Research Article

三阴性乳腺癌顺铂耐药的转录组分析:对 PI3k/Akt 通路作用的新认识

卷 23, 期 6, 2023

发表于: 15 August, 2022

页: [559 - 568] 页: 10

弟呕挨: 10.2174/1566524022666220517102423

价格: $65

摘要

背景:与其他乳腺癌类型相比,三阴性乳腺癌(TNBC)的侵袭性与预后不良相关。目前的指南推荐使用顺铂治疗 TNBC。然而,顺铂耐药性的发展是化疗失败的主要原因。 目的:在本研究中,我们旨在开发稳定的顺铂耐药 TNBC 细胞系,以研究顺铂耐药 TNBC 中涉及的关键通路和基因。 方法:将 MDA-MB-231 细胞暴露于不同浓度的顺铂。 33代后,细胞表现出耐药表型。然后,在顺铂耐药细胞系和亲代细胞系中进行 RNA 测序分析。通过定量 PCR(qPCR)验证 RNA 测序数据。 结果:耐药细胞的 IC50 增加到亲代细胞的10倍(p<0.001)。此外,顺铂耐药细胞显示出对其他药物的交叉耐药性,包括 5-氟尿嘧啶、紫杉醇和多柔比星。与亲代细胞相比,耐药细胞表现出药物积累减少。结果显示有 116 个差异表达基因 (DEG)(p<0.01)。基因本体分析表明,DEG 具有多种分子功能,包括结合和转运蛋白活性。功能注释显示DEGs富集于耐药相关通路,尤其是PI3K-Akt信号通路。在蛋白质-蛋白质相互作用网络中发现的最重要的基因是血红素加氧酶 1(HMOX1)和 TIMP 金属肽酶抑制剂 3(TIMP3)。 结论:我们已经确定了与 PI3KAkt 通路相关的若干通路和 DEG,这为顺铂耐药机制和 TNBC 中的潜在药物靶点提供了新的见解。

关键词: 顺铂,乳腺癌,耐药性,TNBC,PI3k / Akt,RNA-seq。

[1]
Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA Cancer J Clin 2021; 71(1): 7-33.
[http://dx.doi.org/10.3322/caac.21654] [PMID: 33433946]
[2]
Dai X, Cheng H, Bai Z, Li J. Breast cancer cell line classification and its relevance with breast tumor subtyping. J Cancer 2017; 8(16): 3131-41.
[http://dx.doi.org/10.7150/jca.18457] [PMID: 29158785]
[3]
Foulkes WD, Smith IE, Reis-Filho JS. Triple-negative breast cancer. N Engl J Med 2010; 363(20): 1938-48.
[http://dx.doi.org/10.1056/NEJMra1001389] [PMID: 21067385]
[4]
Kala C, Athar M, Kala S, Khan L, Jauhari RK, Satsangi A. Clinical and cyto-morphological characterization of triple negative breast cancer. J Cytol 2019; 36(2): 84-8.
[http://dx.doi.org/10.4103/JOC.JOC_47_18] [PMID: 30992642]
[5]
Sharma P. Biology and management of patients with triple-negative breast cancer. Oncologist 2016; 21(9): 1050-62.
[http://dx.doi.org/10.1634/theoncologist.2016-0067] [PMID: 27401886]
[6]
Janni W, Schneeweiss A, Müller V, et al. Update breast cancer 2019 Part 2 - Implementation of novel diagnostics and therapeutics in advanced breast cancer patients in clinical practice. Geburtshilfe Frauenheilkd 2019; 79(3): 268-80.
[http://dx.doi.org/10.1055/a-0842-6661] [PMID: 30880825]
[7]
Lebert JM, Lester R, Powell E, Seal M, McCarthy J. Advances in the systemic treatment of triple-negative breast cancer. Curr Oncol 2018; 25 (Suppl. 1): S142-50.
[http://dx.doi.org/10.3747/co.25.3954] [PMID: 29910657]
[8]
Zhang J, Fan M, Xie J, et al. Chemotherapy of metastatic triple negative breast cancer: Experience of using platinum-based chemotherapy. Oncotarget 2015; 6(40): 43135-43.
[http://dx.doi.org/10.18632/oncotarget.5654] [PMID: 26447756]
[9]
Guan X, Ma F, Fan Y, Zhu W, Hong R, Xu B. Platinum-based chemotherapy in triple-negative breast cancer: A systematic review and meta-analysis of randomized-controlled trials. Anticancer Drugs 2015; 26(8): 894-901.
[http://dx.doi.org/10.1097/CAD.0000000000000260] [PMID: 26086398]
[10]
Dasari S, Tchounwou PB. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur J Pharmacol 2014; 740: 364-78.
[http://dx.doi.org/10.1016/j.ejphar.2014.07.025] [PMID: 25058905]
[11]
Garutti M, Pelizzari G, Bartoletti M, et al. Platinum salts in patients with breast cancer: A focus on predictive factors. Int J Mol Sci 2019; 20(14): E3390.
[http://dx.doi.org/10.3390/ijms20143390] [PMID: 31295913]
[12]
Amable L. Cisplatin resistance and opportunities for precision medicine. Pharmacol Res 2016; 106: 27-36.
[http://dx.doi.org/10.1016/j.phrs.2016.01.001] [PMID: 26804248]
[13]
Pink RC, Samuel P, Massa D, Caley DP, Brooks SA, Carter DRF. The passenger strand, miR-21-3p, plays a role in mediating cisplatin resistance in ovarian cancer cells. Gynecol Oncol 2015; 137(1): 143-51.
[http://dx.doi.org/10.1016/j.ygyno.2014.12.042] [PMID: 25579119]
[14]
Lo Iacono M, Monica V, Vavalà T, et al. ATF2 contributes to cisplatin resistance in non-small cell lung cancer and celastrol induces cisplatin resensitization through inhibition of JNK/ATF2 pathway. Int J Cancer 2015; 136(11): 2598-609.
[http://dx.doi.org/10.1002/ijc.29302] [PMID: 25359574]
[15]
Yu L, Gu C, Zhong D, et al. Induction of autophagy counteracts the anticancer effect of cisplatin in human esophageal cancer cells with acquired drug resistance. Cancer Lett 2014; 355(1): 34-45.
[http://dx.doi.org/10.1016/j.canlet.2014.09.020] [PMID: 25236911]
[16]
Kim H, D’Andrea AD. Regulation of DNA cross-link repair by the Fanconi anemia/BRCA pathway. Genes Dev 2012; 26(13): 1393-408.
[http://dx.doi.org/10.1101/gad.195248.112] [PMID: 22751496]
[17]
Wu D-W, Lee M-C, Hsu N-Y, et al. FHIT loss confers cisplatin resistance in lung cancer via the AKT/NF-κB/Slug-mediated PUMA reduction. Oncogene 2015; 34(29): 3882-3.
[http://dx.doi.org/10.1038/onc.2015.203] [PMID: 26179457]
[18]
Haslehurst AM, Koti M, Dharsee M, et al. EMT transcription factors snail and slug directly contribute to cisplatin resistance in ovarian cancer. BMC Cancer 2012; 12: 91.
[http://dx.doi.org/10.1186/1471-2407-12-91] [PMID: 22429801]
[19]
Campos-Parra AD, López-Urrutia E, Orozco Moreno LT, et al. Long non-coding RNAs as new master regulators of resistance to systemic treatments in breast cancer. Int J Mol Sci 2018; 19(9): E2711.
[http://dx.doi.org/10.3390/ijms19092711] [PMID: 30208633]
[20]
Liu J, Chen X, Ward T, Pegram M, Shen K. Combined niclosamide with cisplatin inhibits epithelial-mesenchymal transition and tumor growth in cisplatin-resistant triple-negative breast cancer. Tumour Biol 2016; 37(7): 9825-35.
[http://dx.doi.org/10.1007/s13277-015-4650-1] [PMID: 26810188]
[21]
Kuo W-Y, Hwu L, Wu C-Y, Lee J-S, Chang C-W, Liu R-S. STAT3/NF-κB-regulated lentiviral TK/GCV suicide gene therapy for cisplatin-resistant triple-negative breast cancer. Theranostics 2017; 7(3): 647-63.
[http://dx.doi.org/10.7150/thno.16827] [PMID: 28255357]
[22]
Krishan A, Hamelik RM. Flow cytometric monitoring of fluorescent drug retention and efflux. Methods Mol Med 2005; 111: 149-66.
[http://dx.doi.org/10.1385/1-59259-889-7:149] [PMID: 15911978]
[23]
Afgan E, Baker D, Batut B, et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res 2018; 46(W1): W537-44.
[PMID: 29790989]
[24]
Shannon P, Markiel A, Ozier O, et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res 2003; 13(11): 2498-504.
[http://dx.doi.org/10.1101/gr.1239303] [PMID: 14597658]
[25]
Nedeljković M, Damjanović A. Mechanisms of chemotherapy resistance in triple-negative breast cancer-how we can rise to the challenge. Cells 2019; 8(9): E957.
[http://dx.doi.org/10.3390/cells8090957] [PMID: 31443516]
[26]
Bell CC, Gilan O. Principles and mechanisms of non-genetic resistance in cancer. Br J Cancer 2020; 122(4): 465-72.
[http://dx.doi.org/10.1038/s41416-019-0648-6] [PMID: 31831859]
[27]
Golalipour M, Mahjoubi F, Sanati MH, Alimoghaddam K, Kamran A. Gene dosage is not responsible for the upregulation of MRP1 gene expression in adult leukemia patients. Arch Med Res 2007; 38(3): 297-304.
[http://dx.doi.org/10.1016/j.arcmed.2006.10.016] [PMID: 17350479]
[28]
Kuo MT, Huang Y-F, Chou C-Y, Chen HHW. Targeting the copper transport system to improve treatment efficacies of platinum-containing drugs in cancer chemotherapy. Pharmaceuticals (Basel) 2021; 14(6): 549.
[http://dx.doi.org/10.3390/ph14060549] [PMID: 34201235]
[29]
Shimizu T, Fujii T, Sakai H. The relationship between actin cytoskeleton and membrane transporters in cisplatin resistance of cancer cells. Front Cell Dev Biol 2020; 8: 597835.
[http://dx.doi.org/10.3389/fcell.2020.597835] [PMID: 33195280]
[30]
Timmerman LA, Holton T, Yuneva M, et al. Glutamine sensitivity analysis identifies the xCT antiporter as a common triple-negative breast tumor therapeutic target. Cancer Cell 2013; 24(4): 450-65.
[http://dx.doi.org/10.1016/j.ccr.2013.08.020] [PMID: 24094812]
[31]
Wang K, Cao F, Fang W, et al. Activation of SNAT1/SLC38A1 in human breast cancer: Correlation with p-Akt overexpression. BMC Cancer 2013; 13: 343.
[http://dx.doi.org/10.1186/1471-2407-13-343] [PMID: 23848995]
[32]
Wang B, Zhang Y, Ye M, Wu J, Ma L, Chen H. Cisplatin-resistant MDA-MB-231 cell-derived exosomes increase the resistance of recipient cells in an exosomal miR-423-5p-dependent Manner. Curr Drug Metab 2019; 20(10): 804-14.
[http://dx.doi.org/10.2174/1389200220666190819151946] [PMID: 31424364]
[33]
Eke I, Cordes N. Focal adhesion signaling and therapy resistance in cancer. Semin Cancer Biol 2015; 31: 65-75.
[http://dx.doi.org/10.1016/j.semcancer.2014.07.009] [PMID: 25117005]
[34]
Wang Z, Erb B. Receptors and cancer. Methods Mol Biol 2017; 1652: 3-35.
[http://dx.doi.org/10.1007/978-1-4939-7219-7_1] [PMID: 28791631]
[35]
Hill DP, Harper A, Malcolm J, et al. Cisplatin-resistant triple-negative breast cancer subtypes: Multiple mechanisms of resistance. BMC Cancer 2019; 19(1): 1039.
[http://dx.doi.org/10.1186/s12885-019-6278-9] [PMID: 31684899]
[36]
Chen T-C, Hung Y-C, Lin T-Y, et al. Human papillomavirus infection and expression of ATPase family AAA domain containing 3A, a novel anti-autophagy factor, in uterine cervical cancer. Int J Mol Med 2011; 28(5): 689-96.
[PMID: 21743956]
[37]
Zhao R, Feng J, He G. Hypoxia increases Nrf2-induced HO-1 expression via the PI3K/Akt pathway. Front Biosci 2016; 21: 385-96.
[http://dx.doi.org/10.2741/4395] [PMID: 26709780]
[38]
Reddy NM, Potteti HR, Vegiraju S, Chen H-J, Tamatam CM, Reddy SP. PI3K-AKT signaling via Nrf2 protects against hyperoxia-induced acute lung injury, but promotes inflammation post-injury independent of Nrf2 in mice. PLoS One 2015; 10(6): e0129676.
[http://dx.doi.org/10.1371/journal.pone.0129676] [PMID: 26075390]
[39]
Zhe N, Wang J, Chen S, et al. Heme oxygenase-1 plays a crucial role in chemoresistance in acute myeloid leukemia. Hematology 2015; 20(7): 384-91.
[http://dx.doi.org/10.1179/1607845414Y.0000000212] [PMID: 26218201]
[40]
Han L, Jiang J, Ma Q, Wu Z, Wang Z. The inhibition of heme oxygenase-1 enhances the chemosensitivity and suppresses the proliferation of pancreatic cancer cells through the SHH signaling pathway. Int J Oncol 2018; 52(6): 2101-9.
[http://dx.doi.org/10.3892/ijo.2018.4363] [PMID: 29620188]
[41]
Wei QT, Liu BY, Ji HY, et al. Exosome-mediated transfer of MIF confers temozolomide resistance by regulating TIMP3/PI3K/AKT axis in gliomas. Mol Ther Oncolytics 2021; 22: 114-28.
[http://dx.doi.org/10.1016/j.omto.2021.08.004] [PMID: 34514093]
[42]
Chen J, Zhou C, Li J, et al. miR-21-5p confers doxorubicin resistance in gastric cancer cells by targeting PTEN and TIMP3. Int J Mol Med 2018; 41(4): 1855-66.
[http://dx.doi.org/10.3892/ijmm.2018.3405] [PMID: 29393355]
[43]
Han XG, Mo HM, Liu XQ, et al. TIMP3 overexpression improves the sensitivity of osteosarcoma to cisplatin by reducing IL-6 production. Front Genet 2018; 9: 135.
[http://dx.doi.org/10.3389/fgene.2018.00135] [PMID: 29731768]
[44]
Pascual J, Turner NC. Targeting the PI3-kinase pathway in triple-negative breast cancer. Ann Oncol 2019; 30(7): 1051-60.
[http://dx.doi.org/10.1093/annonc/mdz133] [PMID: 31050709]
[45]
Liu R, Chen Y, Liu G, et al. PI3K/AKT pathway as a key link modulates the multidrug resistance of cancers. Cell Death Dis 2020; 11(9): 797.
[http://dx.doi.org/10.1038/s41419-020-02998-6] [PMID: 32973135]
[46]
Johnson-Holiday C, Singh R, Johnson EL, Grizzle WE, Lillard JW Jr, Singh S. CCR9-CCL25 interactions promote cisplatin resistance in breast cancer cell through Akt activation in a PI3K-dependent and FAK-independent fashion. World J Surg Oncol 2011; 9: 46.
[http://dx.doi.org/10.1186/1477-7819-9-46] [PMID: 21539750]
[47]
Gohr K, Hamacher A, Engelke LH, Kassack MU. Inhibition of PI3K/Akt/mTOR overcomes cisplatin resistance in the triple negative breast cancer cell line HCC38. BMC Cancer 2017; 17(1): 711.
[http://dx.doi.org/10.1186/s12885-017-3695-5] [PMID: 29100507]
[48]
Luo J, Yao J-F, Deng X-F, et al. 14, 15-EET induces breast cancer cell EMT and cisplatin resistance by up-regulating integrin αvβ3 and activating FAK/PI3K/AKT signaling. J Exp Clin Cancer Res 2018; 37(1): 23.
[http://dx.doi.org/10.1186/s13046-018-0694-6] [PMID: 29426357]
[49]
Marquard FE, Jücker M. PI3K/AKT/mTOR signaling as a molecular target in head and neck cancer. Biochem Pharmacol 2020; 172: 113729.
[http://dx.doi.org/10.1016/j.bcp.2019.113729] [PMID: 31785230]
[50]
Kumar S, Patil HS, Sharma P, et al. Andrographolide inhibits osteopontin expression and breast tumor growth through down regulation of PI3 kinase/Akt signaling pathway. Curr Mol Med 2012; 12(8): 952-66.
[http://dx.doi.org/10.2174/156652412802480826] [PMID: 22804248]
[51]
Tsou S-H, Chen T-M, Hsiao H-T, Chen Y-H. A critical dose of doxorubicin is required to alter the gene expression profiles in MCF-7 cells acquiring multidrug resistance. PLoS One 2015; 10(1): e0116747.
[http://dx.doi.org/10.1371/journal.pone.0116747] [PMID: 25635866]
[52]
Dong C, Chen Y, Ma J, et al. Econazole nitrate reversed the resistance of breast cancer cells to adriamycin through inhibiting the PI3K/AKT signaling pathway. Am J Cancer Res 2020; 10(1): 263-74.
[PMID: 32064166]
[53]
Hu Y, Guo R, Wei J, et al. Effects of PI3K inhibitor NVP-BKM120 on overcoming drug resistance and eliminating cancer stem cells in human breast cancer cells. Cell Death Dis 2015; 6: e2020.
[http://dx.doi.org/10.1038/cddis.2015.363] [PMID: 26673665]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy