Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

Modulation of ATP8B1 Gene Expression in Colorectal Cancer Cells Suggest its Role as a Tumor Suppressor

Author(s): Saleh Althenayyan, Amal AlGhamdi, Mohammed H. AlMuhanna, Esra Hawsa, Dalal Aldeghaither, Jahangir Iqbal, Sameer Mohammad and Mohammad A. Aziz*

Volume 22, Issue 7, 2022

Published on: 19 May, 2022

Page: [577 - 590] Pages: 14

DOI: 10.2174/1568009622666220517092340

Price: $65

Abstract

Aim: The study aims to understand the role of tumor suppressor genes in colorectal cancer initiation and progression.

Background: Sporadic colorectal cancer (CRC) develops through distinct molecular events. Loss of the 18q chromosome is a conspicuous event in the progression of adenoma to carcinoma. There is limited information regarding the molecular effectors of this event. Earlier, we had reported ATP8B1 as a novel gene associated with CRC. ATP8B1 belongs to the family of P-type ATPases (P4 ATPase) that primarily function to facilitate the translocation of phospholipids.

Objective: In this study, we attempt to implicate the ATP8B1 gene located on chromosome 18q as a tumor suppressor gene.

Methods: Cells culture, Patient data analysis, Generation of stable ATP8B1 overexpressing SW480 cell line, Preparation of viral particles, Cell Transduction, Generation of stable ATP8B1 knockdown HT29 cell line with CRISPR/Cas9, Generation of stable ATP8B1 knockdown HT29 cell line with shRNA, Quantification of ATP8B1 gene expression, Real-time cell proliferation and migration assays, Cell proliferation assay, Cell migration assay, Protein isolation and western blotting, Endpoint cell viability assay, Uptake and efflux of sphingolipid, Statistical and computational analyses.

Results: We studied indigenous patient data and confirmed the reduced expression of ATP8B1 in tumor samples. CRC cell lines were engineered with reduced and enhanced levels of ATP8B1, which provided a tool to study its role in cancer progression. Forced reduction of ATP8B1 expression either by CRISPR/Cas9 or shRNA was associated with increased growth and proliferation of CRC cell line - HT29. In contrast, overexpression of ATP8B1 resulted in reduced growth and proliferation of SW480 cell lines. We generated a network of genes that are downstream of ATP8B1. Further, we provide the predicted effect of modulation of ATP8B1 levels on this network and the possible effect on fatty acid metabolism-related genes.

Conclusion: Tumor suppressor gene (ATP8B1) located on chromosome 18q could be responsible in the progression of colorectal cancer. Knocking down of this gene causes an increased rate of cell proliferation and reduced cell death, suggesting its role as a tumor suppressor. Increasing the expression of this gene in colorectal cancer cells slowed down their growth and increased cell death. These evidences suggest the role of ATP8B1 as a tumor suppressor gene.

Keywords: Colorectal cancer, flippase, ion transporter, tumor suppressor gene, chromosome 18q, lipid transport.

Graphical Abstract
[1]
Mármol, I.; Sánchez-de-Diego, C.; Pradilla Dieste, A.; Cerrada, E.; Rodriguez Yoldi, M.J. Colorectal carcinoma: a general overview and future perspectives in colorectal cancer. Int. J. Mol. Sci., 2017, 18(1), 18.
[http://dx.doi.org/10.3390/ijms18010197] [PMID: 28106826]
[2]
Worthley, D.L.; Leggett, B.A. Colorectal cancer: molecular features and clinical opportunities. Clin. Biochem. Rev., 2010, 31(2), 31-38.
[PMID: 20498827]
[3]
Yatime, L.; Buch-Pedersen, M.J.; Musgaard, M.; Morth, J.P.; Lund Winther, A.M.; Pedersen, B.P.; Olesen, C.; Andersen, J.P.; Vilsen, B.; Schiøtt, B.; Palmgren, M.G.; Møller, J.V.; Nissen, P.; Fedosova, N. P-type ATPases as drug targets: tools for medicine and science. Biochim. Biophys. Acta, 2009, 1787(4), 207-220.
[http://dx.doi.org/10.1016/j.bbabio.2008.12.019] [PMID: 19388138]
[4]
Kampen, K.R. Membrane proteins: the key players of a cancer cell. J. Membr. Biol., 2011, 242(2), 69-74.
[http://dx.doi.org/10.1007/s00232-011-9381-7] [PMID: 21732009]
[5]
Madjd, Z.; Pinder, S.E.; Paish, C.; Ellis, I.O.; Carmichael, J.; Durrant, L.G. Loss of CD59 expression in breast tumours correlates with poor survival. J. Pathol., 2003, 200(5), 633-639.
[http://dx.doi.org/10.1002/path.1357] [PMID: 12898600]
[6]
Xu, C.; Jung, M.; Burkhardt, M.; Stephan, C.; Schnorr, D.; Loening, S.; Jung, K.; Dietel, M.; Kristiansen, G. Increased CD59 protein expression predicts a PSA relapse in patients after radical prostatectomy. Prostate, 2005, 62(3), 224-232.
[http://dx.doi.org/10.1002/pros.20134] [PMID: 15389793]
[7]
Fan, L.; Li, A.; Li, W.; Cai, P.; Yang, B.; Zhang, M.; Gu, Y.; Shu, Y.; Sun, Y.; Shen, Y.; Wu, X.; Hu, G.; Wu, X.; Xu, Q. Novel role of Sarco/endoplasmic reticulum calcium ATPase 2 in development of colorectal cancer and its regulation by F36, a curcumin analog. Biomed. Pharmacother., 2014, 68(8), 1141-1148.
[http://dx.doi.org/10.1016/j.biopha.2014.10.014] [PMID: 25458791]
[8]
Geyik, E.; Igci, Y.Z.; Pala, E.; Suner, A.; Borazan, E.; Bozgeyik, I.; Bayraktar, E.; Bayraktar, R.; Ergun, S.; Cakmak, E.A.; Gokalp, A.; Arslan, A. Investigation of the association between ATP2B4 and ATP5B genes with colorectal cancer. Gene, 2014, 540(2), 178-182.
[http://dx.doi.org/10.1016/j.gene.2014.02.050] [PMID: 24583174]
[9]
Gou, W.F.; Niu, Z.F.; Zhao, S.; Takano, Y.; Zheng, H.C. Aberrant SERCA3 expression during the colorectal adenoma-adenocarcinoma sequence. Oncol. Rep., 2014, 31(1), 232-240.
[http://dx.doi.org/10.3892/or.2013.2837] [PMID: 24213720]
[10]
Kühlbrandt, W. Biology, structure and mechanism of P-type ATPases. Nat. Rev. Mol. Cell Biol., 2004, 5(4), 282-295.
[http://dx.doi.org/10.1038/nrm1354] [PMID: 15071553]
[11]
Jasmine, F.; Rahaman, R.; Dodsworth, C.; Roy, S.; Paul, R.; Raza, M.; Paul-Brutus, R.; Kamal, M.; Ahsan, H.; Kibriya, M.G. A genome-wide study of cytogenetic changes in colorectal cancer using SNP microarrays: opportunities for future personalized treatment. PLoS One, 2012, 7(2), e31968.
[http://dx.doi.org/10.1371/journal.pone.0031968] [PMID: 22363777]
[12]
Miyoshi, N.; Ishii, H.; Mimori, K.; Tanaka, F.; Nagai, K.; Uemura, M.; Sekimoto, M.; Doki, Y.; Mori, M. ATP11A is a novel predictive marker for metachronous metastasis of colorectal cancer. Oncol. Rep., 2010, 23(2), 505-510.
[PMID: 20043114]
[13]
Davit-Spraul, A.; Fabre, M.; Branchereau, S.; Baussan, C.; Gonzales, E.; Stieger, B.; Bernard, O.; Jacquemin, E. ATP8B1 and ABCB11 analysis in 62 children with normal gamma-glutamyl transferase progressive familial intrahepatic cholestasis (PFIC): phenotypic differences between PFIC1 and PFIC2 and natural history. Hepatology, 2010, 51(5), 1645-1655.
[http://dx.doi.org/10.1002/hep.23539] [PMID: 20232290]
[14]
Copeland, E.; Renault, N.; Renault, M.; Dyack, S.; Bulman, D.E.; Bedard, K.; Otley, A.; Magee, F.; Acott, P.; Greer, W.L. Novel splice-site mutation in ATP8B1 results in atypical progressive familial intrahepatic cholestasis type 1. J. Gastroenterol. Hepatol., 2013, 28(3), 560-564.
[http://dx.doi.org/10.1111/j.1440-1746.2012.07290.x] [PMID: 23033845]
[15]
van der Woerd, W.L.; van Haaften-Visser, D.Y.; van de Graaf, S.F.; Férec, C.; Masson, E.; Stapelbroek, J.M.; Bugert, P.; Witt, H.; Houwen, R.H. Mutational analysis of ATP8B1 in patients with chronic pancreatitis. PLoS One, 2013, 8(11), e80553.
[http://dx.doi.org/10.1371/journal.pone.0080553] [PMID: 24260417]
[16]
van der Woerd, W.L.; Mulder, J.; Pagani, F.; Beuers, U.; Houwen, R.H.; van de Graaf, S.F. Analysis of aberrant pre-messenger RNA splicing resulting from mutations in ATP8B1 and efficient in vitro rescue by adapted U1 small nuclear RNA. Hepatology, 2015, 61(4), 1382-1391.
[http://dx.doi.org/10.1002/hep.27620] [PMID: 25421123]
[17]
Cai, S.Y.; Gautam, S.; Nguyen, T.; Soroka, C.J.; Rahner, C.; Boyer, J.L. ATP8B1 deficiency disrupts the bile canalicular membrane bilayer structure in hepatocytes, but FXR expression and activity are maintained. Gastroenterology, 2009, 136(3), 1060-1069.
[http://dx.doi.org/10.1053/j.gastro.2008.10.025] [PMID: 19027009]
[18]
Deng, B.C.; Lv, S.; Cui, W.; Zhao, R.; Lu, X.; Wu, J.; Liu, P. Novel ATP8B1 mutation in an adult male with progressive familial intrahepatic cholestasis. World J. Gastroenterol., 2012, 18(44), 6504-6509.
[http://dx.doi.org/10.3748/wjg.v18.i44.6504] [PMID: 23197899]
[19]
Srivastava, A. Progressive familial intrahepatic cholestasis. J. Clin. Exp. Hepatol., 2014, 4(1), 25-36.
[http://dx.doi.org/10.1016/j.jceh.2013.10.005] [PMID: 25755532]
[20]
Mouradov, D.; Sloggett, C.; Jorissen, R.N.; Love, C.G.; Li, S.; Burgess, A.W.; Arango, D.; Strausberg, R.L.; Buchanan, D.; Wormald, S.; O’Connor, L.; Wilding, J.L.; Bicknell, D.; Tomlinson, I.P.; Bodmer, W.F.; Mariadason, J.M.; Sieber, O.M. Colorectal cancer cell lines are representative models of the main molecular subtypes of primary cancer. Cancer Res., 2014, 74(12), 3238-3247.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-0013] [PMID: 24755471]
[21]
Van Allen, E.M.; Wagle, N.; Sucker, A.; Treacy, D.J.; Johannessen, C.M.; Goetz, E.M.; Place, C.S.; Taylor-Weiner, A.; Whittaker, S.; Kryukov, G.V.; Hodis, E.; Rosenberg, M.; McKenna, A.; Cibulskis, K.; Farlow, D.; Zimmer, L.; Hillen, U.; Gutzmer, R.; Goldinger, S.M.; Ugurel, S.; Gogas, H.J.; Egberts, F.; Berking, C.; Trefzer, U.; Loquai, C.; Weide, B.; Hassel, J.C.; Gabriel, S.B.; Carter, S.L.; Getz, G.; Garraway, L.A.; Schadendorf, D. The genetic landscape of clinical resistance to RAF inhibition in metastatic melanoma. Cancer Discov., 2014, 4(1), 94-109.
[http://dx.doi.org/10.1158/2159-8290.CD-13-0617] [PMID: 24265153]
[22]
Murphy, S.J.; Hart, S.N.; Lima, J.F.; Kipp, B.R.; Klebig, M.; Winters, J.L.; Szabo, C.; Zhang, L.; Eckloff, B.W.; Petersen, G.M.; Scherer, S.E.; Gibbs, R.A.; McWilliams, R.R.; Vasmatzis, G.; Couch, F.J. Genetic alterations associated with progression from pancreatic intraepithelial neoplasia to invasive pancreatic tumor. Gastroenterology, 2013, 145(5), 1098-1109.e1.
[http://dx.doi.org/10.1053/j.gastro.2013.07.049] [PMID: 23912084]
[23]
Eldai, H.; Periyasamy, S.; Al Qarni, S.; Al Rodayyan, M.; Muhammed Mustafa, S.; Deeb, A.; Al Sheikh, E.; Afzal, M.; Johani, M.; Yousef, Z.; Aziz, M.A. Novel genes associated with colorectal cancer are revealed by high resolution cytogenetic analysis in a patient specific manner. PLoS One, 2013, 8(10), e76251.
[http://dx.doi.org/10.1371/journal.pone.0076251] [PMID: 24204606]
[24]
Aziz, M.A.; Periyasamy, S.; Al Yousef, Z.; AlAbdulkarim, I.; Al Otaibi, M.; Alfahed, A.; Alasiri, G. Integrated exon level expression analysis of driver genes explain their role in colorectal cancer. PLoS One, 2014, 9(10), e110134.
[http://dx.doi.org/10.1371/journal.pone.0110134] [PMID: 25335079]
[25]
Uhlén M. Fagerberg, L.; Hallström, B.M.; Lindskog, C.; Oksvold, P.; Mardinoglu, A.; Sivertsson, A.; Kampf , K.; Sjöstedt, E.; Asplund, A.; Olsson, I.; Edlund, K.; Lundberg, E.; Navani, S.; Al-Khalili Szigyarto, C.; Odeberg, J.; Djureinovic, D.; Takanen, J.O.; Hober, S.; Alm, T.; Edqvist, P-H.; Berling, H.; Tegel, H.; Johan, M.; Rockberg, J.; Nilsson, P.; Schwenk, J.M.; Hamsten, M.; von Feilitzen, K.; Forsberg, M.; Persson, L.; Johansson, F.; Zwahlen, M.; von Heijne, G.; Nielsen, J.; Pontén, F. Tissue-based map of the human proteome. Science, 2015, 347(6220), 1260419.
[http://dx.doi.org/10.1126/science.1260419] [PMID: 25613900]
[26]
Al Mahri, S.; Al Ghamdi, A.; Akiel, M.; Al Aujan, M.; Mohammad, S.; Aziz, M.A. Free fatty acids receptors 2 and 3 control cell proliferation by regulating cellular glucose uptake. World J. Gastrointest. Oncol., 2020, 12(5), 514-525.
[http://dx.doi.org/10.4251/wjgo.v12.i5.514] [PMID: 32461783]
[27]
Iqbal, J.; Walsh, M.T.; Hammad, S.M.; Cuchel, M.; Tarugi, P.; Hegele, R.A.; Davidson, N.O.; Rader, D.J.; Klein, R.L.; Hussain, M.M. Microsomal triglyceride transfer protein transfers and determines plasma concentrations of ceramide and sphingomyelin but not glycosylceramide. J. Biol. Chem., 2015, 290(43), 25863-25875.
[http://dx.doi.org/10.1074/jbc.M115.659110] [PMID: 26350457]
[28]
Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol., 1959, 37(8), 911-917.
[http://dx.doi.org/10.1139/o59-099] [PMID: 13671378]
[29]
Roland, B.P.; Naito, T.; Best, J.T.; Arnaiz-Yépez, C.; Takatsu, H.; Yu, R.J.; Shin, H.W.; Graham, T.R. Yeast and human P4-ATPases transport glycosphingolipids using conserved structural motifs. J. Biol. Chem., 2019, 294(6), 1794-1806.
[http://dx.doi.org/10.1074/jbc.RA118.005876] [PMID: 30530492]
[30]
Jen, J.; Kim, H.; Piantadosi, S.; Liu, Z.F.; Levitt, R.C.; Sistonen, P.; Kinzler, K.W.; Vogelstein, B.; Hamilton, S.R. Allelic loss of chromosome 18q and prognosis in colorectal cancer. N. Engl. J. Med., 1994, 331(4), 213-221.
[http://dx.doi.org/10.1056/NEJM199407283310401] [PMID: 8015568]
[31]
Park, D.Y.; Sakamoto, H.; Kirley, S.D.; Ogino, S.; Kawasaki, T.; Kwon, E.; Mino-Kenudson, M.; Lauwers, G.Y.; Chung, D.C.; Rueda, B.R.; Zukerberg, L.R. The Cables gene on chromosome 18q is silenced by promoter hypermethylation and allelic loss in human colorectal cancer. Am. J. Pathol., 2007, 171(5), 1509-1519.
[http://dx.doi.org/10.2353/ajpath.2007.070331] [PMID: 17982127]
[32]
Deng, L.; Niu, G.M.; Ren, J.; Ke, C.W. Identification of ATP8B1 as a tumor suppressor gene for colorectal cancer and its involvement in phospholipid homeostasis. BioMed Res. Int., 2020, 2020, 2015648.
[http://dx.doi.org/10.1155/2020/2015648] [PMID: 33062669]
[33]
Sveen, A.; Bruun, J.; Eide, P.W.; Eilertsen, I.A.; Ramirez, L.; Murumägi, A.; Arjama, M.; Danielsen, S.A.; Kryeziu, K.; Elez, E.; Tabernero, J.; Guinney, J.; Palmer, H.G.; Nesbakken, A.; Kallioniemi, O.; Dienstmann, R.; Lothe, R.A. Colorectal cancer consensus molecular subtypes translated to preclinical models uncover potentially targetable cancer cell dependencies. Clin. Cancer Res., 2018, 24(4), 794-806.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-1234] [PMID: 29242316]
[34]
Liu, Y.; Beyer, A.; Aebersold, R. On the dependency of cellular protein levels on mRNA abundance. Cell, 2016, 165(3), 535-550.
[http://dx.doi.org/10.1016/j.cell.2016.03.014] [PMID: 27104977]
[35]
Aziz, M.A.; Yousef, Z.; Saleh, A.M.; Mohammad, S.; Al Knawy, B. Towards personalized medicine of colorectal cancer. Crit. Rev. Oncol. Hematol., 2017, 118, 70-78.
[http://dx.doi.org/10.1016/j.critrevonc.2017.08.007] [PMID: 28917272]
[36]
Scott, P.; Anderson, K.; Singhania, M.; Cormier, R. Cystic fibrosis, CFTR, and colorectal cancer. Int. J. Mol. Sci., 2020, 21(8), 21.
[http://dx.doi.org/10.3390/ijms21082891] [PMID: 32326161]
[37]
Jia, P.; Zhao, Z. Characterization of tumor-suppressor gene inactivation events in 33 cancer types. Cell Rep., 2019, 26(2), 496-506.e3.
[http://dx.doi.org/10.1016/j.celrep.2018.12.066] [PMID: 30625331]
[38]
Boettcher, M.; McManus, M.T. Choosing the Right Tool for the Job: RNAi, TALEN, or CRISPR. Mol. Cell, 2015, 58(4), 575-585.
[http://dx.doi.org/10.1016/j.molcel.2015.04.028] [PMID: 26000843]
[39]
García-Barros, M.; Coant, N.; Truman, J.P.; Snider, A.J.; Hannun, Y.A. Sphingolipids in colon cancer. Biochim. Biophys. Acta, 2014, 1841(5), 773-782.
[http://dx.doi.org/10.1016/j.bbalip.2013.09.007] [PMID: 24060581]
[40]
Guenther, G.G.; Edinger, A.L. A new take on ceramide: starving cells by cutting off the nutrient supply. Cell Cycle, 2009, 8(8), 1122-1126.
[http://dx.doi.org/10.4161/cc.8.8.8161] [PMID: 19282666]
[41]
Nagahashi, M.; Tsuchida, J.; Moro, K.; Hasegawa, M.; Tatsuda, K.; Woelfel, I.A.; Takabe, K.; Wakai, T. High levels of sphingolipids in human breast cancer. J. Surg. Res., 2016, 204(2), 435-444.
[http://dx.doi.org/10.1016/j.jss.2016.05.022] [PMID: 27565080]
[42]
Nguyen, A.V.; Wu, Y.Y.; Lin, E.Y. STAT3 and sphingosine-1-phosphate in inflammation-associated colorectal cancer. World J. Gastroenterol., 2014, 20(30), 10279-10287.
[http://dx.doi.org/10.3748/wjg.v20.i30.10279] [PMID: 25132744]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy