 2009, 81(1), 17-21.
[http://dx.doi.org/10.1016/j.plefa.2009.05.002] [PMID: 19497719]
[84]
Kaaja, R.; Laivuori, H.; Laakso, M.; Tikkanen, M.J.; Ylikorkala, O. Evidence of a state of increased insulin resistance in preeclampsia. Metabolism, 1999, 48(7), 892-896.
[http://dx.doi.org/10.1016/S0026-0495(99)90225-1] [PMID: 10421232]
[85]
Davidge, S.T.; Signorella, A.P.; Lykins, D.L.; Gilmour, C.H.; Roberts, J.M. Evidence of endothelial activation and endothelial activators in cord blood of infants of preeclamptic women. Am. J. Obstet. Gynecol., 1996, 175(5), 1301-1306.
[http://dx.doi.org/10.1016/S0002-9378(96)70045-5] [PMID: 8942505]
[86]
Gervasi, M.T.; Chaiworapongsa, T.; Pacora, P.; Naccasha, N.; Yoon, B.H.; Maymon, E.; Romero, R. Phenotypic and metabolic characteristics of monocytes and granulocytes in preeclampsia. Am. J. Obstet. Gynecol., 2001, 185(4), 792-797.
[http://dx.doi.org/10.1067/mob.2001.117311] [PMID: 11641653]
[87]
Many, A.; Hubel, C.A.; Fisher, S.J.; Roberts, J.M.; Zhou, Y. Invasive cytotrophoblasts manifest evidence of oxidative stress in preeclampsia. Am. J. Pathol., 2000, 156(1), 321-331.
[http://dx.doi.org/10.1016/S0002-9440(10)64733-5] [PMID: 10623681]
[88]
de Boer, K.; ten Cate, J.W.; Sturk, A.; Borm, J.J.; Treffers, P.E. Enhanced thrombin generation in normal and hypertensive pregnancy. Am. J. Obstet. Gynecol., 1989, 160(1), 95-100.
[http://dx.doi.org/10.1016/0002-9378(89)90096-3] [PMID: 2521425]
[89]
Nielsen, A.H.; Schauser, K.H.; Poulsen, K. Current topic: The uteroplacental renin-angiotensin system. Placenta, 2000, 21(5-6), 468-477.
[http://dx.doi.org/10.1053/plac.2000.0535] [PMID: 10940196]
[90]
Zeisler, H; Llurba, E; Chantraine, F; Vatish, M; Staff, A; Sennström, M. The sFlt-1/PlGF Ratio: Ruling out pre-eclampsia for up to 4 weeks and the value of retesting: SFlt-1/PlGF ratio to rule out preeclampsia 2018, 53(3), 367-375.
[91]
Cerdeira, A.S.; Agrawal, S.; Staff, A.C.; Redman, C.W.; Vatish, M. Angiogenic factors: Potential to change clinical practice in pre-eclampsia? BJOG, 2018, 125(11), 1389-1395.
[http://dx.doi.org/10.1111/1471-0528.15042] [PMID: 29193681]
[92]
Karumanchi, S.A. Angiogenic factors in pre-eclampsia: Implications for clinical practice. BJOG, 2018, 125(11), 1396.
[http://dx.doi.org/10.1111/1471-0528.15180] [PMID: 29473285]
[93]
Verdonk, K.; Visser, W.; Van Den Meiracker, A.H.; Danser, A.H. The renin-angiotensin-aldosterone system in pre-eclampsia: The delicate balance between good and bad. Clin. Sci. (Lond.), 2014, 126(8), 537-544.
[http://dx.doi.org/10.1042/CS20130455] [PMID: 24400721]
[94]
Steegers, E.A.; von Dadelszen, P.; Duvekot, J.J.; Pijnenborg, R. Pre-eclampsia. Lancet, 2010, 376(9741), 631-644.
[http://dx.doi.org/10.1016/S0140-6736(10)60279-6] [PMID: 20598363]
[95]
Verlohren, S.; Stepan, H.; Dechend, R. Angiogenic growth factors in the diagnosis and prediction of pre-eclampsia. Clin. Sci. , 2012, 122(2), 43-52.
[http://dx.doi.org/10.1042/CS20110097] [PMID: 21929511]
[96]
Rana, S.; Powe, C.E.; Salahuddin, S.; Verlohren, S.; Perschel, F.H.; Levine, R.J.; Lim, K.H.; Wenger, J.B.; Thadhani, R.; Karumanchi, S.A. Angiogenic factors and the risk of adverse outcomes in women with suspected preeclampsia. Circulation, 2012, 125(7), 911-919.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.111.054361] [PMID: 22261192]
[97]
Verdonk, K.; Visser, W.; Russcher, H.; Danser, A.H.; Steegers, E.A.; van den Meiracker, A.H. Differential diagnosis of preeclampsia: Remember the soluble fms-like tyrosine kinase 1/placental growth factor ratio. Hypertension, 2012, 60(4), 884-890.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.112.201459] [PMID: 22892815]
[98]
Gilbert, J.S.; Babcock, S.A.; Granger, J.P. Hypertension produced by reduced uterine perfusion in pregnant rats is associated with increased soluble fms-like tyrosine kinase-1 expression. Hypertension, 2007, 50(6), 1142-1147.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.107.096594] [PMID: 17923588]
[99]
Maynard, S.E.; Min, J.Y.; Merchan, J.; Lim, K.H.; Li, J.; Mondal, S.; Libermann, T.A.; Morgan, J.P.; Sellke, F.W.; Stillman, I.E.; Epstein, F.H.; Sukhatme, V.P.; Karumanchi, S.A. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J. Clin. Invest., 2003, 111(5), 649-658.
[http://dx.doi.org/10.1172/JCI17189] [PMID: 12618519]
[100]
Yang, J.; Shang, J.; Zhang, S.; Li, H.; Liu, H. The role of the renin-angiotensin-aldosterone system in preeclampsia: Genetic polymorphisms and microRNA. J. Mol. Endocrinol., 2013, 50(2), R53-R66.
[http://dx.doi.org/10.1530/JME-12-0216] [PMID: 23369849]
[101]
Herse, F.; Dechend, R.; Harsem, N.K.; Wallukat, G.; Janke, J.; Qadri, F.; Hering, L.; Muller, D.N.; Luft, F.C.; Staff, A.C. Dysregulation of the circulating and tissue-based renin-angiotensin system in preeclampsia. Hypertension, 2007, 49(3), 604-611.
[http://dx.doi.org/10.1161/01.HYP.0000257797.49289.71] [PMID: 17261642]
[102]
Larsen, W. Development of the urogenital system. In: Human Embryology; Churchill Livingstone: New York, USA, 1997; pp. 261-309.
[103]
Larsen, W. The third week. In: Human Embryology; Churchill Livingstone: New York, USA, 1997; pp. 49-71.
[104]
Beeuwkes, R., III The vascular organization of the kidney. Annu. Rev. Physiol., 1980, 42(1), 531-542.
[http://dx.doi.org/10.1146/annurev.ph.42.030180.002531] [PMID: 6996596]
[105]
Castelli, W.A.; Huelke, D.F. The intrarenal vascular distribution in the human kidney. J. Urol., 1969, 102(1), 12-20.
[http://dx.doi.org/10.1016/S0022-5347(17)62062-7] [PMID: 4892249]
[106]
Okkels, H.; Engle, E.T. Studies on the finer structure of the uterine blood vessels of the macacus monkey. Acta Pathol. Microbiol. Scand., 1938, 15(2), 150-168.
[http://dx.doi.org/10.1111/j.1600-0463.1938.tb05607.x]
[107]
Ramsey, E.; Harris, J. Comparison of Uteroplacental Vasculature and Circulation in Rhesus Monkey and Man. Carnegie Institution of Washington, 1966, 38, 59.
[108]
Brosens, I.; Dixon, H.G. The anatomy of the maternal side of the placenta. J. Obstet. Gynaecol. Br. Commonw., 1966, 73(3), 357-363.
[http://dx.doi.org/10.1111/j.1471-0528.1966.tb05175.x] [PMID: 5947429]
[109]
Stakemann, G. A renin-like pressor substance found in the placenta of the cat. Acta Pathol. Microbiol. Scand., 1960, 50(4), 350-354.
[http://dx.doi.org/10.1111/j.1699-0463.1960.tb01204.x]
[110]
Symonds, E.M.; Stanley, M.A.; Skinner, S.L. Production of renin by in vitro cultures of human chorion and uterine muscle. Nature, 1968, 217(5134), 1152-1153.
[http://dx.doi.org/10.1038/2171152a0] [PMID: 5643087]
[111]
Ihara, Y.; Taii, S.; Mori, T. Expression of renin and angiotensinogen genes in the human placental tissues. Endocrinol. Jpn., 1987, 34(6), 887-896.
[http://dx.doi.org/10.1507/endocrj1954.34.887] [PMID: 3330023]
[112]
Li, X.; Shams, M.; Zhu, J.; Khalig, A.; Wilkes, M.; Whittle, M.; Barnes, N.; Ahmed, A. Cellular localization of AT1 receptor mRNA and protein in normal placenta and its reduced expression in intrauterine growth restriction. Angiotensin II stimulates the release of vasorelaxants. J. Clin. Invest., 1998, 101(2), 442-454.
[http://dx.doi.org/10.1172/JCI119881] [PMID: 9435317]
[113]
Hariyama, Y.; Itakura, A.; Okamura, M.; Ito, M.; Murata, Y.; Nagasaka, T.; Nakazato, H.; Mizutani, S. Placental aminopeptidase A as a possible barrier of angiotensin II between mother and fetus. Placenta, 2000, 21(7), 621-627.
[http://dx.doi.org/10.1053/plac.2000.0555] [PMID: 10985964]
[114]
Ryan, J.W.; Ferris, T.F. Release of a renin-like enzyme from the pregnant uterus of the rabbit. Biochem. J., 1967, 105(1), 16C-17C.
[http://dx.doi.org/10.1042/bj1050016C] [PMID: 4293516]
[115]
Hanssens, M.; Vercruysse, L.; Verbist, L.; Pijnenborg, R.; Keirse, M.J.; Van Assche, F.A. The choriodecidual renin controversy revisited. Adv. Exp. Med. Biol., 1995, 377, 427-434.
[http://dx.doi.org/10.1007/978-1-4899-0952-7_32] [PMID: 7484445]
[116]
Shaw, K.J.; Do, Y.S.; Kjos, S.; Anderson, P.W.; Shinagawa, T.; Dubeau, L.; Hsueh, W.A. Human decidua is a major source of renin. J. Clin. Invest., 1989, 83(6), 2085-2092.
[http://dx.doi.org/10.1172/JCI114121] [PMID: 2656762]
[117]
Morgan, T.; Craven, C.; Ward, K. Human spiral artery renin-angiotensin system. Hypertension, 1998, 32(4), 683-687.
[http://dx.doi.org/10.1161/01.HYP.32.4.683] [PMID: 9774363]
[118]
Li, C.; Ansari, R.; Yu, Z.; Shah, D. Definitive molecular evidence of renin-angiotensin system in human uterine decidual cells. Hypertension, 2000, 36(2), 159-164.
[http://dx.doi.org/10.1161/01.HYP.36.2.159] [PMID: 10948071]
[119]
Morgan, T.; Craven, C.; Lalouel, J.M.; Ward, K. Angiotensinogen Thr235 variant is associated with abnormal physiologic change of the uterine spiral arteries in first-trimester decidua. Am. J. Obstet. Gynecol., 1999, 180(1 Pt 1), 95-102.
[http://dx.doi.org/10.1016/S0002-9378(99)70156-0] [PMID: 9914585]
[120]
Zoumakis, E.; Margioris, A.N.; Stournaras, C.; Dermitzaki, E.; Angelakis, E.; Makrigiannakis, A.; Koumantakis, E.; Gravanis, A. Corticotrophin-releasing hormone (CRH) interacts with inflammatory prostaglandins and interleukins and affects the decidualization of human endometrial stroma. Mol. Hum. Reprod., 2000, 6(4), 344-351.
[http://dx.doi.org/10.1093/molehr/6.4.344] [PMID: 10729317]
[121]
Oelkers, W.K. Effects of estrogens and progestogens on the renin-aldosterone system and blood pressure. Steroids, 1996, 61(4), 166-171.
[http://dx.doi.org/10.1016/0039-128X(96)00007-4] [PMID: 8732994]
[122]
Shah, D.M.; Higuchi, K.; Inagami, T.; Osteen, K.G. Effect of progesterone on renin secretion in endometrial stromal, chorionic trophoblast, and mesenchymal monolayer cultures. Am. J. Obstet. Gynecol., 1991, 164(4), 1145-1150.
[http://dx.doi.org/10.1016/0002-9378(91)90603-O] [PMID: 2014841]
[123]
Yan, J.S.; Guo, L.H.; Liu, J.; Wang, H. Modulation of the secretion of active renin in human decidual cells by progesterone. Sheng Li Xue Bao: Acta Physiol. Sin., 1999, 51(2), 211-218.
[PMID: 11499018]
[124]
Yu, Z.; Li, C.; Shah, D. Prorenin expression in the course of in vitro decidualization of human endometrial stromal cells: Effects of progesterone versus cyclic AMP. J. Soc. Gynecol. Investig., 2001, 9, 220A.
[125]
Smith, D.L.; Law, R.E.; Shaw, K.J.; Do, Y.S.; Hsueh, W.A.; Morris, B.J. Proximal 2.6 kb of 5-flanking DNA is insufficient for human renin promoter activity in renin-synthesizing chorio-decidual cells. Biochim. Biophys. Acta, 1994, 1219(2), 465-474.
[http://dx.doi.org/10.1016/0167-4781(94)90073-6] [PMID: 7918644]
[126]
Dzau, V.J.; Gonzalez, D.; Ellison, K.; Churchill, S.; Emmett, N. Characterization of purified rabbit uterine renin: Influence of pregnancy on uterine inactive renin. Endocrinology, 1987, 120(1), 358-364.
[http://dx.doi.org/10.1210/endo-120-1-358] [PMID: 3536455]
[127]
Tewksbury, D.A. Quantitation of five forms of high molecular weight angiotensinogen from human placenta. Am. J. Hypertens., 1996, 9(10 Pt 1), 1029-1034.
[http://dx.doi.org/10.1016/0895-7061(96)00175-6] [PMID: 8896657]
[128]
Tewksbury, D.A.; Dart, R.A. High molecular weight angiotensinogen levels in hypertensive pregnant women. Hypertension, 1982, 4(5), 729-734.
[http://dx.doi.org/10.1161/01.HYP.4.5.729] [PMID: 7106939]
[129]
Chen, G.; Zhang, Y.; Jin, X.; Zhang, L.; Zhou, Y.; Niu, J.; Chen, J.; Gu, Y. Urinary proteomics analysis for renal injury in hypertensive disorders of pregnancy with iTRAQ labeling and LC-MS/MS. Proteomics Clin. Appl., 2011, 5(5-6), 300-310.
[http://dx.doi.org/10.1002/prca.201000100] [PMID: 21538910]
[130]
Kobori, H.; Harrison-Bernard, L.M.; Navar, L.G. Urinary excretion of angiotensinogen reflects intrarenal angiotensinogen production. Kidney Int., 2002, 61(2), 579-585.
[http://dx.doi.org/10.1046/j.1523-1755.2002.00155.x] [PMID: 11849399]
[131]
Kobori, H.; Urushihara, M. Augmented intrarenal and urinary angiotensinogen in hypertension and chronic kidney disease. Pflugers Arch., 2013, 465(1), 3-12.
[PMID: 22918624]
[132]
Shahvaisizadeh, F.; Movafagh, A.; Omrani, M.D.; Vaisi-Raygani, A.; Rahimi, Z.; Rahimi, Z. Synergistic effects of angiotensinogen -217 GA and T704C (M235T) variants on the risk of severe preeclampsia. J. Renin Angiotensin Aldosterone Syst., 2014, 15(2), 156-161.
[http://dx.doi.org/10.1177/1470320312467555] [PMID: 23178514]
[133]
Danser, A.H.; Derkx, F.H.; Schalekamp, M.A.; Hense, H.W.; Riegger, G.A.; Schunkert, H. Determinants of interindividual variation of renin and prorenin concentrations: Evidence for a sexual dimorphism of (pro)renin levels in humans. J. Hypertens., 1998, 16(6), 853-862.
[http://dx.doi.org/10.1097/00004872-199816060-00017] [PMID: 9663926]
[134]
Derkx, F.H.; Alberda, A.T.; de Jong, F.H.; Zeilmaker, F.H.; Makovitz, J.W.; Schalekamp, M.A. Source of plasma prorenin in early and late pregnancy: Observations in a patient with primary ovarian failure. J. Clin. Endocrinol. Metab., 1987, 65(2), 349-354.
[http://dx.doi.org/10.1210/jcem-65-2-349] [PMID: 2439529]
[135]
J. Spaan, J. A Brown, M. Renin-angiotensin system in pre-eclampsia: Everything old is new again. Obstet. Med., 2012, 5(4), 147-153.
[http://dx.doi.org/10.1258/om.2012.120007] [PMID: 30705695]
[136]
Krop, M.; Danser, A.H. Circulating versus tissue renin-angiotensin system: On the origin of (pro)renin. Curr. Hypertens. Rep., 2008, 10(2), 112-118.
[http://dx.doi.org/10.1007/s11906-008-0022-1] [PMID: 18474177]
[137]
Ringholm, L.; Pedersen-Bjergaard, U.; Thorsteinsson, B.; Boomsma, F.; Damm, P.; Mathiesen, E.R. A high concentration of prorenin in early pregnancy is associated with development of pre-eclampsia in women with type 1 diabetes. Diabetologia, 2011, 54(7), 1615-1619.
[http://dx.doi.org/10.1007/s00125-011-2087-7] [PMID: 21340620]
[138]
de León, R.G.; de Melián, E.M.; Coviello, A.; De Vito, E. Prorenin concentration in the hypertensive disorders in pregnancy. Hypertens. Pregnancy, 2001, 20(2), 157-168.
[http://dx.doi.org/10.1081/PRG-100106965] [PMID: 12044326]
[139]
Miyamoto, S.; Shimokawa, H.; Sumioki, H.; Touno, A.; Nakano, H. Circadian rhythm of plasma atrial natriuretic peptide, aldosterone, and blood pressure during the third trimester in normal and preeclamptic pregnancies. Am. J. Obstet. Gynecol., 1988, 158(2), 393-399.
[http://dx.doi.org/10.1016/0002-9378(88)90162-7] [PMID: 2963545]
[140]
Kappers, M.H.; van Esch, J.H.; Sluiter, W.; Sleijfer, S.; Danser, A.H.; van den Meiracker, A.H. Hypertension induced by the tyrosine kinase inhibitor sunitinib is associated with increased circulating endothelin-1 levels. Hypertension, 2010, 56(4), 675-681.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.109.149690] [PMID: 20733093]
[141]
Thomason, J.; Reyes, M.; Allen, S.R.; Jones, R.O.; Beeram, M.R.; Kuehl, T.J.; Suzuki, F.; Uddin, M.N. Elevation of (pro)renin and (pro)renin receptor in preeclampsia. Am. J. Hypertens., 2015, 28(10), 1277-1284.
[http://dx.doi.org/10.1093/ajh/hpv019] [PMID: 25767135]
[142]
Watanabe, N.; Bokuda, K.; Fujiwara, T.; Suzuki, T.; Mito, A.; Morimoto, S.; Jwa, S.C.; Egawa, M.; Arai, Y.; Suzuki, F.; Sago, H.; Ichihara, A. Soluble (pro)renin receptor and blood pressure during pregnancy: A prospective cohort study. Hypertension, 2012, 60(5), 1250-1256.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.112.197418] [PMID: 23045457]
[143]
Narita, T.; Ichihara, A.; Matsuoka, K.; Takai, Y.; Bokuda, K.; Morimoto, S.; Itoh, H.; Seki, H. Placental (pro)renin receptor expression and plasma soluble (pro)renin receptor levels in preeclampsia. Placenta, 2016, 37, 72-78.
[http://dx.doi.org/10.1016/j.placenta.2015.11.007] [PMID: 26684753]
[144]
Sugulle, M.; Heidecke, H.; Maschke, U.; Herse, F.; Danser, A.H.J.; Mueller, D.N.; Staff, A.C.; Dechend, R. Soluble (pro)renin receptor in preeclampsia and diabetic pregnancies. J. Am. Soc. Hypertens., 2017, 11(10), 644-652.
[http://dx.doi.org/10.1016/j.jash.2017.08.001] [PMID: 29050747]
[145]
Wallukat, G.; Homuth, V.; Fischer, T.; Lindschau, C.; Horstkamp, B.; Jüpner, A.; Baur, E.; Nissen, E.; Vetter, K.; Neichel, D.; Dudenhausen, J.W.; Haller, H.; Luft, F.C. Patients with preeclampsia develop agonistic autoantibodies against the angiotensin AT1 receptor. J. Clin. Invest., 1999, 103(7), 945-952.
[http://dx.doi.org/10.1172/JCI4106] [PMID: 10194466]
[146]
Zhou, C.C.; Ahmad, S.; Mi, T.; Abbasi, S.; Xia, L.; Day, M.C.; Ramin, S.M.; Ahmed, A.; Kellems, R.E.; Xia, Y. Autoantibody from women with preeclampsia induces soluble Fms-like tyrosine kinase-1 production via angiotensin type 1 receptor and calcineurin/nuclear factor of activated T-cells signaling. Hypertension, 2008, 51(4), 1010-1019.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.107.097790] [PMID: 18259044]
[147]
Siddiqui, A.H.; Irani, R.A.; Zhang, Y.; Dai, Y.; Blackwell, S.C.; Ramin, S.M.; Kellems, R.E.; Xia, Y. Recombinant vascular endothelial growth factor 121 attenuates autoantibody-induced features of pre-eclampsia in pregnant mice. Am. J. Hypertens., 2011, 24(5), 606-612.
[http://dx.doi.org/10.1038/ajh.2010.247] [PMID: 21183928]
[148]
Siddiqui, A.H.; Irani, R.A.; Blackwell, S.C.; Ramin, S.M.; Kellems, R.E.; Xia, Y. Angiotensin receptor agonistic autoantibody is highly prevalent in preeclampsia: Correlation with disease severity. Hypertension, 2010, 55(2), 386-393.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.109.140061] [PMID: 19996068]
[149]
Gant, N.F.; Daley, G.L.; Chand, S.; Whalley, P.J.; MacDonald, P.C. A study of angiotensin II pressor response throughout primigravid pregnancy. J. Clin. Invest., 1973, 52(11), 2682-2689.
[http://dx.doi.org/10.1172/JCI107462] [PMID: 4355997]
[150]
Saxena, A.R.; Karumanchi, S.A.; Brown, N.J.; Royle, C.M.; McElrath, T.F.; Seely, E.W. Increased sensitivity to angiotensin II is present postpartum in women with a history of hypertensive pregnancy. Hypertension, 2010, 55(5), 1239-1245.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.109.147595] [PMID: 20308605]
[151]
AbdAlla S.; Lother, H.; el Massiery, A.; Quitterer, U. Increased AT(1) receptor heterodimers in preeclampsia mediate enhanced angiotensin II responsiveness. Nat. Med., 2001, 7(9), 1003-1009.
[http://dx.doi.org/10.1038/nm0901-1003] [PMID: 11533702]
[152]
Mishra, N.; Nugent, W.H.; Mahavadi, S.; Walsh, S.W. Mechanisms of enhanced vascular reactivity in preeclampsia. Hypertension, 2011, 58(5), 867-873.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.111.176602] [PMID: 21947470]
[153]
Langer, B.; Grima, M.; Coquard, C.; Bader, A.M.; Schlaeder, G.; Imbs, J.L. Plasma active renin, angiotensin I, and angiotensin II during pregnancy and in preeclampsia. Obstet. Gynecol., 1998, 91(2), 196-202.
[http://dx.doi.org/10.1016/S0029-7844(97)00660-1] [PMID: 9469275]
[154]
Sykes, S.D.; Pringle, K.G.; Zhou, A.; Dekker, G.A.; Roberts, C.T.; Lumbers, E.R. Fetal sex and the circulating renin-angiotensin system during early gestation in women who later develop preeclampsia or gestational hypertension. J. Hum. Hypertens., 2014, 28(2), 133-139.
[http://dx.doi.org/10.1038/jhh.2013.51] [PMID: 23782994]
[155]
Machado, R.D.; Santos, R.A.; Andrade, S.P. Mechanisms of angiotensin-(1-7)-induced inhibition of angiogenesis. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2001, 280(4), R994-R1000.
[http://dx.doi.org/10.1152/ajpregu.2001.280.4.R994] [PMID: 11247819]
[156]
Gennari-Moser, C.; Khankin, E.V.; Schüller, S.; Escher, G.; Frey, B.M.; Portmann, C.B.; Baumann, M.U.; Lehmann, A.D.; Surbek, D.; Karumanchi, S.A.; Frey, F.J.; Mohaupt, M.G. Regulation of placental growth by aldosterone and cortisol. Endocrinology, 2011, 152(1), 263-271.
[http://dx.doi.org/10.1210/en.2010-0525] [PMID: 21068161]
[157]
Gennari-Moser, C.; Khankin, E.V.; Escher, G.; Burkhard, F.; Frey, B.M.; Karumanchi, S.A.; Frey, F.J.; Mohaupt, M.G. Vascular endothelial growth factor-A and aldosterone: Relevance to normal pregnancy and preeclampsia. Hypertension, 2013, 61(5), 1111-1117.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.111.00575] [PMID: 23460276]
[158]
Buhl, K.B.; Friis, U.G.; Svenningsen, P.; Gulaveerasingam, A.; Ovesen, P.; Frederiksen-Møller, B.; Jespersen, B.; Bistrup, C.; Jensen, B.L. Urinary plasmin activates collecting duct ENaC current in preeclampsia. Hypertension, 2012, 60(5), 1346-1351.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.112.198879] [PMID: 22987920]
[159]
Brown, M.A.; Zammit, V.C.; Mitar, D.A.; Whitworth, J.A. Renin-aldosterone relationships in pregnancy-induced hypertension. Am. J. Hypertens., 1992, 5(6 Pt 1), 366-371.
[http://dx.doi.org/10.1093/ajh/5.6.366] [PMID: 1524761]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy