Research Article

天然类黄酮槲皮素增强脂多糖诱导的先兆子痫样大鼠模型中阿司匹林的抗炎作用

卷 23, 期 5, 2023

发表于: 27 July, 2022

页: [425 - 432] 页: 8

弟呕挨: 10.2174/1566524022666220513111637

价格: $65

摘要

背景:先兆子痫是一种高血压和蛋白尿并伴有异常炎症反应的疾病。阿司匹林和槲皮素都具有抗炎和抗高血压的特性。对于有先兆子痫病史的患者,推荐使用低剂量阿司匹林来预防先兆子痫。槲皮素是否能增强阿司匹林对先兆子痫的作用仍不清楚。 方法:雌性 Sprague-Dawley 妊娠大鼠每天服用阿司匹林、槲皮素或阿司匹林和槲皮素的组合,随后接受脂多糖 (LPS) 注射以诱发先兆子痫样症状。评估了所有大鼠组的收缩压和蛋白尿。 结果:我们的结果表明,在 LPS 诱导的大鼠模型中,槲皮素和阿司匹林的组合在降低收缩压和蛋白尿、减少促炎细胞因子产生以及抑制 M1 型蜕膜巨噬细胞极化方面的作用明显强于阿司匹林单独使用。先兆子痫。 结论:本研究表明槲皮素在预防或治疗先兆子痫患者中可作为阿司匹林的极佳补充剂。

关键词: 先兆子痫,阿司匹林,槲皮素,脂多糖,巨噬细胞,发病机制。

[1]
Rana S, Lemoine E, Granger JP, Karumanchi SA. Preeclampsia: Pathophysiology, challenges, and perspectives. Circ Res 2019; 124(7): 1094-112.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.313276] [PMID: 30920918]
[2]
Ives CW, Sinkey R, Rajapreyar I, Tita ATN, Oparil S. Preeclampsia-pathophysiology and clinical presentations: JACC state-of-the-art review. J Am Coll Cardiol 2020; 76(14): 1690-702.
[http://dx.doi.org/10.1016/j.jacc.2020.08.014] [PMID: 33004135]
[3]
Xiao Z, Wang Y, Thai PN, Li X, Lu X, Pu J. Mechanisms linking hyperglycemia in pregnancy to the offspring cardiovascular system dysfunction. STEMedicine 2021; 2(7): e91.
[http://dx.doi.org/10.37175/stemedicine.v2i7.91]
[4]
Uzan J, Carbonnel M, Piconne O, Asmar R, Ayoubi JM. Pre-eclampsia: Pathophysiology, diagnosis, and management. Vasc Health Risk Manag 2011; 7: 467-74.
[PMID: 21822394]
[5]
Atallah A, Lecarpentier E, Goffinet F, Doret-Dion M, Gaucherand P, Tsatsaris V. Aspirin for prevention of preeclampsia. Drugs 2017; 77(17): 1819-31.
[http://dx.doi.org/10.1007/s40265-017-0823-0] [PMID: 29039130]
[6]
Ożarowski M, Mikołajczak PL, Kujawski R, et al. Pharmacological effect of quercetin in hypertension and its potential application in pregnancy-induced hypertension: Review of in vitro, in vivo, and clinical studies. Evid Based Complement Alternat Med 2018; 20187421489.
[http://dx.doi.org/10.1155/2018/7421489] [PMID: 30622610]
[7]
Dekker GA, Sibai BM. Low-dose aspirin in the prevention of preeclampsia and fetal growth retardation: Rationale, mechanisms, and clinical trials. Am J Obstet Gynecol 1993; 168(1 Pt 1): 214-27.
[http://dx.doi.org/10.1016/S0002-9378(12)90917-5] [PMID: 8420330]
[8]
D’Andrea G. Quercetin: A flavonol with multifaceted therapeutic applications? Fitoterapia 2015; 106: 256-71.
[http://dx.doi.org/10.1016/j.fitote.2015.09.018] [PMID: 26393898]
[9]
Terao J. Factors modulating bioavailability of quercetin-related flavonoids and the consequences of their vascular function. Biochem Pharmacol 2017; 139: 15-23.
[http://dx.doi.org/10.1016/j.bcp.2017.03.021] [PMID: 28377278]
[10]
Clark JL, Zahradka P, Taylor CG. Efficacy of flavonoids in the management of high blood pressure. Nutr Rev 2015; 73(12): 799-822.
[http://dx.doi.org/10.1093/nutrit/nuv048] [PMID: 26491142]
[11]
Speciale A, Chirafisi J, Saija A, Cimino F. Nutritional antioxidants and adaptive cell responses: An update. Curr Mol Med 2011; 11(9): 770-89.
[http://dx.doi.org/10.2174/156652411798062395] [PMID: 21999148]
[12]
Yang S, Song L, Shi X, Zhao N, Ma Y. Ameliorative effects of pre-eclampsia by quercetin supplement to aspirin in a rat model induced by L-NAME. Biomed Pharmacother 2019; 116: 108969.
[http://dx.doi.org/10.1016/j.biopha.2019.108969] [PMID: 31103824]
[13]
Zhang C, Zhu Y, Shen Y, Zuo C. Aspirin ameliorates preeclampsia induced by a peroxisome proliferator-activated receptor antagonist. Reprod Sci 2018; 25(12): 1655-62.
[http://dx.doi.org/10.1177/1933719118756746] [PMID: 29439623]
[14]
Sun J, Zhang H, Liu F, Tang D, Lu X. Ameliorative effects of aspirin against lipopolysaccharide-induced preeclampsia-like symptoms in rats by inhibiting the pro-inflammatory pathway. Can J Physiol Pharmacol 2018; 96(11): 1084-91.
[http://dx.doi.org/10.1139/cjpp-2018-0087] [PMID: 29969574]
[15]
Xu Q, Liu LZ, Qian X, et al. MiR-145 directly targets p70S6K1 in cancer cells to inhibit tumor growth and angiogenesis. Nucleic Acids Res 2012; 40(2): 761-74.
[http://dx.doi.org/10.1093/nar/gkr730] [PMID: 21917858]
[16]
Xu Q, Jiang Y, Yin Y, et al. A regulatory circuit of miR-148a/152 and DNMT1 in modulating cell transformation and tumor angiogenesis through IGF-IR and IRS1. J Mol Cell Biol 2013; 5(1): 3-13.
[http://dx.doi.org/10.1093/jmcb/mjs049] [PMID: 22935141]
[17]
Liu T, Zhang L, Joo D, Sun SC. NF-κB signaling in inflammation. Signal Transduct Target Ther 2017; 2: 2.
[http://dx.doi.org/10.1038/sigtrans.2017.23] [PMID: 29158945]
[18]
Lash GE, Pitman H, Morgan HL, Innes BA, Agwu CN, Bulmer JN. Decidual macrophages: Key regulators of vascular remodeling in human pregnancy. J Leukoc Biol 2016; 100(2): 315-25.
[http://dx.doi.org/10.1189/jlb.1A0815-351R] [PMID: 26819320]
[19]
Moffett A, Hiby SE. How Does the maternal immune system contribute to the development of pre-eclampsia? Placenta 2007; 28(Suppl A): S51-56.
[http://dx.doi.org/10.1016/j.placenta.2006.11.008]
[20]
Fricke EM, Elgin TG, Gong H, et al. Lipopolysaccharide-induced maternal inflammation induces direct placental injury without alteration in placental blood flow and induces a secondary fetal intestinal injury that persists into adulthood. Am J Reprod Immunol 2018; 79(5): e12816.
[http://dx.doi.org/10.1111/aji.12816] [PMID: 29369434]
[21]
Gaspoz JM, Coxson PG, Goldman PA, et al. Cost effectiveness of aspirin, clopidogrel, or both for secondary prevention of coronary heart disease. N Engl J Med 2002; 346(23): 1800-6.
[http://dx.doi.org/10.1056/NEJM200206063462309] [PMID: 12050341]
[22]
Cadavid AP. Aspirin: The mechanism of action revisited in the context of pregnancy complications. Front Immunol 2017; 8: 261.
[http://dx.doi.org/10.3389/fimmu.2017.00261] [PMID: 28360907]
[23]
Serban MC, Sahebkar A, Zanchetti A, et al. Effects of quercetin on blood pressure: A systematic review and meta-analysis of randomized controlled trials. J Am Heart Assoc 2016; 5(7): 5.
[http://dx.doi.org/10.1161/JAHA.115.002713] [PMID: 27405810]
[24]
Brüll V, Burak C, Stoffel-Wagner B, et al. Acute intake of quercetin from onion skin extract does not influence postprandial blood pressure and endothelial function in overweight-to-obese adults with hypertension: A randomized, double-blind, placebo-controlled, crossover trial. Eur J Nutr 2017; 56(3): 1347-57.
[http://dx.doi.org/10.1007/s00394-016-1185-1] [PMID: 26924303]
[25]
Vanhees K, Godschalk RW, Sanders A, van Doorn SB, van Schooten FJ. Maternal quercetin intake during pregnancy results in an adapted iron homeostasis at adulthood. Toxicology 2011; 290(2-3): 350-8.
[http://dx.doi.org/10.1016/j.tox.2011.10.017] [PMID: 22064046]
[26]
Prater MR, Laudermilch CL, Liang C, Holladay SD. Placental oxidative stress alters expression of murine osteogenic genes and impairs fetal skeletal formation. Placenta 2008; 29(9): 802-8.
[http://dx.doi.org/10.1016/j.placenta.2008.06.010] [PMID: 18675455]
[27]
Liu W, Zhang M, Feng J, Fan A, Zhou Y, Xu Y. The influence of quercetin on maternal immunity, oxidative stress, and inflammation in mice with exposure of fine particulate matter during gestation. Int J Environ Res Public Health 2017; 14(6): 14.
[http://dx.doi.org/10.3390/ijerph14060592] [PMID: 28574437]
[28]
Calabró V, Litterio MC, Fraga CG, Galleano M, Piotrkowski B. Effects of quercetin on heart nitric oxide metabolism in l-NAME treated rats. Arch Biochem Biophys 2018; 647: 47-53.
[http://dx.doi.org/10.1016/j.abb.2018.03.041] [PMID: 29621523]
[29]
Galindo P, González-Manzano S, Zarzuelo MJ, et al. Different cardiovascular protective effects of quercetin administered orally or intraperitoneally in spontaneously hypertensive rats. Food Funct 2012; 3(6): 643-50.
[http://dx.doi.org/10.1039/c2fo10268d] [PMID: 22441211]
[30]
Galisteo M, García-Saura MF, Jiménez R, et al. Effects of quercetin treatment on vascular function in deoxy-corticosterone acetate-salt hypertensive rats. Comparative study with verapamil. Planta Med 2004; 70(4): 334-41.
[http://dx.doi.org/10.1055/s-2004-818945] [PMID: 15095149]
[31]
Li Q, Yin L, Si Y, Zhang C, Meng Y, Yang W. The bioflavonoid quercetin improves pathophysiology in a rat model of preeclampsia. Biomed Pharmacother 2020; 127110122.
[http://dx.doi.org/10.1016/j.biopha.2020.110122] [PMID: 32305698]
[32]
Svensson-Arvelund J, Ernerudh J, Buse E, et al. The placenta in toxicology. Part II: Systemic and local immune adaptations in pregnancy. Toxicol Pathol 2014; 42(2): 327-38.
[http://dx.doi.org/10.1177/0192623313482205] [PMID: 23531796]
[33]
Bulmer JN, Morrison L, Smith JC. Expression of class II MHC gene products by macrophages in human uteroplacental tissue. Immunology 1988; 63(4): 707-14.
[PMID: 3284818]
[34]
Bulmer JN, Williams PJ, Lash GE. Immune cells in the placental bed. Int J Dev Biol 2010; 54(2-3): 281-94.
[http://dx.doi.org/10.1387/ijdb.082763jb] [PMID: 19876837]
[35]
Svensson J, Jenmalm MC, Matussek A, Geffers R, Berg G, Ernerudh J. Macrophages at the fetal-maternal interface express markers of alternative activation and are induced by M-CSF and IL-10. J Immunol 2011; 187(7): 3671-82.
[http://dx.doi.org/10.4049/jimmunol.1100130] [PMID: 21890660]
[36]
Abumaree MH, Chamley LW, Badri M, El-Muzaini MF. Trophoblast debris modulates the expression of immune proteins in macrophages: A key to maternal tolerance of the fetal allograft? J Reprod Immunol 2012; 94(2): 131-41.
[http://dx.doi.org/10.1016/j.jri.2012.03.488] [PMID: 22542910]
[37]
Yao Y, Xu XH, Jin L. Macrophage polarization in physiological and pathological pregnancy. Front Immunol 2019; 10: 792.
[http://dx.doi.org/10.3389/fimmu.2019.00792] [PMID: 31037072]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy