Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

A Concise Review on the Role of Natural and Synthetically Derived Peptides in Colorectal Cancer

Author(s): Alakesh Das, Dikshita Deka, Antara Banerjee, Arun Kumar Radhakrishnan, Hong Zhang, Xiao-Feng Sun and Surajit Pathak*

Volume 22, Issue 31, 2022

Published on: 27 August, 2022

Page: [2571 - 2588] Pages: 18

DOI: 10.2174/1568026622666220516105049

Price: $65

Abstract

Colorectal cancer being the second leading cause of cancer-associated deaths has become a significant health concern around the globe. Though there are various cancer treatment approaches, many of them show adverse effects and some compromise the health of cancer patients. Hence, significant efforts are being made for the evolution of a novel biological therapeutic approach with better efficacy and minimal side effects. Current research suggests that the application of peptides in colorectal cancer therapeutics holds the possibility of the emergence of an anticancer reagent. The primary beneficial factors of peptides are their comparatively rapid and easy process of synthesis and the enormous potential for chemical alterations that can be evaluated for designing novel peptides and enhancing the delivery capacity of peptides. Peptides might be utilized as agents with cytotoxic activities or as a carrier of a specific drug or as cytotoxic agents that can efficiently target the tumor cells. Further, peptides can also be used as a tool for diagnostic purposes. The recent analysis aims at developing peptides that have the potential to efficiently target the tumor moieties without harming the nearby normal cells. Additionally, decreasing the adverse effects, and unfolding the other therapeutic properties of potential peptides, are also the subject matter of in-depth analysis. This review provides a concise summary of the function of both natural and synthetically derived peptides in colorectal cancer therapeutics that are recently being evaluated and their potent applications in the clinical field.

Keywords: Colorectal cancer, natural peptides, synthetic peptides, endocrine gland, therapeutics, anti-cancer peptides.

Graphical Abstract
[1]
Speetjens, F.M.; Kuppen, P.J.; Welters, M.J.; Essahsah, F.; Voet van den Brink, A.M.; Lantrua, M.G.; Valentijn, A.R.; Oostendorp, J.; Fathers, L.M.; Nijman, H.W.; Drijfhout, J.W.; van de Velde, C.J.; Melief, C.J.; van der Burg, S.H. Induction of p53-specific immunity by a p53 synthetic long peptide vaccine in patients treated for metastatic colorectal cancer. Clin. Cancer Res., 2009, 15(3), 1086-1095.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-2227] [PMID: 19188184]
[2]
Siegel, R.L.; Miller, K.D.; Goding Sauer, A.; Fedewa, S.A.; Butterly, L.F.; Anderson, J.C.; Cercek, A.; Smith, R.A.; Jemal, A. Colorectal cancer statistics, 2020. CA Cancer J. Clin., 2020, 70(3), 145-164.
[http://dx.doi.org/10.3322/caac.21601] [PMID: 32133645]
[3]
Howells, L.M.; Mitra, A.; Manson, M.M. Comparison of oxaliplatin- and curcumin-mediated antiproliferative effects in colorectal cell lines. Int. J. Cancer, 2007, 121(1), 175-183.
[http://dx.doi.org/10.1002/ijc.22645] [PMID: 17330230]
[4]
Avilés-Gaxiola, S.; Gutiérrez-Grijalva, E.P.; León-Felix, J.; Angulo-Escalante, M.A.; Heredia, J.B. Peptides in colorectal cancer: Current state of knowledge. Plant Foods Hum. Nutr., 2020, 75(4), 467-476.
[http://dx.doi.org/10.1007/s11130-020-00856-6] [PMID: 32964320]
[5]
Nessa, M.U.; Beale, P.; Chan, C.; Yu, J.Q.; Huq, F. Studies on combination of platinum drugs cisplatin and oxaliplatin with phytochemicals anethole and curcumin in ovarian tumour models. Anticancer Res., 2012, 32(11), 4843-4850.
[PMID: 23155250]
[6]
Ortiz-Martinez, M.; Winkler, R.; García-Lara, S. Preventive and therapeutic potential of peptides from cereals against cancer. J. Proteomics, 2014, 111, 165-183.
[http://dx.doi.org/10.1016/j.jprot.2014.03.044] [PMID: 24727098]
[7]
Francis, J.N.; Larché, M. Peptide-based vaccination: Where do we stand? Curr. Opin. Allergy Clin. Immunol., 2005, 5(6), 537-543.
[http://dx.doi.org/10.1097/01.all.0000191234.97760.88] [PMID: 16264335]
[8]
Yu-Feng, X.; Meng-Meng, J.; Bo-Sheng, L. Peptide-based treatment: A promising cancer therapy. J. Immunol. Res., 2015, 2015, 761820.
[9]
Li, Z.J.; Wu, W.K.; Ng, S.S.; Yu, L.; Li, H.T.; Wong, C.C.; Wu, Y.C.; Zhang, L.; Ren, S.X.; Sun, X.G.; Chan, K.M.; Cho, C.H. A novel peptide specifically targeting the vasculature of orthotopic colorectal cancer for imaging detection and drug delivery. J. Control. Release, 2010, 148(3), 292-302.
[http://dx.doi.org/10.1016/j.jconrel.2010.09.015] [PMID: 20854857]
[10]
Wang, C.; Zhao, M.; Liu, Y.R.; Luan, X.; Guan, Y.Y.; Lu, Q.; Yu, D.H.; Bai, F.; Chen, H.Z.; Fang, C. Suppression of colorectal cancer subcutaneous xenograft and experimental lung metastasis using nanoparticle-mediated drug delivery to tumor neovasculature. Biomaterials, 2014, 35(4), 1215-1226.
[http://dx.doi.org/10.1016/j.biomaterials.2013.08.091] [PMID: 24231414]
[11]
Luna Vital, D.A.; González de Mejía, E.; Dia, V.P.; Loarca-Piña, G. Peptides in common bean fractions inhibit human colorectal cancer cells. Food Chem., 2014, 157, 347-355.
[http://dx.doi.org/10.1016/j.foodchem.2014.02.050] [PMID: 24679790]
[12]
Okuno, K.; Sugiura, F.; Inoue, K.; Sukegawa, Y. Clinical trial of a 7-peptide cocktail vaccine with oral chemotherapy for patients with metastatic colorectal cancer. Anticancer Res., 2014, 34(6), 3045-3052.
[PMID: 24922671]
[13]
Hazama, S.; Nakamura, Y.; Takenouchi, H.; Suzuki, N.; Tsunedomi, R.; Inoue, Y.; Tokuhisa, Y.; Iizuka, N.; Yoshino, S.; Takeda, K.; Shinozaki, H.; Kamiya, A.; Furukawa, H.; Oka, M. A phase I study of combination vaccine treatment of five therapeutic epitope-peptides for metastatic colorectal cancer; safety, immunological response, and clinical outcome. J. Transl. Med., 2014, 12(1), 63.
[http://dx.doi.org/10.1186/1479-5876-12-63] [PMID: 24612787]
[14]
Soga, T.; Matsumoto, S.; Oda, T.; Saito, T.; Hiyama, H.; Takasaki, J.; Kamohara, M.; Ohishi, T.; Matsushime, H.; Furuichi, K. Molecular cloning and characterization of prokineticin receptors. Biochim. Biophys. Acta, 2002, 1579(2-3), 173-179.
[http://dx.doi.org/10.1016/S0167-4781(02)00546-8] [PMID: 12427552]
[15]
Lin, D.C.; Bullock, C.M.; Ehlert, F.J.; Chen, J.L.; Tian, H.; Zhou, Q.Y. Identification and molecular characterization of two closely related G protein-coupled receptors activated by prokineticins/endocrine gland vascular endothelial growth factor. J. Biol. Chem., 2002, 277(22), 19276-19280.
[http://dx.doi.org/10.1074/jbc.M202139200] [PMID: 11886876]
[16]
Masuda, Y.; Takatsu, Y.; Terao, Y.; Kumano, S.; Ishibashi, Y.; Suenaga, M.; Abe, M.; Fukusumi, S.; Watanabe, T.; Shintani, Y.; Yamada, T.; Hinuma, S.; Inatomi, N.; Ohtaki, T.; Onda, H.; Fujino, M. Isolation and identification of EG-VEGF/prokineticins as cognate ligands for two orphan G-protein-coupled receptors. Biochem. Biophys. Res. Commun., 2002, 293(1), 396-402.
[http://dx.doi.org/10.1016/S0006-291X(02)00239-5] [PMID: 12054613]
[17]
Nagano, H.; Goi, T.; Koneri, K.; Hirono, Y.; Katayama, K.; Yamaguchi, A. Endocrine gland-derived vascular endothelial growth factor (EG-VEGF) expression in colorectal cancer. J. Surg. Oncol., 2007, 96(7), 605-610.
[http://dx.doi.org/10.1002/jso.20716] [PMID: 17786959]
[18]
Benlahfid, M.; Traboulsi, W.; Sergent, F.; Benharouga, M.; Elhattabi, K.; Erguibi, D.; Karkouri, M.; Elattar, H.; Fadil, A.; Fahmi, Y.; Aboussaouira, T.; Alfaidy, N. Endocrine gland-derived vascular endothelial growth factor (EG-VEGF) and its receptor PROKR2 are associated to human colorectal cancer progression and peritoneal carcinomatosis. Cancer Biomark., 2018, 21(2), 345-354.
[http://dx.doi.org/10.3233/CBM-170499] [PMID: 29226856]
[19]
Tabata, S.; Goi, T.; Nakazawa, T.; Kimura, Y.; Katayama, K.; Yamaguchi, A. Endocrine gland-derived vascular endothelial growth factor strengthens cell invasion ability via prokineticin receptor 2 in colon cancer cell lines. Oncol. Rep., 2013, 29(2), 459-463.
[http://dx.doi.org/10.3892/or.2012.2124] [PMID: 23135359]
[20]
Gulubova, M.; Vlaykova, T. Chromogranin A-, serotonin-, synaptophysin- and vascular endothelial growth factor-positive endocrine cells and the prognosis of colorectal cancer: an immunohistochemical and ultrastructural study. J. Gastroenterol. Hepatol., 2008, 23(10), 1574-1585.
[http://dx.doi.org/10.1111/j.1440-1746.2008.05560.x] [PMID: 18771509]
[21]
Yoshida, Y.; Goi, T.; Kurebayashi, H.; Morikawa, M.; Hirono, Y.; Katayama, K. Prokineticin 2 expression as a novel prognostic biomarker for human colorectal cancer. Oncotarget, 2018, 9(53), 30079-30091.
[http://dx.doi.org/10.18632/oncotarget.25706] [PMID: 30046389]
[22]
Goi, T.; Kurebayashi, H.; Ueda, Y.; Naruse, T.; Nakazawa, T.; Koneri, K.; Hirono, Y.; Katayama, K.; Yamaguchi, A. Expression of prokineticin-receptor2(PK-R2) is a new prognostic factor in human colorectal cancer. Oncotarget, 2015, 6(31), 31758-31766.
[http://dx.doi.org/10.18632/oncotarget.5565] [PMID: 26372733]
[23]
Bodanszky, M. Peptide chemistry. A practical textbook, 1988.
[24]
Fischer, E. About some derivatives of glycol, alanine and leucine. In investigations on amino acids, polypeptides and proteins (1899-1906); Springer: Berlin, Heidelberg, 1906, pp. 290-301.
[25]
Vigneaud, V.D.; Ressler, C.; Swan, C.J.; Roberts, C.W.; Katsoyannis, P.G.; Gordon, S. The synthesis of an octapeptide amide with the hormonal activity of oxytocin. J. Am. Chem. Soc., 1953, 75(19), 4879-4880.
[http://dx.doi.org/10.1021/ja01115a553]
[26]
Sheehan, J.C.; Hess, G.P. A new method of forming peptide bonds. J. Am. Chem. Soc., 1955, 77(4), 1067-1068.
[http://dx.doi.org/10.1021/ja01609a099]
[27]
Schwyzer, R. Mechanisms in the chemical syntheses of polypeptides and polynucleotides. Ciba Found. Symp., 1972, 7(7), 23-40.
[http://dx.doi.org/10.1002/9780470719909.ch3] [PMID: 4353756]
[28]
Bodanszky, M. Synthesis of peptides by aminolysis of nitrophenyl esters. Nature, 1955, 175(4459), 685.
[http://dx.doi.org/10.1038/175685a0] [PMID: 14370194]
[29]
Langer, M.; Beck-Sickinger, A.G. Peptides as carrier for tumor diagnosis and treatment. Curr. Med. Chem. Anticancer Agents, 2001, 1(1), 71-93.
[http://dx.doi.org/10.2174/1568011013354877] [PMID: 12678771]
[30]
Santini, R.; Griffith, M.C.; Qi, M. A measure of solvent effects on swelling of resins for solid phase organic synthesis. Tetrahedron Lett., 1998, 39(49), 8951-8954.
[http://dx.doi.org/10.1016/S0040-4039(98)02069-3]
[31]
Kowalski, J.; Lipton, M.A. Solid phase synthesis of a diketopiperazine catalyst containing the unnatural amino acid (S)-norarginine. Tetrahedron Lett., 1996, 37(33), 5839-5840.
[http://dx.doi.org/10.1016/0040-4039(96)01239-7]
[32]
Behrendt, R.; White, P.; Offer, J. Advances in Fmoc solid-phase peptide synthesis. J. Pept. Sci., 2016, 22(1), 4-27.
[http://dx.doi.org/10.1002/psc.2836] [PMID: 26785684]
[33]
Ladner, R.C. Polypeptides from phage display. A superior source of in in vivo imaging agents. Q. J. Nucl. Med., 1999, 43(2), 119-124.
[PMID: 10429506]
[34]
Okarvi, S.M. Recent developments in 99Tcm-labelled peptide-based radiopharmaceuticals: an overview. Nucl. Med. Commun., 1999, 20(12), 1093-1112.
[http://dx.doi.org/10.1097/00006231-199912000-00002] [PMID: 10664991]
[35]
Pedersen, S.L.; Tofteng, A.P.; Malik, L.; Jensen, K.J. Microwave heating in solid-phase peptide synthesis. Chem. Soc. Rev., 2012, 41(5), 1826-1844.
[http://dx.doi.org/10.1039/C1CS15214A] [PMID: 22012213]
[36]
Collins, J.M.; Porter, K.A.; Singh, S.K.; Vanier, G.S. High-efficiency solid phase peptide synthesis (HE-SPPS). Org. Lett., 2014, 16(3), 940-943.
[http://dx.doi.org/10.1021/ol4036825] [PMID: 24456219]
[37]
Guzmán, F.; Gauna, A.; Luna, O.; Román, T.; Álvarez, C.; Albericio, F.; Cárdenas, C. The tea-bag protocol for comparison of Fmoc removal reagents in solid-phase peptide synthesis. Amino Acids, 2020, 52(8), 1201-1205.
[http://dx.doi.org/10.1007/s00726-020-02883-8] [PMID: 32851463]
[38]
Katritzky, A.R.; Lan, X.; Yang, J.Z.; Denisko, O.V. Properties and synthetic utility of N-substituted benzotriazoles. Chem. Rev., 1998, 98(2), 409-548.
[http://dx.doi.org/10.1021/cr941170v] [PMID: 11848906]
[39]
Gonnet, L.; Tintillier, T.; Venturini, N.; Konnert, L.; Hernandez, J-F.; Lamaty, F.; Laconde, G.; Martinez, J.; Colacino, E. N-Acyl benzotriazole derivatives for the synthesis of dipeptides and tripeptides and peptide biotinylation by mechanochemistry. ACS Sustain. Chem. Eng., 2017, 5(4), 2936-2941.
[http://dx.doi.org/10.1021/acssuschemeng.6b02439]
[40]
Tsukamoto, M.; Kagan, H.B. Recent advances in the measurement of enantiomeric excesses. Adv. Synth. Catal., 2002, 344(5), 453-463.
[http://dx.doi.org/10.1002/1615-4169(200207)344:5<453::AID-ADSC453>3.0.CO;2-U]
[41]
Finn, M.G. Emerging methods for the rapid determination of enantiomeric excess. Chirality, 2002, 14(7), 534-540.
[http://dx.doi.org/10.1002/chir.10101] [PMID: 12112324]
[42]
Czerwenka, C.; Lindner, W. Stereoselective peptide analysis. Anal. Bioanal. Chem., 2005, 382(3), 599-638.
[http://dx.doi.org/10.1007/s00216-005-3091-x] [PMID: 15856198]
[43]
Hernández-Ledesma, B.; Hsieh, C.C.; de Lumen, B.O. Lunasin, a novel seed peptide for cancer prevention. Peptides, 2009, 30(2), 426-430.
[http://dx.doi.org/10.1016/j.peptides.2008.11.002] [PMID: 19056440]
[44]
González-Montoya, M.; Hernández-Ledesma, B.; Silván, J.M.; Mora-Escobedo, R.; Martínez-Villaluenga, C. Peptides derived from in vitro gastrointestinal digestion of germinated soybean proteins inhibit human colon cancer cells proliferation and inflammation. Food Chem., 2018, 242, 75-82.
[http://dx.doi.org/10.1016/j.foodchem.2017.09.035] [PMID: 29037738]
[45]
Rayaprolu, S.J.; Hettiarachchy, N.S.; Chen, P.; Kannan, A.; Mauromostakos, A. Peptides derived from high oleic acid soybean meals inhibit colon, liver and lung cancer cell growth. Food Res. Int., 2013, 50(1), 282-288.
[http://dx.doi.org/10.1016/j.foodres.2012.10.021]
[46]
Fernández-Tomé, S.; Xu, F.; Han, Y.; Hernández-Ledesma, B.; Xiao, H. Inhibitory effects of peptide lunasin in colorectal cancer HCT-116 cells and their tumorsphere-derived subpopulation. Int. J. Mol. Sci., 2020, 21(2), 537.
[http://dx.doi.org/10.3390/ijms21020537] [PMID: 31947688]
[47]
Kusmardi, K.; Wiyarta, E.; Rusdi, N.K.; Maulana, A.M.; Estuningtyas, A.; Sunaryo, H. The potential of lunasin extract for the prevention of breast cancer progression by upregulating E-Cadherin and inhibiting ICAM-1. F1000 Res., 2021, 10, 902.
[http://dx.doi.org/10.12688/f1000research.55385.1] [PMID: 34691393]
[48]
Du, X.; Wei, J.; Luo, X.; Liu, Z.; Qian, Y.; Zhu, B.; Weng, Q.; Tang, H. Low-molecular-weight glutenin subunit LMW-N13 improves dough quality of transgenic wheat. Food Chem., 2020, 327, 127048.
[http://dx.doi.org/10.1016/j.foodchem.2020.127048] [PMID: 32454285]
[49]
Dia, V.P.; Gonzalez de Mejia, E. Lunasin induces apoptosis and modifies the expression of genes associated with extracellular matrix and cell adhesion in human metastatic colon cancer cells. Mol. Nutr. Food Res., 2011, 55(4), 623-634.
[http://dx.doi.org/10.1002/mnfr.201000419] [PMID: 21462330]
[50]
Dandawate, P.R.; Subramaniam, D.; Padhye, S.B.; Anant, S. Bitter melon: a panacea for inflammation and cancer. Chin. J. Nat. Med., 2016, 14(2), 81-100.
[http://dx.doi.org/10.1016/S1875-5364(16)60002-X] [PMID: 26968675]
[51]
Khan, R.U.; Bashir, M.; Rahman, K.U.; Bashir, M. Lower hypoglycemic but higher antiatherogenic effects of bitter melon than glibenclamide in type 2 diabetic patients. Nutr. J., 2015, 14(1), 13.
[http://dx.doi.org/10.1186/1475-2891-14-13] [PMID: 25623883]
[52]
Arun, H.R.; Sharma, G.P.; Nagarathna, S.B.; Verma, R.C.; Kumar, A. An overview of bitter gourd: Nutritional and therapeutic benefits. Magnesium, 2021, 255, 69.
[53]
Dia, V.P.; Krishnan, H.B. BG-4, a novel anticancer peptide from bitter gourd (Momordica charantia), promotes apoptosis in human colon cancer cells. Sci. Rep., 2016, 6(1), 33532.
[http://dx.doi.org/10.1038/srep33532] [PMID: 27628414]
[54]
Luna-Vital, D.A.; Mojica, L.; de Mejía, E.G.; Mendoza, S.; Loarca-Piña, G. Biological potential of protein hydrolysates and peptides from common bean (Phaseolus vulgaris L.): A review. Food Res. Int., 2015, 76, 39-50.
[http://dx.doi.org/10.1016/j.foodres.2014.11.024]
[55]
Li, Z.; Zhao, C.; Li, Z.; Zhao, Y.; Shan, S.; Shi, T.; Li, J. Reconstructed mung bean trypsin inhibitor targeting cell surface GRP78 induces apoptosis and inhibits tumor growth in colorectal cancer. Int. J. Biochem. Cell Biol., 2014, 47, 68-75.
[http://dx.doi.org/10.1016/j.biocel.2013.11.022] [PMID: 24333163]
[56]
Juliano, B.O.; Hicks, P.A. Rice functional properties and rice food products. Food Rev. Int., 1996, 12(1), 71-103.
[http://dx.doi.org/10.1080/87559129609541068]
[57]
Kannan, A.; Hettiarachchy, N.S.; Lay, J.O.; Liyanage, R. Human cancer cell proliferation inhibition by a pentapeptide isolated and characterized from rice bran. Peptides, 2010, 31(9), 1629-1634.
[http://dx.doi.org/10.1016/j.peptides.2010.05.018] [PMID: 20594954]
[58]
Kannan, A.; Hettiarachchy, N.; Johnson, M.G.; Nannapaneni, R. Human colon and liver cancer cell proliferation inhibition by peptide hydrolysates derived from heat-stabilized defatted rice bran. J. Agric. Food Chem., 2008, 56(24), 11643-11647.
[http://dx.doi.org/10.1021/jf802558v] [PMID: 19090710]
[59]
Kannan, A.; Hettiarachchy, N.; Narayan, S. Colon and breast anti-cancer effects of peptide hydrolysates derived from rice bran. Open Bioactive Compd. J., 2009, 2(1), 17-20.
[http://dx.doi.org/10.2174/1874847300902010017]
[60]
Zhang, M.; Mu, T.H. Contribution of different molecular weight fractions to anticancer effect of sweet potato protein hydrolysates by six proteases on HT‐29 colon cancer cells. Int. J. Food Sci. Technol., 2018, 53(2), 525-532.
[http://dx.doi.org/10.1111/ijfs.13625]
[61]
Ma, S.; Huang, D.; Zhai, M.; Yang, L.; Peng, S.; Chen, C.; Feng, X.; Weng, Q.; Zhang, B.; Xu, M. Isolation of a novel bio-peptide from walnut residual protein inducing apoptosis and autophagy on cancer cells. BMC Complement. Altern. Med., 2015, 15(1), 413.
[http://dx.doi.org/10.1186/s12906-015-0940-9] [PMID: 26593407]
[62]
Budchart, P.; Khamwut, A.; Sinthuvanich, C.; Ratanapo, S.; Poovorawan, Y. T-Thienprasert, N.P. T-Thienprasert NP. Partially purified Gloriosa superba peptides inhibit colon cancer cell viability by inducing apoptosis through p53 upregulation. Am. J. Med. Sci., 2017, 354(4), 423-429.
[http://dx.doi.org/10.1016/j.amjms.2017.06.005] [PMID: 29078848]
[63]
Allaoui, A.; Gascón, S.; Benomar, S.; Quero, J.; Osada, J.; Nasri, M.; Rodríguez-Yoldi, M.J.; Boualga, A. Protein hydrolysates from fenugreek (Trigonellafoenum graecum) as nutraceutical molecules in colon cancer treatment. Nutrients, 2019, 11(4), 724.
[http://dx.doi.org/10.3390/nu11040724] [PMID: 30925798]
[64]
Kęska, P.; Wójciak, K.M.; Stadnik, J. Bioactive peptides from beef products fermented by acid whey–in vitro and in silico study. Sci. Agric., 2019, 76(4), 311-320.
[http://dx.doi.org/10.1590/1678-992x-2018-0114]
[65]
Jang, A.; Lee, M. Purification and identification of angiotensin converting enzyme inhibitory peptides from beef hydrolysates. Meat Sci., 2005, 69(4), 653-661.
[http://dx.doi.org/10.1016/j.meatsci.2004.10.014] [PMID: 22063143]
[66]
Jayasena, D.D.; Jung, S.; Bae, Y.S.; Park, H.B.; Lee, J.H.; Jo, C. Comparison of the amounts of endogenous bioactive compounds in raw and cooked meats from commercial broilers and indigenous chickens. J. Food Compos. Anal., 2015, 37, 20-24.
[http://dx.doi.org/10.1016/j.jfca.2014.06.016]
[67]
Peiretti, P.G.; Medana, C.; Visentin, S.; Dal Bello, F.; Meineri, G. Effect of cooking method on carnosine and its homologues, pentosidine and thiobarbituric acid-reactive substance contents in beef and turkey meat. Food Chem., 2012, 132(1), 80-85.
[http://dx.doi.org/10.1016/j.foodchem.2011.10.035] [PMID: 26434266]
[68]
Di Bernardini, R.; Mullen, A.M.; Bolton, D.; Kerry, J.; O’Neill, E.; Hayes, M. Assessment of the angiotensin-I-converting enzyme (ACE-I) inhibitory and antioxidant activities of hydrolysates of bovine brisket sarcoplasmic proteins produced by papain and characterisation of associated bioactive peptidic fractions. Meat Sci., 2012, 90(1), 226-235.
[http://dx.doi.org/10.1016/j.meatsci.2011.07.008] [PMID: 21880436]
[69]
Cheng, L.; Wang, C.; Liu, H.; Wang, F.; Zheng, L.; Zhao, J.; Chu, E.; Lin, X. A novel polypeptide extracted from Ciona savignyi induces apoptosis through a mitochondrial-mediated pathway in human colorectal carcinoma cells. Clin. Colorectal Cancer, 2012, 11(3), 207-214.
[http://dx.doi.org/10.1016/j.clcc.2012.01.002] [PMID: 22440403]
[70]
Chen, X.; Xu, H.; Li, B.; Wang, F.; Chen, X.; Kong, D.; Lin, X. Preparation and antitumor activity of CS5931, A novel polypeptide from Sea squirt Cionasavignyi. Mar. Drugs, 2016, 14(3), 47.
[http://dx.doi.org/10.3390/md14030047] [PMID: 27007382]
[71]
Wilson, K.; Shiuan, E.; Brantley-Sieders, D.M. Oncogenic functions and therapeutic targeting of EphA2 in cancer. Oncogene, 2021, 40(14), 2483-2495.
[http://dx.doi.org/10.1038/s41388-021-01714-8] [PMID: 33686241]
[72]
Zantek, N.D.; Azimi, M.; Fedor-Chaiken, M.; Wang, B.; Brackenbury, R.; Kinch, M.S. E-cadherin regulates the function of the EphA2 receptor tyrosine kinase. Cell Growth Differ., 1999, 10(9), 629-638.
[PMID: 10511313]
[73]
Yamaguchi, S.; Tatsumi, T.; Takehara, T.; Sasakawa, A.; Yamamoto, M.; Kohga, K.; Miyagi, T.; Kanto, T.; Hiramastu, N.; Akagi, T.; Akashi, M.; Hayashi, N. EphA2-derived peptide vaccine with amphiphilic poly(γ-glutamic acid) nanoparticles elicits an anti-tumor effect against mouse liver tumor. Cancer Immunol. Immunother., 2010, 59(5), 759-767.
[http://dx.doi.org/10.1007/s00262-009-0796-2] [PMID: 19943047]
[74]
Zotter, S. Tissue and tumor distribution of human polymorphic eptithelial mucin. Cancer Rev., 1988, 11, 55.
[75]
Girling, A.; Bartkova, J.; Burchell, J.; Gendler, S.; Gillett, C.; Taylor-Papadimitriou, J. A core protein epitope of the polymorphic epithelial mucin detected by the monoclonal antibody SM-3 is selectively exposed in a range of primary carcinomas. Int. J. Cancer, 1989, 43(6), 1072-1076.
[http://dx.doi.org/10.1002/ijc.2910430620] [PMID: 2471698]
[76]
Doménech, N.; Henderson, R.A.; Finn, O.J. Identification of an HLA-A11-restricted epitope from the tandem repeat domain of the epithelial tumor antigen mucin. J. Immunol., 1995, 155(10), 4766-4774.
[PMID: 7594478]
[77]
Ramanathan, R.K.; Lee, K.M.; McKolanis, J.; Hitbold, E.; Schraut, W.; Moser, A.J.; Warnick, E.; Whiteside, T.; Osborne, J.; Kim, H.; Day, R.; Troetschel, M.; Finn, O.J. Phase I study of a MUC1 vaccine composed of different doses of MUC1 peptide with SB-AS2 adjuvant in resected and locally advanced pancreatic cancer. Cancer Immunol. Immunother., 2005, 54(3), 254-264.
[http://dx.doi.org/10.1007/s00262-004-0581-1] [PMID: 15372205]
[78]
Mukherjee, P.; Pathangey, L.B.; Bradley, J.B.; Tinder, T.L.; Basu, G.D.; Akporiaye, E.T.; Gendler, S.J. MUC1-specific immune therapy generates a strong anti-tumor response in a MUC1-tolerant colon cancer model. Vaccine, 2007, 25(9), 1607-1618.
[http://dx.doi.org/10.1016/j.vaccine.2006.11.007] [PMID: 17166639]
[79]
Weinberg, A.D.; Rivera, M.M.; Prell, R.; Morris, A.; Ramstad, T.; Vetto, J.T.; Urba, W.J.; Alvord, G.; Bunce, C.; Shields, J. Engagement of the OX-40 receptor in in vivo enhances antitumor immunity. J. Immunol., 2000, 164(4), 2160-2169.
[http://dx.doi.org/10.4049/jimmunol.164.4.2160] [PMID: 10657670]
[80]
Stüber, E.; Neurath, M.; Calderhead, D.; Fell, H.P.; Strober, W. Cross-linking of OX40 ligand, a member of the TNF/NGF cytokine family, induces proliferation and differentiation in murine splenic B cells. Immunity, 1995, 2(5), 507-521.
[http://dx.doi.org/10.1016/1074-7613(95)90031-4] [PMID: 7749983]
[81]
Gramaglia, I.; Weinberg, A.D.; Lemon, M.; Croft, M. Ox-40 ligand: a potent costimulatory molecule for sustaining primary CD4 T cell responses. J. Immunol., 1998, 161(12), 6510-6517.
[PMID: 9862675]
[82]
Maxwell, J.R.; Weinberg, A.; Prell, R.A.; Vella, A.T. Danger and OX40 receptor signaling synergize to enhance memory T cell survival by inhibiting peripheral deletion. J. Immunol., 2000, 164(1), 107-112.
[http://dx.doi.org/10.4049/jimmunol.164.1.107] [PMID: 10605000]
[83]
Ali, S.A.; Ahmad, M.; Lynam, J.; McLean, C.S.; Entwisle, C.; Loudon, P.; Choolun, E.; McArdle, S.E.; Li, G.; Mian, S.; Rees, R.C. Anti-tumour therapeutic efficacy of OX40L in murine tumour model. Vaccine, 2004, 22(27-28), 3585-3594.
[http://dx.doi.org/10.1016/j.vaccine.2004.03.041] [PMID: 15315837]
[84]
Sasatomi, T.; Suefuji, Y.; Matsunaga, K.; Yamana, H.; Miyagi, Y.; Araki, Y.; Ogata, Y.; Itoh, K.; Shirouzu, K. Expression of tumor rejection antigens in colorectal carcinomas. Cancer, 2002, 94(6), 1636-1641.
[http://dx.doi.org/10.1002/cncr.10421] [PMID: 11920522]
[85]
Yang, D.; Nakao, M.; Shichijo, S.; Sasatomi, T.; Takasu, H.; Matsumoto, H.; Mori, K.; Hayashi, A.; Yamana, H.; Shirouzu, K.; Itoh, K. Identification of a gene coding for a protein possessing shared tumor epitopes capable of inducing HLA-A24-restricted cytotoxic T lymphocytes in cancer patients. Cancer Res., 1999, 59(16), 4056-4063.
[PMID: 10463607]
[86]
Miyagi, Y.; Imai, N.; Sasatomi, T.; Yamada, A.; Mine, T.; Katagiri, K.; Nakagawa, M.; Muto, A.; Okouchi, S.; Isomoto, H.; Shirouzu, K.; Yamana, H.; Itoh, K. Induction of cellular immune responses to tumor cells and peptides in colorectal cancer patients by vaccination with SART3 peptides. Clin. Cancer Res., 2001, 7(12), 3950-3962.
[PMID: 11751487]
[87]
Mazzaferro, V.; Coppa, J.; Carrabba, M.G.; Rivoltini, L.; Schiavo, M.; Regalia, E.; Mariani, L.; Camerini, T.; Marchianò, A.; Andreola, S.; Camerini, R.; Corsi, M.; Lewis, J.J.; Srivastava, P.K.; Parmiani, G. Vaccination with autologous tumor-derived heat-shock protein gp96 after liver resection for metastatic colorectal cancer. Clin. Cancer Res., 2003, 9(9), 3235-3245.
[PMID: 12960108]
[88]
Altieri, D.C. The molecular basis and potential role of survivin in cancer diagnosis and therapy. Trends Mol. Med., 2001, 7(12), 542-547.
[http://dx.doi.org/10.1016/S1471-4914(01)02243-2] [PMID: 11733216]
[89]
Kawasaki, H.; Altieri, D.C.; Lu, C.D.; Toyoda, M.; Tenjo, T.; Tanigawa, N. Inhibition of apoptosis by survivin predicts shorter survival rates in colorectal cancer. Cancer Res., 1998, 58(22), 5071-5074.
[PMID: 9823313]
[90]
Bartnik, A.; Nirmal, A.J.; Yang, S.Y. Peptide vaccine therapy in colorectal cancer. Vaccines (Basel), 2012, 1(1), 1-16.
[http://dx.doi.org/10.3390/vaccines1010001] [PMID: 26343847]
[91]
Vesely, B.A.; McAfee, Q.; Gower, W.R., Jr; Vesely, D.L. Four peptides decrease the number of human pancreatic adenocarcinoma cells. Eur. J. Clin. Invest., 2003, 33(11), 998-1005.
[http://dx.doi.org/10.1046/j.1365-2362.2003.01262.x] [PMID: 14636304]
[92]
Vesely, B.A.; Eichelbaum, E.J.; Alli, A.A.; Sun, Y.; Gower, W.R., Jr; Vesely, D.L. Urodilatin and four cardiac hormones decrease human renal carcinoma cell numbers. Eur. J. Clin. Invest., 2006, 36(11), 810-819.
[http://dx.doi.org/10.1111/j.1365-2362.2006.01721.x] [PMID: 17032349]
[93]
Ghasemi, A.; Ghavimi, R.; Momenzadeh, N.; Hajian, S.; Mohammadi, M. Characterization of antitumor activity of a synthetic moronecidin-like peptide computationally predicted from the tiger tail seahorse hippocampus comes in tumor-bearing mice. Int. J. Pept. Res. Ther., 2021, 27(4), 2391-2401.
[http://dx.doi.org/10.1007/s10989-021-10260-6]
[94]
Vesely, D.L. Cardiac and renal hormones: Anticancer effects in vitro and in in vivo. J. Investig. Med., 2009, 57(1), 22-28.
[http://dx.doi.org/10.2310/JIM.0b013e3181948b25] [PMID: 19092678]
[95]
Yang, S.; Lee, C.W.; Kim, H.J.; Jung, H.H.; Kim, J.I.; Shin, S.Y.; Shin, S.H. Structural analysis and mode of action of BMAP-27, a cathelicidin-derived antimicrobial peptide. Peptides, 2019, 118, 170106.
[http://dx.doi.org/10.1016/j.peptides.2019.170106] [PMID: 31226350]
[96]
Hoskin, D.W.; Ramamoorthy, A. Studies on anticancer activities of anti-microbial peptides. Biochim. Biophys. Acta, 2008, 1778(2), 357-375.
[http://dx.doi.org/10.1016/j.bbamem.2007.11.008]
[97]
Saleh, R.O.; Essia, I.N.A.; Jasim, S.A. The anticancer effect of a conjugated antimicrobial peptide against colorectal cancer (CRC) cells. J. Gastrointest. Cancer, 2022. Epub ahead of print
[http://dx.doi.org/10.1007/s12029-021-00799-4] [PMID: 35217999]
[98]
Begley, J.; Vo, D.D.; Morris, L.F.; Bruhn, K.W.; Prins, R.M.; Mok, S.; Koya, R.C.; Garban, H.J.; Comin-Anduix, B.; Craft, N.; Ribas, A. Immunosensitization with a Bcl-2 small molecule inhibitor. Cancer Immunol. Immunother., 2009, 58(5), 699-708.
[http://dx.doi.org/10.1007/s00262-008-0592-4] [PMID: 18807035]
[99]
Miyamoto, S.; Nakamura, M.; Shitara, K.; Nakamura, K.; Ohki, Y.; Ishii, G.; Goya, M.; Kodama, K.; Sangai, T.; Maeda, H.; Shi-Chuang, Z.; Chiba, T.; Ochiai, A. Blockade of paracrine supply of insulin-like growth factors using neutralizing antibodies suppresses the liver metastasis of human colorectal cancers. Clin. Cancer Res., 2005, 11(9), 3494-3502.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-1701] [PMID: 15867252]
[100]
Tyagi, A.; Tuknait, A.; Anand, P.; Gupta, S.; Sharma, M.; Mathur, D.; Joshi, A.; Singh, S.; Gautam, A.; Raghava, G.P. CancerPPD: A database of anticancer peptides and proteins. Nucleic Acids Res., 2015, 43, D837-D843.
[http://dx.doi.org/10.1093/nar/gku892] [PMID: 25270878]
[101]
Huang, Y.; Feng, Q.; Yan, Q.; Hao, X.; Chen, Y. Alpha-helical cationic anticancer peptides: A promising candidate for novel anticancer drugs. Mini Rev. Med. Chem., 2015, 15(1), 73-81.
[http://dx.doi.org/10.2174/1389557514666141107120954] [PMID: 25382016]
[102]
Schweizer, F. Cationic amphiphilic peptides with cancer-selective toxicity. Eur. J. Pharmacol., 2009, 625(1-3), 190-194.
[http://dx.doi.org/10.1016/j.ejphar.2009.08.043] [PMID: 19835863]
[103]
Su, L.Y.; Shi, Y.X.; Yan, M.R.; Xi, Y.; Su, X.L. Anticancer bioactive peptides suppress human colorectal tumor cell growth and induce apoptosis via modulating the PARP-p53-Mcl-1 signaling pathway. Acta Pharmacol. Sin., 2015, 36(12), 1514-1519.
[http://dx.doi.org/10.1038/aps.2015.80] [PMID: 26592508]
[104]
Xie, M.; Liu, D.; Yang, Y. Anti-cancer peptides: Classification, mechanism of action, reconstruction and modification. Open Biol., 2020, 10(7), 200004.
[http://dx.doi.org/10.1098/rsob.200004] [PMID: 32692959]
[105]
Brock, K.; Talley, K.; Coley, K.; Kundrotas, P.; Alexov, E. Optimization of electrostatic interactions in protein-protein complexes. Biophys. J., 2007, 93(10), 3340-3352.
[http://dx.doi.org/10.1529/biophysj.107.112367] [PMID: 17693468]
[106]
Lee, Y.; Phat, C.; Hong, S.C. Structural diversity of marine cyclic peptides and their molecular mechanisms for anticancer, antibacterial, antifungal, and other clinical applications. Peptides, 2017, 95, 94-105.
[http://dx.doi.org/10.1016/j.peptides.2017.06.002] [PMID: 28610952]
[107]
Veldhuizen, E.J.; Schneider, V.A.; Agustiandari, H.; van Dijk, A.; Tjeerdsma-van Bokhoven, J.L.; Bikker, F.J.; Haagsman, H.P. Antimicrobial and immunomodulatory activities of PR-39 derived peptides. PLoS One, 2014, 9(4), e95939.
[http://dx.doi.org/10.1371/journal.pone.0095939] [PMID: 24755622]
[108]
Shin, M.C.; Zhang, J.; Min, K.A.; Lee, K.; Byun, Y.; David, A.E.; He, H.; Yang, V.C. Cell-penetrating peptides: Achievements and challenges in application for cancer treatment. J. Biomed. Mater. Res. A, 2014, 102(2), 575-587.
[http://dx.doi.org/10.1002/jbm.a.34859] [PMID: 23852939]
[109]
Patel, L.N.; Zaro, J.L.; Shen, W.C. Cell penetrating peptides: Intracellular pathways and pharmaceutical perspectives. Pharm. Res., 2007, 24(11), 1977-1992.
[http://dx.doi.org/10.1007/s11095-007-9303-7] [PMID: 17443399]
[110]
Dubikovskaya, E.A.; Thorne, S.H.; Pillow, T.H.; Contag, C.H.; Wender, P.A. Overcoming multidrug resistance of small-molecule therapeutics through conjugation with releasable octaarginine transporters. Proc. Natl. Acad. Sci. USA, 2008, 105(34), 12128-12133.
[http://dx.doi.org/10.1073/pnas.0805374105] [PMID: 18713866]
[111]
Nelde, A.; Rammensee, H.G.; Walz, J.S. The peptide vaccine of the future. Mol. Cell. Proteomics, 2021, 20, 100022.
[http://dx.doi.org/10.1074/mcp.R120.002309] [PMID: 33583769]
[112]
Özcan, Ö.Ö.; Kocatürk, R.R. Canbolat, F Peptide Vaccines in Cancers. In: Synthetic Peptide Vaccine Models; CRC Press, 2021; pp. 127-154.
[113]
Jiang, Z.; Guan, J.; Qian, J.; Zhan, C. Peptide ligand-mediated targeted drug delivery of nanomedicines. Biomater. Sci., 2019, 7(2), 461-471.
[http://dx.doi.org/10.1039/C8BM01340C] [PMID: 30656305]
[114]
Ren, Y.; Mu, Y.; Song, Y.; Xie, J.; Yu, H.; Gao, S.; Li, S.; Peng, H.; Zhou, Y.; Lu, W. A new peptide ligand for colon cancer targeted delivery of micelles. Drug Deliv., 2016, 23(5), 1763-1772.
[http://dx.doi.org/10.3109/10717544.2015.1077293] [PMID: 26289214]
[115]
Hatakeyama, S.; Sugihara, K.; Shibata, T.K.; Nakayama, J.; Akama, T.O.; Tamura, N.; Wong, S.M.; Bobkov, A.A.; Takano, Y.; Ohyama, C.; Fukuda, M.; Fukuda, M.N. Targeted drug delivery to tumor vasculature by a carbohydrate mimetic peptide. Proc. Natl. Acad. Sci. USA, 2011, 108(49), 19587-19592.
[http://dx.doi.org/10.1073/pnas.1105057108] [PMID: 22114188]
[116]
Lee, S.H.; Bajracharya, R.; Min, J.Y.; Han, J.W.; Park, B.J.; Han, H.K. Strategic approaches for colon targeted drug delivery: An overview of recent advancements. Pharmaceutics, 2020, 12(1), 68.
[http://dx.doi.org/10.3390/pharmaceutics12010068] [PMID: 31952340]
[117]
Guo, F.; Ouyang, T.; Peng, T.; Zhang, X.; Xie, B.; Yang, X.; Liang, D.; Zhong, H. Enhanced oral absorption of insulin using colon-specific nanoparticles co-modified with amphiphilic chitosan derivatives and cell-penetrating peptides. Biomater. Sci., 2019, 7(4), 1493-1506.
[http://dx.doi.org/10.1039/C8BM01485J] [PMID: 30672923]
[118]
Ishida, H.; Nguyen, L.T.; Gopal, R.; Aizawa, T.; Vogel, H.J. Overexpression of anti-microbial, anticancer, and transmembrane peptides in Escherichia coli through a calmodulin-peptide fusion system. J. Am. Chem. Soc., 2016, 138(35), 11318-11326.
[http://dx.doi.org/10.1021/jacs.6b06781] [PMID: 27502305]
[119]
Hilchie, AL; Hoskin, DW; Coombs, MP Anticancer activities of natural and synthetic peptides. Anti-microbial Peptides, 2019, 131-147.
[http://dx.doi.org/10.1007/978-981-13-3588-4_9]
[120]
Liu, S.; Yang, H.; Wan, L.; Cai, H.W.; Li, S.F.; Li, Y.P.; Cheng, J.Q.; Lu, X.F. Enhancement of cytotoxicity of antimicrobial peptide magainin II in tumor cells by bombesin-targeted delivery. Acta Pharmacol. Sin., 2011, 32(1), 79-88.
[http://dx.doi.org/10.1038/aps.2010.162] [PMID: 21131998]
[121]
Dennison, S.R.; Whittaker, M.; Harris, F.; Phoenix, D.A. Anticancer α-helical peptides and structure/function relationships underpinning their interactions with tumour cell membranes. Curr. Protein Pept. Sci., 2006, 7(6), 487-499.
[http://dx.doi.org/10.2174/138920306779025611] [PMID: 17168782]
[122]
Marqus, S.; Pirogova, E.; Piva, T.J. Evaluation of the use of therapeutic peptides for cancer treatment. J. Biomed. Sci., 2017, 24(1), 21.
[http://dx.doi.org/10.1186/s12929-017-0328-x] [PMID: 28320393]
[123]
Gaspar, D.; Veiga, A.S.; Castanho, M.A. From antimicrobial to anticancer peptides. A review. Front. Microbiol., 2013, 4, 294.
[http://dx.doi.org/10.3389/fmicb.2013.00294] [PMID: 24101917]
[124]
Raza, F.; Zafar, H.; Zhu, Y.; Ren, Y. -Ullah, A.; Khan, A.U.; He, X.; Han, H.; Aquib, M.; Boakye-Yiadom, K.O.; Ge, L. A review on recent advances in stabilizing peptides/proteins upon fabrication in hydrogels from biodegradable polymers. Pharmaceutics, 2018, 10(1), 16.
[http://dx.doi.org/10.3390/pharmaceutics10010016] [PMID: 29346275]
[125]
Craik, D.J.; Fairlie, D.P.; Liras, S.; Price, D. The future of peptide-based drugs. Chem. Biol. Drug Des., 2013, 81(1), 136-147.
[http://dx.doi.org/10.1111/cbdd.12055] [PMID: 23253135]
[126]
Shoombuatong, W.; Schaduangrat, N.; Nantasenamat, C. Unraveling the bioactivity of anticancer peptides as deduced from machine learning. EXCLI J., 2018, 17, 734-752.
[PMID: 30190664]
[127]
Navarro, S.; Aleu, J.; Jiménez, M.; Boix, E.; Cuchillo, C.M.; Nogués, M.V. The cytotoxicity of eosinophil cationic protein/ribonuclease 3 on eukaryotic cell lines takes place through its aggregation on the cell membrane. Cell. Mol. Life Sci., 2008, 65(2), 324-337.
[http://dx.doi.org/10.1007/s00018-007-7499-7] [PMID: 18087674]
[128]
Aaghaz, S.; Gohel, V.; Kamal, A. Peptides as potential anticancer agents. Curr. Top. Med. Chem., 2019, 19(17), 1491-1511.
[http://dx.doi.org/10.2174/1568026619666190125161517] [PMID: 30686254]
[129]
Lin, P.; Wong, J.H.; Ng, T.B. A defensin with highly potent antipathogenic activities from the seeds of purple pole bean. Biosci. Rep., 2009, 30(2), 101-109.
[http://dx.doi.org/10.1042/BSR20090004] [PMID: 19335335]
[130]
Ding, X.; Bai, D.; Qian, J. Novel cyclotides from Hedyotisbiflora inhibit proliferation and migration of pancreatic cancer cell in vitro and in in vivo. Med. Chem. Res., 2014, 23(3), 1406-1413.
[http://dx.doi.org/10.1007/s00044-013-0746-6]
[131]
Li, S.S.; Gullbo, J.; Lindholm, P.; Larsson, R.; Thunberg, E.; Samuelsson, G.; Bohlin, L.; Claeson, P. Ligatoxin B, a new cytotoxic protein with a novel helix-turn-helix DNA-binding domain from the mistletoe Phoradendron liga. Biochem. J., 2002, 366(Pt 2), 405-413.
[http://dx.doi.org/10.1042/bj20020221] [PMID: 12049612]
[132]
Guzmán-Rodríguez, JJ; Ochoa-Zarzosa, A; López-Gómez, R; López-Meza, JE Host defense peptides as new weapons in cancer treatment. Cellular and Molecular Life Sciences CMLS, 2015, 62(7), 784-90.
[http://dx.doi.org/10.1155/2015/735087]
[133]
Papo, N.; Shai, Y. Host defense peptides as new weapons in cancer treatment. Cell. Mol. Life Sci., 2005, 62(7-8), 784-790.
[http://dx.doi.org/10.1007/s00018-005-4560-2] [PMID: 15868403]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy