Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

Antidiabetic Phytocompounds Acting as Glucose Transport Stimulators

Author(s): Mourad Akdad, Rabii Ameziane, Farid Khallouki, Youssef Bakri and Mohamed Eddouks*

Volume 23, Issue 2, 2023

Published on: 02 September, 2022

Page: [147 - 168] Pages: 22

DOI: 10.2174/1871530322666220510093720

Price: $65

Abstract

Aims: The present study aimed to provide summarized data related to the phytocompouds improving glucose uptake in the diabetic state.

Background: Glucose uptake in peripheral tissues such as skeletal muscle and adipose tissue is considered as an important step in the regulation of glucose homeostasis. Reducing high blood glucose levels in diabetic patients via targeting peripheral glucose uptake is a promising strategy to develop new antidiabetic medications derived from natural products.

Objective: The current review focused on antidiabetic natural phytocompounds acting on glucose uptake in adipocytes and skeletal muscles to highlight their phytochemistry, the mechanistic pathway involved, toxicity, and clinical assessment.

Methods: A systematic search was conducted in the scientific database with specific keywords on natural phytocompounds demonstrated to possess glucose uptake stimulating activity in vitro or ex vivo during the last decade.

Results: In total, 195 pure molecules and 7 mixtures of inseparable molecules isolated from the plants kingdom, in addition to 16 biomolecules derived from non-herbal sources, possess a potent glucose uptake stimulating capacity in adipocytes and/or skeletal muscles in adipocytes and/or skeletal muscles in vitro or ex vivo. Molecular studies revealed that these plant-derived molecules induced glucose uptake via increasing GLUT-4 expression and/or translocation through insulin signaling pathway, AMPK pathway, PTP1B activity inhibition or acting as partial PPARγ agonists. These phytocompounds were isolated from 91 plants, belonging to 57 families and triterpenoids are the most sous-class of secondary metabolites showing this activity. Among all the phytocompounds listed in the current review, only 14 biomolecules have shown an interesting activity against diabetes and its complications in clinical studies.

Conclusion: Epicatechin, catechin, epigallocatechin 3-gallate, quercetin, quercetin 3-glucoside, berberine, rutin, linoleic acid, oleanolic acid, oleic acid, chlorogenic acid, gallic acid, hesperidin, and corosolic acid are promising phytocompounds that showed great activity against diabetes and diabetes complications in vitro and in vivo. However, for the others phytocompounds further experimental studies followed by clinical trials are needed. Finally, foods rich in these compounds cited in this review present a healthy diet for diabetic patients.

Keywords: Phytotherapy, mode of action, diabetes complications, GLUT-4, PPARγ, PTP1B, medicinal plants.

Graphical Abstract
[1]
International Diabetes Federation. IDF Diabetes Atlas. 9th ed; International Diabetes Federation: Brussels, Belgium, 2019.
[2]
World Health Organization Global Report on Diabetes 2016, 88.
[3]
Brownlee, M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes, 2005, 54(6), 1615-1625.
[http://dx.doi.org/10.2337/diabetes.54.6.1615] [PMID: 15919781]
[4]
Forbes, J.M.; Cooper, M.E. Mechanisms of diabetic complications. Physiol. Rev., 2013, 93(1), 137-188.
[http://dx.doi.org/10.1152/physrev.00045.2011] [PMID: 23303908]
[5]
Chaudhury, A.; Duvoor, C.; Reddy Dendi, V.S.; Kraleti, S.; Chada, A.; Ravilla, R.; Marco, A.; Shekhawat, N.S.; Montales, M.T.; Kuriakose, K.; Sasapu, A.; Beebe, A.; Patil, N.; Musham, C.K.; Lohani, G.P.; Mirza, W. Clinical review of antidiabetic drugs: implications for type 2 diabetes mellitus management. Front. Endocrinol. (Lausanne), 2017, 8, 6.
[http://dx.doi.org/10.3389/fendo.2017.00006] [PMID: 28167928]
[6]
Echouffo-Tcheugui, J.B.; Garg, R. management of hyperglycemia and diabetes in the emergency department. Curr. Diab. Rep., 2017, 17(8), 56.
[http://dx.doi.org/10.1007/s11892-017-0883-2] [PMID: 28646357]
[7]
Burns, C.; Sirisena, I. Type 2 diabetes: etiology, epidemiology, pathogenesis, treatment.In: Metabolic syndrome; Ahima, R. S., Ed.; Cham: Springer International Publishing: Switzerland,; , 2016, pp. 601-617.
[8]
Payahoo, L.; Khajebishak, Y.; Asghari Jafarabadi, M.; Ostadrahimi, A. Oleoylethanolamide supplementation reduces inflammation andoxidative stress in obese people: A clinical trial. Adv. Pharm. Bull., 2018, 8(3), 479-487.
[http://dx.doi.org/10.15171/apb.2018.056] [PMID: 30276145]
[9]
Khajebishak, Y.; Payahoo, L.; Alivand, M.; Hamishehkar, H.; Mobasseri, M.; Ebrahimzadeh, V.; Alipour, M.; Alipour, B. Effect of pomegranate seed oil supplementation on the GLUT-4 gene expression and glycemic control in obese people with type 2 diabetes: A randomized controlled clinical trial. J. Cell. Physiol., 2019, 234(11), 19621-19628.
[http://dx.doi.org/10.1002/jcp.28561] [PMID: 30945297]
[10]
Scott, L.K. Insulin resistance syndrome in children. Pediatr. Nurs., 2006, 32(2), 119-124, 143.
[PMID: 16719421]
[11]
Stringer, D.M.; Zahradka, P.; Taylor, C.G. Glucose transporters: cellular links to hyperglycemia in insulin resistance and diabetes. Nutr. Rev., 2015, 73(3), 140-154.
[http://dx.doi.org/10.1093/nutrit/nuu012] [PMID: 26024537]
[12]
DeFronzo, R.A.; Bonadonna, R.C.; Ferrannini, E. Pathogenesis of NIDDM. A balanced overview. Diabetes Care, 1992, 15(3), 318-368.
[http://dx.doi.org/10.2337/diacare.15.3.318] [PMID: 1532777]
[13]
Schenk, S.; Saberi, M.; Olefsky, J.M. Insulin sensitivity: modulation by nutrients and inflammation. J. Clin. Invest., 2008, 118(9), 2992-3002.
[http://dx.doi.org/10.1172/JCI34260] [PMID: 18769626]
[14]
Cushman, S.W.; Wardzala, L.J. Potential mechanism of insulin action on glucose transport in the isolated rat adipose cell. Apparent translocation of intracellular transport systems to the plasma membrane. J. Biol. Chem., 1980, 255(10), 4758-4762.
[http://dx.doi.org/10.1016/S0021-9258(19)85561-8] [PMID: 6989818]
[15]
Shih, C.C.; Wu, J.B.; Jian, J.Y.; Lin, C.H.; Ho, H.Y. (-)-Epicatechin-3-O-β-D-allopyranoside from davallia formosana, prevents diabetes and hyperlipidemia by regulation of glucose transporter 4 and amp-activated protein kinase phosphorylation in high-fat-fed mice. Int. J. Mol. Sci., 2015, 16(10), 24983-25001.
[http://dx.doi.org/10.3390/ijms161024983] [PMID: 26492243]
[16]
Pham, H.T.T.; Ha, T.K.Q.; Cho, H.M.; Lee, B.W.; An, J.P.; Tran, V.O.; Oh, W.K. Insulin mimetic activity of 3,4- seco and hexanordammarane triterpenoids isolated from gynostemma longipes. J. Nat. Prod., 2018, 81(11), 2470-2482.
[http://dx.doi.org/10.1021/acs.jnatprod.8b00524] [PMID: 30387350]
[17]
Kahn, B.B. Type 2 diabetes: when insulin secretion fails to compensate for insulin resistance. Cell, 1998, 92(5), 593-596.
[http://dx.doi.org/10.1016/S0092-8674(00)81125-3] [PMID: 9506512]
[18]
Bryant, N.J.; Govers, R.; James, D.E. Regulated transport of the glucose transporter GLUT4. Nat. Rev. Mol. Cell Biol., 2002, 3(4), 267-277.
[http://dx.doi.org/10.1038/nrm782] [PMID: 11994746]
[19]
Watson, R.T.; Kanzaki, M.; Pessin, J.E. Regulated membrane trafficking of the insulin-responsive glucose transporter 4 in adipocytes. Endocr. Rev., 2004, 25(2), 177-204.
[http://dx.doi.org/10.1210/er.2003-0011] [PMID: 15082519]
[20]
Vargas, E.; Podder, V.; Carrillo Sepulveda, M.A. physiology, glucose transporter type 4 (GLUT4). In: StatPearls; StatPearls Publishing: Treasure Island, FL, 2020. Available from: https://www.ncbi.nlm.nih.gov/books/NBK537322/
[21]
Yang, J.; Holman, G.D. Comparison of GLUT4 and GLUT1 subcellular trafficking in basal and insulin-stimulated 3T3-L1 cells. J. Biol. Chem., 1993, 268(7), 4600-4603.
[http://dx.doi.org/10.1016/S0021-9258(18)53438-4] [PMID: 8444835]
[22]
Polianskyte-Prause, Z.; Tolvanen, T.A.; Lindfors, S.; Dumont, V.; Van, M.; Wang, H.; Dash, S.N.; Berg, M.; Naams, J.B.; Hautala, L.C.; Nisen, H.; Mirtti, T.; Groop, P.H.; Wähälä, K.; Tienari, J.; Lehtonen, S. Metformin increases glucose uptake and acts renoprotectively by reducing SHIP2 activity. FASEB J., 2019, 33(2), 2858-2869.
[23]
Gong, L.; Goswami, S.; Giacomini, K.M.; Altman, R.B.; Klein, T.E. Metformin pathways: pharmacokinetics and pharmacodynamics. Pharmacogenet. Genomics, 2012, 22(11), 820-827.
[PMID: 22722338]
[24]
DeFronzo, R.A.; Goodman, A.M. Efficacy of metformin in patients with non-insulin-dependent diabetes mellitus. N. Engl. J. Med., 1995, 333(9), 541-549.
[http://dx.doi.org/10.1056/NEJM199508313330902] [PMID: 7623902]
[25]
Ishihara, H.; Sasaoka, T.; Hori, H.; Wada, T.; Hirai, H.; Haruta, T.; Langlois, W.J.; Kobayashi, M. Molecular cloning of rat SH2-containing inositol phosphatase 2 (SHIP2) and its role in the regulation of insulin signaling. Biochem. Biophys. Res. Commun., 1999, 260(1), 265-272.
[http://dx.doi.org/10.1006/bbrc.1999.0888] [PMID: 10381377]
[26]
Hori, H.; Sasaoka, T.; Ishihara, H.; Wada, T.; Murakami, S.; Ishiki, M.; Kobayashi, M. Association of SH2-containing inositol phosphatase 2 with the insulin resistance of diabetic db/db mice. Diabetes, 2002, 51(8), 2387-2394.
[http://dx.doi.org/10.2337/diabetes.51.8.2387] [PMID: 12145149]
[27]
Kagawa, S.; Soeda, Y.; Ishihara, H.; Oya, T.; Sasahara, M.; Yaguchi, S.; Oshita, R.; Wada, T.; Tsuneki, H.; Sasaoka, T. Impact of transgenic overexpression of SH2-containing inositol 5'-phosphatase 2 on glucose metabolism and insulin signaling in mice. Endocrinology, 2008, 149(2), 642-650.
[http://dx.doi.org/10.1210/en.2007-0820] [PMID: 18039790]
[28]
Sleeman, M.W.; Wortley, K.E.; Lai, K.M.; Gowen, L.C.; Kintner, J.; Kline, W.O.; Garcia, K.; Stitt, T.N.; Yancopoulos, G.D.; Wiegand, S.J.; Glass, D.J. Absence of the lipid phosphatase SHIP2 confers resistance to dietary obesity. Nat. Med., 2005, 11(2), 199-205.
[29]
Jensen, T.E.; Angin, Y.; Sylow, L.; Richter, E.A. Is contraction-stimulated glucose transport feedforward regulated by Ca2+? Exp. Physiol., 2014, 99, 1562-1568.
[30]
Richter, E.A.; Hargreaves, M. Exercise, GLUT4, and skeletal muscle glucose uptake. Physiol. Rev., 2013, 93(3), 993-1017.
[http://dx.doi.org/10.1152/physrev.00038.2012] [PMID: 23899560]
[31]
Wojtaszewski, J.F.; Higaki, Y.; Hirshman, M.F.; Michael, M.D.; Dufresne, S.D.; Kahn, C.R.; Goodyear, L.J. Exercise modulates postreceptor insulin signaling and glucose transport in muscle-specific insulin receptor knockout mice. J. Clin. Invest., 1999, 104(9), 1257-1264.
[http://dx.doi.org/10.1172/JCI7961] [PMID: 10545524]
[32]
Cho, H.; Mu, J.; Kim, J.K.; Thorvaldsen, J.L.; Chu, Q.; Crenshaw, E.B., III; Kaestner, K.H.; Bartolomei, M.S.; Shulman, G.I.; Birnbaum, M.J. Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB beta). Science, 2001, 292(5522), 1728-1731.
[http://dx.doi.org/10.1126/science.292.5522.1728] [PMID: 11387480]
[33]
Martin, I.K.; Katz, A.; Wahren, J. Splanchnic and muscle metabolism during exercise in NIDDM patients. Am. J. Physiol., 1995, 269(3 Pt 1), E583-E590.
[PMID: 7573437]
[34]
Lauritzen, H.P.; Galbo, H.; Toyoda, T.; Goodyear, L.J. Kinetics of contraction-induced GLUT4 translocation in skeletal muscle fibers from living mice. Diabetes, 2010, 59(9), 2134-2144.
[http://dx.doi.org/10.2337/db10-0233] [PMID: 20622170]
[35]
Kennedy, J.W.; Hirshman, M.F.; Gervino, E.V.; Ocel, J.V.; Forse, R.A.; Hoenig, S.J.; Aronson, D.; Goodyear, L.J.; Horton, E.S. Acute exercise induces GLUT4 translocation in skeletal muscle of normal human subjects and subjects with type 2 diabetes. Diabetes, 1999, 48(5), 1192-1197.
[http://dx.doi.org/10.2337/diabetes.48.5.1192] [PMID: 10331428]
[36]
Zisman, A.; Peroni, O.D.; Abel, E.D.; Michael, M.D.; Mauvais-Jarvis, F.; Lowell, B.B.; Wojtaszewski, J.F.; Hirshman, M.F.; Virkamaki, A.; Goodyear, L.J.; Kahn, C.R.; Kahn, B.B. Targeted disruption of the glucose transporter 4 selectively in muscle causes insulin resistance and glucose intolerance. Nat. Med., 2000, 6(8), 924-928.
[http://dx.doi.org/10.1038/78693] [PMID: 10932232]
[37]
Ryder, J.W.; Kawano, Y.; Galuska, D.; Fahlman, R.; Wallberg-Henriksson, H.; Charron, M.J.; Zierath, J.R. Postexercise glucose uptake and glycogen synthesis in skeletal muscle from GLUT4-deficient mice. FASEB J., 1999, 13(15), 2246-2256.
[http://dx.doi.org/10.1096/fasebj.13.15.2246] [PMID: 10593872]
[38]
Sylow, L.; Kleinert, M.; Richter, E.A.; Jensen, T.E. Exercise-stimulated glucose uptake - regulation and implications for glycaemic control. Nat. Rev. Endocrinol., 2017, 13(3), 133-148.
[http://dx.doi.org/10.1038/nrendo.2016.162] [PMID: 27739515]
[39]
Merlet, A.N.; Féasson, L.; Bartolucci, P.; Hourdé, C.; Schwalm, C.; Gellen, B.; Galactéros, F.; Deldicque, L.; Francaux, M.; Messonnier, L.A. EXDRE Collaborative Study Group. Muscle structural, energetic and functional benefits of endurance exercise training in sickle cell disease. Am. J. Hematol., 2020, 95(11), 1257-1268.
[http://dx.doi.org/10.1002/ajh.25936] [PMID: 32681734]
[40]
Foley, K.; Boguslavsky, S.; Klip, A. Endocytosis, recycling, and regulated exocytosis of glucose transporter 4. Biochemistry, 2011, 50(15), 3048-3061.
[http://dx.doi.org/10.1021/bi2000356] [PMID: 21405107]
[41]
Thakkar, C.S.; Kshirsagar, R.R.; Naik, V.R.; Ghosh, A.R.; Vijayakumar, V.; Saklani, A.; Kulkarni-Almeida, A.A. (E)-9-oxooctadec-10-en-12-ynoic acid from Ixora brachiata Roxb. increases glucose uptake in L6 myotubes by activating the PI3K pathway. Fitoterapia, 2016, 114, 26-33.
[http://dx.doi.org/10.1016/j.fitote.2016.08.004] [PMID: 27521895]
[42]
Naresh, G.; Jaiswal, N.; Sukanya, P.; Srivastava, A.K.; Tamrakar, A.K.; Narender, T. Glucose uptake stimulatory effect of 4-hydroxypipecolic acid by increased GLUT 4 translocation in skeletal muscle cells. Bioorg. Med. Chem. Lett., 2012, 22(17), 5648-5651.
[http://dx.doi.org/10.1016/j.bmcl.2012.06.101] [PMID: 22840238]
[43]
Shyni, G.L.; Kavitha, S.; Indu, S.; Arya, A.D.; Anusree, S.S.; Vineetha, V.P.; Vandana, S.; Sundaresan, A.; Raghu, K.G. Chebulagic acid from Terminalia chebula enhances insulin mediated glucose uptake in 3T3-L1 adipocytes via PPARγ signaling pathway. Biofactors, 2014, 40(6), 646-657.
[http://dx.doi.org/10.1002/biof.1193] [PMID: 25529897]
[44]
Kühn, C.; Arapogianni, N.E.; Halabalaki, M.; Hempel, J.; Hunger, N.; Wober, J.; Skaltsounis, A.L.; Vollmer, G. Constituents from Cistus salvifolius (Cistaceae) activate peroxisome proliferator-activated receptor-γ but not -δ and stimulate glucose uptake by adipocytes. Planta Med., 2011, 77(4), 346-353.
[http://dx.doi.org/10.1055/s-0030-1250382] [PMID: 20922652]
[45]
Verma, S.; Arha, D.; Tamrakar, A.K.; Srivastava, S.K. Glycolipids: isolated from Oplismenus burmannii induce glucose uptake in L6-GLUT4myc myotube cells. Curr. Top. Med. Chem., 2015, 15(11), 1027-1034.
[http://dx.doi.org/10.2174/1568026615666150317223112] [PMID: 25786504]
[46]
Upadhyay, H.C.; Jaiswal, N.; Tamrakar, A.K.; Srivastava, A.K.; Gupta, N.; Srivastava, S.K. Antihyperglycemic agents from Ammannia multiflora. Nat. Prod. Commun., 2012, 7(7), 899-900.
[http://dx.doi.org/10.1177/1934578X1200700724] [PMID: 22908576]
[47]
Gandhi, G.R.; Ignacimuthu, S.; Paulraj, M.G.; Sasikumar, P. Antihyperglycemic activity and antidiabetic effect of methyl caffeate isolated from Solanum torvum Swartz. fruit in streptozotocin induced diabetic rats. Eur. J. Pharmacol., 2011, 670(2-3), 623-631.
[http://dx.doi.org/10.1016/j.ejphar.2011.09.159] [PMID: 21963451]
[48]
Alam, M.B.; An, H.; Ra, J-S.; Lim, J.Y.; Lee, S-H.; Yoo, C-Y.; Lee, S-H. Gossypol from cottonseeds ameliorates glucose uptake by mimicking insulin signaling and improves glucose homeostasis in mice with streptozotocin-induced diabetes. Oxid. Med. Cell. Longev., 2018, 2018, 5796102.
[http://dx.doi.org/10.1155/2018/5796102] [PMID: 30510623]
[49]
Kotowska, D.; El-Houri, R.B.; Borkowski, K.; Petersen, R.K.; Fretté, X.C.; Wolber, G.; Grevsen, K.; Christensen, K.B.; Christensen, L.P.; Kristiansen, K. Isomeric C12-alkamides from the roots of Echinacea purpurea improve basal and insulin-dependent glucose uptake in 3T3-L1 adipocytes. Planta Med., 2014, 80(18), 1712-1720.
[http://dx.doi.org/10.1055/s-0034-1383252] [PMID: 25371981]
[50]
Kang, C.; Han, J.H.; Oh, J.; Kulkarni, R.; Zhou, W.; Ferreira, D.; Jang, T.S.; Myung, C.S.; Na, M. steroidal alkaloids from veratrum nigrum enhance glucose uptake in skeletal muscle cells. J. Nat. Prod., 2015, 78(4), 803-810.
[http://dx.doi.org/10.1021/np501049g] [PMID: 25835537]
[51]
Park, J.E.; Park, J.Y.; Seo, Y.; Han, J.S. A new chromanone isolated from Portulaca oleracea L. increases glucose uptake by stimulating GLUT4 translocation to the plasma membrane in 3T3-L1 adipocytes. Int. J. Biol. Macromol., 2019, 123, 26-34.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.10.206] [PMID: 30389528]
[52]
Lee, B.W.; Ha, T.K.Q.; Pham, H.T.T.; Hoang, Q.H.; Tran, V.O.; Oh, W.K. Hydroxyoleoside-type seco-iridoids from Symplocos cochinchinensis and their insulin mimetic activity. Sci. Rep., 2019, 9(1), 2270.
[http://dx.doi.org/10.1038/s41598-018-38013-4] [PMID: 30783120]
[53]
Nguyen, P.H.; Zhao, B.T.; Ali, M.Y.; Choi, J.S.; Rhyu, D.Y.; Min, B.S.; Woo, M.H. Insulin-mimetic selaginellins from Selaginella tamariscina with protein tyrosine phosphatase 1B (PTP1B) inhibitory activity. J. Nat. Prod., 2015, 78(1), 34-42.
[http://dx.doi.org/10.1021/np5005856] [PMID: 25559759]
[54]
Eid, H.M.; Martineau, L.C.; Saleem, A.; Muhammad, A.; Vallerand, D.; Benhaddou-Andaloussi, A.; Nistor, L.; Afshar, A.; Arnason, J.T.; Haddad, P.S. Stimulation of AMP-activated protein kinase and enhancement of basal glucose uptake in muscle cells by quercetin and quercetin glycosides, active principles of the antidiabetic medicinal plant Vaccinium vitis-idaea. Mol. Nutr. Food Res., 2010, 54(7), 991-1003.
[http://dx.doi.org/10.1002/mnfr.200900218] [PMID: 20087853]
[55]
Sangeetha, M.K.; Priya, C.D.; Vasanthi, H.R. Anti-diabetic property of Tinospora cordifolia and its active compound is mediated through the expression of Glut-4 in L6 myotubes. Phytomedicine, 2013, 20(3-4), 246-248.
[http://dx.doi.org/10.1016/j.phymed.2012.11.006] [PMID: 23290487]
[56]
Huang, W.J.; Niu, H.S.; Lin, M.H.; Cheng, J.T.; Hsu, F.L. Antihyperglycemic effect of catalpol in streptozotocin-induced diabetic rats. J. Nat. Prod., 2010, 73(6), 1170-1172.
[http://dx.doi.org/10.1021/np9008317] [PMID: 20518543]
[57]
Yang, T-C.; Chao, H-F.; Shi, L-S.; Chang, T-C.; Lin, H-C.; Chang, W-L. Alkaloids from Coptis chinensis root promote glucose uptake in C2C12 myotubes. Fitoterapia, 2014, 93, 239-244.
[http://dx.doi.org/10.1016/j.fitote.2014.01.008] [PMID: 24444890]
[58]
Motaal, A.A.; Ezzat, S.M.; Haddad, P.S. Determination of bioactive markers in Cleome droserifolia using cell-based bioassays for antidiabetic activity and isolation of two novel active compounds. Phytomedicine, 2011, 19(1), 38-41.
[http://dx.doi.org/10.1016/j.phymed.2011.07.003] [PMID: 21890334]
[59]
Hasan, M.M.; Ahmed, Q.U.; Soad, S.Z.M.; Latip, J.; Taher, M.; Syafiq, T.M.F.; Sarian, M.N.; Alhassan, A.M.; Zakaria, Z.A. Flavonoids from Tetracera indica Merr. induce adipogenesis and exert glucose uptake activities in 3T3-L1 adipocyte cells. BMC Complement. Altern. Med., 2017, 17(1), 431.
[http://dx.doi.org/10.1186/s12906-017-1929-3] [PMID: 28854906]
[60]
Christensen, K.B.; Petersen, R.K.; Petersen, S.; Kristiansen, K.; Christensen, L.P. Activation of PPARgamma by metabolites from the flowers of purple coneflower (Echinacea purpurea). J. Nat. Prod., 2009, 72(5), 933-937.
[http://dx.doi.org/10.1021/np900003a] [PMID: 19374389]
[61]
Nguyen, P.H.; Yang, J.L.; Uddin, M.N.; Park, S.L.; Lim, S.I.; Jung, D.W.; Williams, D.R.; Oh, W.K. Protein tyrosine phosphatase 1B (PTP1B) inhibitors from Morinda citrifolia (Noni) and their insulin mimetic activity. J. Nat. Prod., 2013, 76(11), 2080-2087.
[http://dx.doi.org/10.1021/np400533h] [PMID: 24224843]
[62]
Heiss, E.H.; Baumgartner, L.; Schwaiger, S.; Heredia, R.J.; Atanasov, A.G.; Rollinger, J.M.; Stuppner, H.; Dirsch, V.M. Ratanhiaphenol III from Ratanhiae radix is a PTP1B inhibitor. Planta Med., 2012, 78(7), 678-681.
[http://dx.doi.org/10.1055/s-0031-1298242] [PMID: 22307937]
[63]
Verma, S.; Verma, R.K.; Sahoo, D.; Srivastava, S.K. Reverse-phase HPLC method for the quantification of two antihyperglycemic glycolipids in Oplismenus burmannii. Biomed. Chromatogr., 2015, 29(11), 1675-1681.
[http://dx.doi.org/10.1002/bmc.3478] [PMID: 25891218]
[64]
Nguyen, P.H.; Ji, D.J.; Han, Y.R.; Choi, J.S.; Rhyu, D.Y.; Min, B.S.; Woo, M.H. Selaginellin and biflavonoids as protein tyrosine phosphatase 1B inhibitors from Selaginella tamariscina and their glucose uptake stimulatory effects. Bioorg. Med. Chem., 2015, 23(13), 3730-3737.
[http://dx.doi.org/10.1016/j.bmc.2015.04.007] [PMID: 25907369]
[65]
Schulze, A.E.; De Beer, D.; Mazibuko, S.E.; Muller, C.J.; Roux, C.; Willenburg, E.L.; Nyunaï, N.; Louw, J.; Manley, M.; Joubert, E. Assessing similarity analysis of chromatographic fingerprints of Cyclopia subternata extracts as potential screening tool for in vitro glucose utilisation. Anal. Bioanal. Chem., 2016, 408(2), 639-649.
[http://dx.doi.org/10.1007/s00216-015-9147-7] [PMID: 26542834]
[66]
Cazarolli, L.H.; Kappel, V.D.; Pereira, D.F.; Moresco, H.H.; Brighente, I.M.; Pizzolatti, M.G.; Silva, F.R. Anti-hyperglycemic action of apigenin-6-C-β-fucopyranoside from Averrhoa carambola. Fitoterapia, 2012, 83(7), 1176-1183.
[http://dx.doi.org/10.1016/j.fitote.2012.07.003] [PMID: 22796400]
[67]
Atanasov, A.G.; Wang, J.N.; Gu, S.P.; Bu, J.; Kramer, M.P.; Baumgartner, L.; Fakhrudin, N.; Ladurner, A.; Malainer, C.; Vuorinen, A.; Noha, S.M.; Schwaiger, S.; Rollinger, J.M.; Schuster, D.; Stuppner, H.; Dirsch, V.M.; Heiss, E.H. Honokiol: a non-adipogenic PPARγ agonist from nature. Biochim. Biophys. Acta, 2013, 1830(10), 4813-4819.
[http://dx.doi.org/10.1016/j.bbagen.2013.06.021] [PMID: 23811337]
[68]
de Melo, K.M. de Oliveira, F.T.B.; Costa Silva, R.A.; Gomes Quinderé, A.L.; Marinho Filho, J.D.B.; Araújo, A.J.; Barros Pereira, E.D.; Carvalho, A.A.; Chaves, M.H.; Rao, V.S.; Santos, F.A. α β-Amyrin, a pentacyclic triterpenoid from Protium heptaphyllum suppresses adipocyte differentiation accompanied by down regulation of PPARγ and C/EBPα in 3T3-L1 cells. Biomed. Pharmacother., 2019, 109, 1860-1866.
[http://dx.doi.org/10.1016/j.biopha.2018.11.027] [PMID: 30551441]
[69]
Kwon, E.B.; Kang, M.J.; Ryu, H.W.; Lee, S.; Lee, J.W.; Lee, M.K.; Lee, H.S.; Lee, S.U.; Oh, S.R.; Kim, M.O. Acacetin enhances glucose uptake through insulin-independent GLUT4 translocation in L6 myotubes. Phytomedicine, 2020, 68, 153178.
[http://dx.doi.org/10.1016/j.phymed.2020.153178] [PMID: 32126492]
[70]
Girón, M.D.; Sevillano, N.; Salto, R.; Haidour, A.; Manzano, M.; Jiménez, M.L.; Rueda, R.; López-Pedrosa, J.M. Salacia oblonga extract increases glucose transporter 4-mediated glucose uptake in L6 rat myotubes: role of mangiferin. Clin. Nutr., 2009, 28(5), 565-574.
[http://dx.doi.org/10.1016/j.clnu.2009.04.018] [PMID: 19477051]
[71]
Park, S.; Ahn, I.S.; Kim, J.H.; Lee, M.R.; Kim, J.S.; Kim, H.J. Glyceollins, one of the phytoalexins derived from soybeans under fungal stress, enhance insulin sensitivity and exert insulinotropic actions. J. Agric. Food Chem., 2010, 58(3), 1551-1557.
[http://dx.doi.org/10.1021/jf903432b] [PMID: 20067288]
[72]
Boué, S.M.; Isakova, I.A.; Burow, M.E.; Cao, H.; Bhatnagar, D.; Sarver, J.G.; Shinde, K.V.; Erhardt, P.W.; Heiman, M.L. Glyceollins, soy isoflavone phytoalexins, improve oral glucose disposal by stimulating glucose uptake. J. Agric. Food Chem., 2012, 60(25), 6376-6382.
[http://dx.doi.org/10.1021/jf301057d] [PMID: 22655912]
[73]
Lee, M.S.; Kim, C.H.; Hoang, D.M.; Kim, B.Y.; Sohn, C.B.; Kim, M.R.; Ahn, J.S. Genistein-derivatives from Tetracera scandens stimulate glucose-uptake in L6 myotubes. Biol. Pharm. Bull., 2009, 32(3), 504-508.
[http://dx.doi.org/10.1248/bpb.32.504] [PMID: 19252305]
[74]
Zhang, W.Y.; Lee, J.J.; Kim, I.S.; Kim, Y.; Park, J.S.; Myung, C.S. 7-O-methylaromadendrin stimulates glucose uptake and improves insulin resistance in vitro. Biol. Pharm. Bull., 2010, 33(9), 1494-1499.
[http://dx.doi.org/10.1248/bpb.33.1494] [PMID: 20823563]
[75]
Wang, L.N.; Jiang, H.W.; Li, J.L.; Li, J.Y. Enhancement of glucose utilization by loesenerine through AMPK activation in Myotubes. Chem. Pharm. Bull. (Tokyo), 2018, 66(9), 885-886.
[http://dx.doi.org/10.1248/cpb.c18-00253] [PMID: 30175746]
[76]
Ji, J.; Zhu, J.; Hu, X.; Wang, T.; Zhang, X.; Hou, A.J.; Wang, H. (2S)-7,4'-dihydroxy-8-prenylflavan stimulates adipogenesis and glucose uptake through p38MAPK pathway in 3T3-L1 cells. Biochem. Biophys. Res. Commun., 2015, 460(3), 578-582.
[http://dx.doi.org/10.1016/j.bbrc.2015.03.072] [PMID: 25797620]
[77]
Hsiao, P.C.; Liaw, C.C.; Hwang, S.Y.; Cheng, H.L.; Zhang, L.J.; Shen, C.C.; Hsu, F.L.; Kuo, Y.H. Antiproliferative and hypoglycemic cucurbitane-type glycosides from the fruits of Momordica charantia. J. Agric. Food Chem., 2013, 61(12), 2979-2986.
[http://dx.doi.org/10.1021/jf3041116] [PMID: 23432055]
[78]
Chen, L.; Li, Q.Y.; Shi, X.J.; Mao, S.L.; Du, Y.L. 6-Hydroxydaidzein enhances adipocyte differentiation and glucose uptake in 3T3-L1 cells. J. Agric. Food Chem., 2013, 61(45), 10714-10719.
[http://dx.doi.org/10.1021/jf402694m] [PMID: 24180341]
[79]
Hsu, F.L.; Huang, C.F.; Chen, Y.W.; Yen, Y.P.; Wu, C.T.; Uang, B.J.; Yang, R.S.; Liu, S.H. Antidiabetic effects of pterosin A, a small-molecular-weight natural product, on diabetic mouse models. Diabetes, 2013, 62(2), 628-638.
[http://dx.doi.org/10.2337/db12-0585] [PMID: 23069626]
[80]
Cazarolli, L.H.; Folador, P.; Moresco, H.H.; Brighente, I.M.; Pizzolatti, M.G.; Silva, F.R. Mechanism of action of the stimulatory effect of apigenin-6-C-(2''-O-alpha-l-rhamnopyranosyl)-beta-L-fucopyranoside on 14C-glucose uptake. Chem. Biol. Interact., 2009, 179(2-3), 407-412.
[http://dx.doi.org/10.1016/j.cbi.2008.11.012] [PMID: 19070612]
[81]
Msomi, N.Z.; Shode, F.O.; Pooe, O.J.; Mazibuko-Mbeje, S.; Simelane, M.B.C. Iso-Mukaadial acetate from Warburgia salutaris enhances glucose uptake in the L6 rat myoblast cell line. Biomolecules, 2019, 9(10), 520.
[http://dx.doi.org/10.3390/biom9100520] [PMID: 31546691]
[82]
Fan, R.; Cheng, R.R.; Zhu, H.T.; Wang, D.; Yang, C.R.; Xua, M.; Zhang, Y.J. two new oleanane-type triterpenoids from methanolyzed saponins of Momordica cochinchinensis. Nat. Prod. Commun., 2016, 11(6), 725-728.
[http://dx.doi.org/10.1177/1934578X1601100607] [PMID: 27534102]
[83]
Prasannarong, M.; Saengsirisuwan, V.; Piyachaturawat, P.; Suksamrarn, A. Improvements of insulin resistance in ovariectomized rats by a novel phytoestrogen from Curcuma comosa Roxb. BMC Complement. Altern. Med., 2012, 12(1), 28.
[http://dx.doi.org/10.1186/1472-6882-12-28] [PMID: 22463706]
[84]
Lee, H.; Li, H.; Noh, M.; Ryu, J.H. Bavachin from psoralea corylifolia improves insulin-dependent glucose uptake through insulin signaling and AMPK activation in 3T3-L1 adipocytes. Int. J. Mol. Sci., 2016, 17(4), 527.
[http://dx.doi.org/10.3390/ijms17040527] [PMID: 27070585]
[85]
Hsu, C.Y.; Shih, H.Y.; Chia, Y.C.; Lee, C.H.; Ashida, H.; Lai, Y.K.; Weng, C.F. Rutin potentiates insulin receptor kinase to enhance insulin-dependent glucose transporter 4 translocation. Mol. Nutr. Food Res., 2014, 58(6), 1168-1176.
[http://dx.doi.org/10.1002/mnfr.201300691] [PMID: 24668568]
[86]
Kim, M.; Song, K.; Kim, Y.S. Alantolactone improves prolonged exposure of interleukin-6-induced skeletal muscle inflammation associated glucose intolerance and insulin resistance. Front. Pharmacol., 2017, 8, 405.
[http://dx.doi.org/10.3389/fphar.2017.00405] [PMID: 28706484]
[87]
Kim, M.; Song, K.; Kim, Y.S. Alantolactone improves palmitate-induced glucose intolerance and inflammation in both lean and obese states in vitro: Adipocyte and adipocyte-macrophage co-culture system. Int. Immunopharmacol., 2017, 49, 187-194.
[http://dx.doi.org/10.1016/j.intimp.2017.05.037] [PMID: 28599253]
[88]
Chen, Y.; Chen, Z.; Guo, Q.; Gao, X.; Ma, Q.; Xue, Z.; Ferri, N.; Zhang, M.; Chen, H. identification of ellagitannins in the unripe fruit of rubus chingii hu and evaluation of its potential antidiabetic activity. J. Agric. Food Chem., 2019, 67(25), 7025-7039.
[http://dx.doi.org/10.1021/acs.jafc.9b02293] [PMID: 31240933]
[89]
Gopalan, G.; Prabha, B.; Joe, A.; Reshmitha, T.R.; Sherin, D.R.; Abraham, B.; Sabu, M.; Manojkumar, T.K.; Radhakrishnan, K.V.; Nisha, P. Screening of Musa balbisiana Colla. seeds for antidiabetic properties and isolation of apiforol, a potential lead, with antidiabetic activity. J. Sci. Food Agric., 2019, 99(5), 2521-2529.
[PMID: 30393852]
[90]
Giacoman-Martínez, A.; Alarcón-Aguilar, F.J.; Zamilpa, A.; Hidalgo-Figueroa, S.; Navarrete-Vázquez, G.; García-Macedo, R.; Román-Ramos, R.; Almanza-Pérez, J.C. Triterpenoids from Hibiscus sabdariffa L. with PPARδ/γ dual agonist action: In vivo, in vitro and in silico Studies. Planta Med., 2019, 85(5), 412-423.
[http://dx.doi.org/10.1055/a-0824-1316] [PMID: 30650453]
[91]
Hu, Y.C.; Zhang, Z.; Shi, W.G.; Mi, T.Y.; Zhou, L.X.; Huang, N.; Hoptroff, M.; Lu, Y.H. 2'4'-Dihydroxy-6'-methoxy-3'5'-dimethylchalcone promoted glucose uptake and imposed a paradoxical effect on adipocyte differentiation in 3T3-L1 cells. J. Agric. Food Chem., 2014, 62(8), 1898-1904.
[http://dx.doi.org/10.1021/jf405368q] [PMID: 24517891]
[92]
Bhattacharya, S.; Christensen, K.B.; Olsen, L.C.; Christensen, L.P.; Grevsen, K.; Færgeman, N.J.; Kristiansen, K.; Young, J.F.; Oksbjerg, N. Bioactive components from flowers of Sambucus nigra L. increase glucose uptake in primary porcine myotube cultures and reduce fat accumulation in Caenorhabditis elegans. J. Agric. Food Chem., 2013, 61(46), 11033-11040.
[http://dx.doi.org/10.1021/jf402838a] [PMID: 24156563]
[93]
Nguyen, P.H.; Tuan, H.N.; Hoang, D.T.; Vu, Q.T.; Pham, M.Q.; Tran, M.H.; To, D.C. Glucose uptake stimulatory and ptp1b inhibitory activities of pimarane diterpenes from Orthosiphon stamineus benth. Biomolecules, 2019, 9(12), 859.
[http://dx.doi.org/10.3390/biom9120859] [PMID: 31835878]
[94]
Chao, C.L.; Huang, H.C.; Lin, H.C.; Chang, T.C.; Chang, W.L. Sesquiterpenes from baizhu stimulate glucose uptake by activating AMPK and PI3K. Am. J. Chin. Med., 2016, 44(5), 963-979.
[http://dx.doi.org/10.1142/S0192415X16500531] [PMID: 27430917]
[95]
Hwang, S-L.; Jeong, Y-T.; Hye Yang, J.; Li, X.; Lu, Y.; Son, J.K.; Chang, H.W. Pinusolide improves high glucose-induced insulin resistance via activation of AMP-activated protein kinase. Biochem. Biophys. Res. Commun., 2013, 437(3), 374-379.
[http://dx.doi.org/10.1016/j.bbrc.2013.06.084] [PMID: 23831466]
[96]
Daisy, P.; Balasubramanian, K.; Rajalakshmi, M.; Eliza, J.; Selvaraj, J. Insulin mimetic impact of Catechin isolated from Cassia fistula on the glucose oxidation and molecular mechanisms of glucose uptake on Streptozotocin-induced diabetic Wistar rats. Phytomedicine, 2010, 17(1), 28-36.
[http://dx.doi.org/10.1016/j.phymed.2009.10.018] [PMID: 19931438]
[97]
Jaiswal, N.; Maurya, C.K.; Venkateswarlu, K.; Sukanya, P.; Srivastava, A.K.; Narender, T.; Tamrakar, A.K. 4-Hydroxyisoleucine stimulates glucose uptake by increasing surface GLUT4 level in skeletal muscle cells via phosphatidylinositol-3-kinase-dependent pathway. Eur. J. Nutr., 2012, 51(7), 893-898.
[http://dx.doi.org/10.1007/s00394-012-0374-9] [PMID: 22610671]
[98]
Kawano, A.; Nakamura, H.; Hata, S.; Minakawa, M.; Miura, Y.; Yagasaki, K. Hypoglycemic effect of aspalathin, a rooibos tea component from Aspalathus linearis, in type 2 diabetic model db/db mice. Phytomedicine, 2009, 16(5), 437-443.
[http://dx.doi.org/10.1016/j.phymed.2008.11.009] [PMID: 19188054]
[99]
Kawabata, K.; Kitamura, K.; Irie, K.; Naruse, S.; Matsuura, T.; Uemae, T.; Taira, S.; Ohigashi, H.; Murakami, S.; Takahashi, M.; Kaido, Y.; Kawakami, B. Triterpenoids Isolated from Ziziphus jujuba Enhance glucose uptake activity in skeletal muscle cells. J. Nutr. Sci. Vitaminol. (Tokyo), 2017, 63(3), 193-199.
[http://dx.doi.org/10.3177/jnsv.63.193] [PMID: 28757534]
[100]
Brusotti, G.; Montanari, R.; Capelli, D.; Cattaneo, G.; Laghezza, A.; Tortorella, P.; Loiodice, F.; Peiretti, F.; Bonardo, B.; Paiardini, A.; Calleri, E.; Pochetti, G. Betulinic acid is a PPARγ antagonist that improves glucose uptake, promotes osteogenesis and inhibits adipogenesis. Sci. Rep., 2017, 7(1), 5777.
[http://dx.doi.org/10.1038/s41598-017-05666-6] [PMID: 28720829]
[101]
Nachar, A.; Eid, H.M.; Vinqvist-Tymchuk, M.; Vuong, T.; Kalt, W.; Matar, C.; Haddad, P.S. Phenolic compounds isolated from fermented blueberry juice decrease hepatocellular glucose output and enhance muscle glucose uptake in cultured murine and human cells. BMC Complement. Altern. Med., 2017, 17(1), 138.
[http://dx.doi.org/10.1186/s12906-017-1650-2] [PMID: 28259166]
[102]
Muthusamy, V.S.; Saravanababu, C.; Ramanathan, M.; Bharathi Raja, R.; Sudhagar, S.; Anand, S.; Lakshmi, B.S. Inhibition of protein tyrosine phosphatase 1B and regulation of insulin signalling markers by caffeoyl derivatives of chicory (Cichorium intybus) salad leaves. Br. J. Nutr., 2010, 104(6), 813-823.
[http://dx.doi.org/10.1017/S0007114510001480] [PMID: 20444318]
[103]
Zhu, K.N.; Jiang, C.H.; Tian, Y.S.; Xiao, N.; Wu, Z.F.; Ma, Y.L.; Lin, Z.; Fang, S.Z.; Shang, X.L.; Liu, K.; Zhang, J.; Liu, B.L.; Yin, Z.Q. Two triterpeniods from Cyclocarya paliurus (Batal) Iljinsk (Juglandaceae) promote glucose uptake in 3T3-L1 adipocytes: The relationship to AMPK activation. Phytomedicine, 2015, 22(9), 837-846.
[http://dx.doi.org/10.1016/j.phymed.2015.05.058] [PMID: 26220631]
[104]
Zhang, X.; Chen, C.; Li, Y.; Chen, D.; Dong, L.; Na, W.; Wu, C.; Zhang, J.; Li, Y. Tadehaginosides A-J, phenylpropanoid glucosides from Tadehagi triquetrum, enhance glucose uptake via the upregulation of PPARγ and GLUT-4 in C2C12 Myotubes. J. Nat. Prod., 2016, 79(5), 1249-1258.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00820] [PMID: 27100993]
[105]
Zhang, H.; Yang, F.; Qi, J.; Song, X-C.; Hu, Z-F.; Zhu, D-N.; Yu, B-Y. Homoisoflavonoids from the fibrous roots of Polygonatum odoratum with glucose uptake-stimulatory activity in 3T3-L1 adipocytes. J. Nat. Prod., 2010, 73(4), 548-552.
[http://dx.doi.org/10.1021/np900588q] [PMID: 20158245]
[106]
Zhang, Z.F.; Li, Q.; Liang, J.; Dai, X.Q.; Ding, Y.; Wang, J.B.; Li, Y. Epigallocatechin-3-O-gallate (EGCG) protects the insulin sensitivity in rat L6 muscle cells exposed to dexamethasone condition. Phytomedicine, 2010, 17(1), 14-18.
[http://dx.doi.org/10.1016/j.phymed.2009.09.007] [PMID: 19819682]
[107]
Yang, J.L.; Ha, T.K.Q.; Lee, B.W.; Kim, J.; Oh, W.K. PTP1B inhibitors from the seeds of Iris sanguinea and their insulin mimetic activities via AMPK and ACC phosphorylation. Bioorg. Med. Chem. Lett., 2017, 27(22), 5076-5081.
[http://dx.doi.org/10.1016/j.bmcl.2017.09.031] [PMID: 28951079]
[108]
El-Houri, R.B.; Kotowska, D.; Christensen, K.B.; Bhattacharya, S.; Oksbjerg, N.; Wolber, G.; Kristiansen, K.; Christensen, L.P. Polyacetylenes from carrots (Daucus carota) improve glucose uptake in vitro in adipocytes and myotubes. Food Funct., 2015, 6(7), 2135-2144.
[http://dx.doi.org/10.1039/C5FO00223K] [PMID: 25970571]
[109]
Atanasov, A.G.; Blunder, M.; Fakhrudin, N.; Liu, X.; Noha, S.M.; Malainer, C.; Kramer, M.P.; Cocic, A.; Kunert, O.; Schinkovitz, A.; Heiss, E.H.; Schuster, D.; Dirsch, V.M.; Bauer, R. Polyacetylenes from Notopterygium incisum--new selective partial agonists of peroxisome proliferator-activated receptor-gamma. PLoS One, 2013, 8(4), e61755.
[http://dx.doi.org/10.1371/journal.pone.0061755] [PMID: 23630612]
[110]
Azay-Milhau, J.; Ferrare, K.; Leroy, J.; Aubaterre, J.; Tournier, M.; Lajoix, A.D.; Tousch, D. Antihyperglycemic effect of a natural chicoric acid extract of chicory (Cichorium intybus L.): a comparative in vitro study with the effects of caffeic and ferulic acids. J. Ethnopharmacol., 2013, 150(2), 755-760.
[http://dx.doi.org/10.1016/j.jep.2013.09.046] [PMID: 24126061]
[111]
Ghaffar, S.; Afridi, S.K.; Aftab, M.F.; Murtaza, M.; Hafizur, R.M.; Sara, S.; Begum, S.; Waraich, R.S. Clove and its active compound attenuate free fatty acid-mediated insulin resistance in skeletal muscle cells and in mice. J. Med. Food, 2017, 20(4), 335-344.
[http://dx.doi.org/10.1089/jmf.2016.3835] [PMID: 28338397]
[112]
Ho, G.T.; Kase, E.T.; Wangensteen, H.; Barsett, H. effect of phenolic compounds from elder flowers on glucose- and fatty acid uptake in human myotubes and HepG2-cells. Molecules, 2017, 22(1), 90.
[http://dx.doi.org/10.3390/molecules22010090] [PMID: 28067838]
[113]
Matsukawa, T.; Inaguma, T.; Han, J.; Villareal, M.O.; Isoda, H. Cyanidin-3-glucoside derived from black soybeans ameliorate type 2 diabetes through the induction of differentiation of preadipocytes into smaller and insulin-sensitive adipocytes. J. Nutr. Biochem., 2015, 26(8), 860-867.
[http://dx.doi.org/10.1016/j.jnutbio.2015.03.006] [PMID: 25940979]
[114]
Krishna, M.S.; Joy, B.; Sundaresan, A. Effect on oxidative stress, glucose uptake level and lipid droplet content by Apigenin 7, 4'-dimethyl ether isolated from Piper longum L. J. Food Sci. Technol., 2015, 52(6), 3561-3570.
[PMID: 26028738]
[115]
Kwon, D.Y.; Kim, Y.S.; Ryu, S.Y.; Choi, Y.H.; Cha, M.R.; Yang, H.J.; Park, S. Platyconic acid, a saponin from Platycodi radix, improves glucose homeostasis by enhancing insulin sensitivity in vitro and in vivo. Eur. J. Nutr., 2012, 51(5), 529-540.
[http://dx.doi.org/10.1007/s00394-011-0236-x] [PMID: 21847688]
[116]
Lai, W.C.; Wu, Y.C.; Dankó, B.; Cheng, Y.B.; Hsieh, T.J.; Hsieh, C.T.; Tsai, Y.C.; El-Shazly, M.; Martins, A.; Hohmann, J.; Hunyadi, A.; Chang, F.R. Bioactive constituents of Cirsium japonicum var. australe. J. Nat. Prod., 2014, 77(7), 1624-1631.
[http://dx.doi.org/10.1021/np500233t] [PMID: 25025240]
[117]
Lee, M.S.; Thuong, P.T. Stimulation of glucose uptake by triterpenoids from Weigela subsessilis. Phytother. Res., 2010, 24(1), 49-53.
[http://dx.doi.org/10.1002/ptr.2865] [PMID: 19548274]
[118]
Lee, H.; Li, H.; Jeong, J.H.; Noh, M.; Ryu, J-H. Kazinol B from Broussonetia kazinoki improves insulin sensitivity via Akt and AMPK activation in 3T3-L1 adipocytes. Fitoterapia, 2016, 112, 90-96.
[http://dx.doi.org/10.1016/j.fitote.2016.05.006] [PMID: 27223849]
[119]
Li, Y.; Tran, V.H.; Duke, C.C.; Roufogalis, B.D. Gingerols of Zingiber officinale enhance glucose uptake by increasing cell surface GLUT4 in cultured L6 myotubes. Planta Med., 2012, 78(14), 1549-1555.
[http://dx.doi.org/10.1055/s-0032-1315041] [PMID: 22828920]
[120]
Li, Y.; Goto, T.; Yamakuni, K.; Takahashi, H.; Takahashi, N.; Jheng, H.F.; Nomura, W.; Taniguchi, M.; Baba, K.; Murakami, S.; Kawada, T. 4-Hydroxyderricin, as a PPARγ agonist, promotes adipogenesis, adiponectin secretion, and glucose uptake in 3T3-L1 Cells. Lipids, 2016, 51(7), 787-795.
[http://dx.doi.org/10.1007/s11745-016-4154-9] [PMID: 27098252]
[121]
Manaharan, T.; Ming, C.H.; Palanisamy, U.D. Syzygium aqueum leaf extract and its bioactive compounds enhances pre-adipocyte differentiation and 2-NBDG uptake in 3T3-L1 cells. Food Chem., 2013, 136(2), 354-363.
[http://dx.doi.org/10.1016/j.foodchem.2012.08.056] [PMID: 23122070]
[122]
Tiong, S.H.; Looi, C.Y.; Arya, A.; Wong, W.F.; Hazni, H.; Mustafa, M.R.; Awang, K. Vindogentianine, a hypoglycemic alkaloid from Catharanthus roseus (L.) G. Don (Apocynaceae). Fitoterapia, 2015, 102, 182-188.
[http://dx.doi.org/10.1016/j.fitote.2015.01.019] [PMID: 25665941]
[123]
Ueda, M.; Furuyashiki, T.; Yamada, K.; Aoki, Y.; Sakane, I.; Fukuda, I.; Yoshida, K.; Ashida, H. Tea catechins modulate the glucose transport system in 3T3-L1 adipocytes. Food Funct., 2010, 1(2), 167-173.
[http://dx.doi.org/10.1039/c0fo00105h] [PMID: 21776468]
[124]
Watanabe, A.; Kato, T.; Ito, Y.; Yoshida, I.; Harada, T.; Mishima, T.; Fujita, K.; Watai, M.; Nakagawa, K.; Miyazawa, T. Aculeatin, a coumarin derived from Toddalia asiatica (L.) Lam., enhances differentiation and lipolysis of 3T3-L1 adipocytes. Biochem. Biophys. Res. Commun., 2014, 453(4), 787-792.
[http://dx.doi.org/10.1016/j.bbrc.2014.10.027] [PMID: 25445590]
[125]
Hu, R.; Yan, H.; Fei, X.; Liu, H.; Wu, J. Modulation of glucose metabolism by a natural compound from Chloranthus japonicus via activation of AMP-activated protein kinase. Sci. Rep., 2017, 7(1), 778.
[http://dx.doi.org/10.1038/s41598-017-00925-y] [PMID: 28396610]
[126]
Noipha, K.; Thongthoom, T.; Songsiang, U.; Boonyarat, C.; Yenjai, C. Carbazoles and coumarins from Clausena harmandiana stimulate glucose uptake in L6 myotubes. Diabetes Res. Clin. Pract., 2010, 90(3), e67-e71.
[http://dx.doi.org/10.1016/j.diabres.2010.09.005] [PMID: 20888659]
[127]
Ohta, M.; Fujinami, A.; Kobayashi, N.; Amano, A.; Ishigami, A.; Tokuda, H.; Suzuki, N.; Ito, F.; Mori, T.; Sawada, M.; Iwasa, K.; Kitawaki, J.; Ohnishi, K.; Tsujikawa, M.; Obayashi, H. Two chalcones, 4-hydroxyderricin and xanthoangelol, stimulate GLUT4-dependent glucose uptake through the LKB1/AMP-activated protein kinase signaling pathway in 3T3-L1 adipocytes. Nutr. Res., 2015, 35(7), 618-625.
[http://dx.doi.org/10.1016/j.nutres.2015.05.010] [PMID: 26077869]
[128]
Sangeetha, K.N.; Sujatha, S.; Muthusamy, V.S.; Anand, S.; Nithya, N.; Velmurugan, D.; Balakrishnan, A.; Lakshmi, B.S. 3beta-taraxerol of Mangifera indica, a PI3K dependent dual activator of glucose transport and glycogen synthesis in 3T3-L1 adipocytes. Biochim. Biophys. Acta, 2010, 1800(3), 359-366.
[http://dx.doi.org/10.1016/j.bbagen.2009.12.002] [PMID: 20026188]
[129]
Sangeetha, K.N.; Shilpa, K.; Jyothi Kumari, P.; Lakshmi, B.S. Reversal of dexamethasone induced insulin resistance in 3T3L1 adipocytes by 3β-taraxerol of Mangifera indica. Phytomedicine, 2013, 20(3-4), 213-220.
[http://dx.doi.org/10.1016/j.phymed.2012.10.011] [PMID: 23219340]
[130]
Prabha, B.; Neethu, S.; Krishnan, S.L.; Sherin, D.R.; Madhukrishnan, M.; Ananthakrishnan, R.; Rameshkumar, K.B.; Manojkumar, T.K.; Jayamurthy, P.; Radhakrishnan, K.V. Antidiabetic potential of phytochemicals isolated from the stem bark of Myristica fatua Houtt. var. magnifica (Bedd.). Sinclair. Bioorg. Med. Chem., 2018, 26(12), 3461-3467.
[http://dx.doi.org/10.1016/j.bmc.2018.05.020] [PMID: 29789207]
[131]
Prasad, J.; Maurya, C.K.; Pandey, J.; Jaiswal, N.; Madhur, G.; Srivastava, A.K.; Narender, T.; Tamrakar, A.K. Diastereomeric mixture of calophyllic acid and isocalophyllic acid stimulates glucose uptake in skeletal muscle cells: involvement of PI-3-kinase- and ERK1/2-dependent pathways. Mol. Cell. Endocrinol., 2013, 370(1-2), 11-19.
[http://dx.doi.org/10.1016/j.mce.2013.02.013] [PMID: 23428406]
[132]
Sasikumar, P.; Lekshmy, K.; Sini, S.; Prabha, B.; Kumar, N.A.; Sivan, V.V.; Jithin, M.M.; Jayamurthy, P.; Shibi, I.G.; Radhakrishnan, K.V. Isolation and characterization of resveratrol oligomers from the stem bark of Hopea ponga (Dennst.) Mabb. And their antidiabetic effect by modulation of digestive enzymes, protein glycation and glucose uptake in L6 myocytes. J. Ethnopharmacol., 2019, 236, 196-204.
[http://dx.doi.org/10.1016/j.jep.2019.01.046] [PMID: 30844488]
[133]
Shilpa, K.; Sangeetha, K.N.; Muthusamy, V.S.; Sujatha, S.; Lakshmi, B.S. Probing key targets in insulin signaling and adipogenesis using a methanolic extract of Costus pictus and its bioactive molecule, methyl tetracosanoate. Biotechnol. Lett., 2009, 31(12), 1837-1841.
[http://dx.doi.org/10.1007/s10529-009-0105-3] [PMID: 19693444]
[134]
Fang, Z.J.; Shen, S.N.; Wang, J.M.; Wu, Y.J.; Zhou, C.X.; Mo, J.X.; Lin, L.G.; Gan, L.S. Triterpenoids from Cyclocarya paliurus that Enhance Glucose Uptake in 3T3-L1 Adipocytes. Molecules, 2019, 24(1), 187.
[http://dx.doi.org/10.3390/molecules24010187] [PMID: 30621331]
[135]
Granados, S.; Balcázar, N.; Guillén, A.; Echeverri, F. Evaluation of the hypoglycemic effects of flavonoids and extracts from Jatropha gossypifolia L. Molecules, 2015, 20(4), 6181-6193.
[http://dx.doi.org/10.3390/molecules20046181] [PMID: 25859777]
[136]
Lau, W.K.; Goh, B.H.; Kadir, H.A.; Shu-Chien, A.C.; Muhammad, T.S. Potent PPARγ Ligands from Swietenia macrophylla are capable of stimulating glucose uptake in muscle cells. Molecules, 2015, 20(12), 22301-22314.
[http://dx.doi.org/10.3390/molecules201219847] [PMID: 26703529]
[137]
Tiong, S.H.; Looi, C.Y.; Hazni, H.; Arya, A.; Paydar, M.; Wong, W.F.; Cheah, S.C.; Mustafa, M.R.; Awang, K. Antidiabetic and antioxidant properties of alkaloids from Catharanthus roseus (L.) G. Don. Molecules, 2013, 18(8), 9770-9784.
[http://dx.doi.org/10.3390/molecules18089770] [PMID: 23955322]
[138]
Tamrakar, A.K.; Jaiswal, N.; Yadav, P.P.; Maurya, R.; Srivastava, A.K. Pongamol from Pongamia pinnata stimulates glucose uptake by increasing surface GLUT4 level in skeletal muscle cells. Mol. Cell. Endocrinol., 2011, 339(1-2), 98-104.
[http://dx.doi.org/10.1016/j.mce.2011.03.023] [PMID: 21497640]
[139]
Nguyen, P.H.; Choi, H.S.; Ha, T.K.Q.; Seo, J.Y.; Yang, J.L.; Jung, D.W.; Williams, D.R.; Oh, W.K. Anthraquinones from Morinda longissima and their insulin mimetic activities via AMP-activated protein kinase (AMPK) activation. Bioorg. Med. Chem. Lett., 2017, 27(1), 40-44.
[http://dx.doi.org/10.1016/j.bmcl.2016.11.034] [PMID: 27887844]
[140]
Luan, G.; Wang, Y.; Wang, Z.; Zhou, W.; Hu, N.; Li, G.; Wang, H. Flavonoid glycosides from fenugreek seeds regulate glycolipid metabolism by improving mitochondrial function in 3T3-L1 adipocytes in vitro. J. Agric. Food Chem., 2018, 66(12), 3169-3178.
[http://dx.doi.org/10.1021/acs.jafc.8b00179] [PMID: 29526086]
[141]
Hashidume, T.; Sakano, T.; Mochizuki, A.; Ito, K.; Ito, S.; Kawarasaki, Y.; Miyoshi, N. Identification of soybean peptide leginsulin variants in different cultivars and their insulin-like activities. Sci. Rep., 2018, 8(1), 16847.
[http://dx.doi.org/10.1038/s41598-018-35331-5] [PMID: 30442953]
[142]
Lee, W.; Yoon, G.; Kim, M.C.; Kwon, H.C.; Bae, G.U.; Kim, Y.K.; Kim, S.N. 5,7-Dihydroxy-6-geranylflavanone improves insulin sensitivity through PPARα/γ dual activation. Int. J. Mol. Med., 2016, 37(5), 1397-1404.
[http://dx.doi.org/10.3892/ijmm.2016.2531] [PMID: 26986637]
[143]
Mohammadi, E.; Behnam, B.; Mohammadinejad, R.; Guest, P.C.; Simental-Mendía, L.E.; Sahebkar, A. antidiabetic properties of curcumin: insights on new mechanisms. Adv. Exp. Med. Biol., 2021, 1291, 151-164.
[http://dx.doi.org/10.1007/978-3-030-56153-6_9] [PMID: 34331689]
[144]
Zhang, J.; Chen, B.; Liang, J.; Han, J.; Zhou, L.; Zhao, R.; Liu, H.; Dai, H. Lanostane triterpenoids with PTP1B inhibitory and glucose-uptake stimulatory activities from mushroom Fomitopsis pinicola Collected in North America. J. Agric. Food Chem., 2020, 68(37), 10036-10049.
[http://dx.doi.org/10.1021/acs.jafc.0c04460] [PMID: 32840371]
[145]
Li, Q.; Lin, H.; Niu, Y.; Liu, Y.; Wang, Z.; Song, L.; Gao, L.; Li, L. Mangiferin promotes intestinal elimination of uric acid by modulating intestinal transporters. Eur. J. Pharmacol., 2020, 888, 173490.
[http://dx.doi.org/10.1016/j.ejphar.2020.173490] [PMID: 32827538]
[146]
Salau, V.F.; Erukainure, O.L.; Bharuth, V.; Ibeji, C.U.; Olasehinde, T.A.; Islam, M.S. Kolaviron stimulates glucose uptake with concomitant modulation of metabolic activities implicated in neurodegeneration in isolated rat brain, without perturbation of tissue ultrastructural morphology. Neurosci. Res., 2021, 169, 57-68.
[http://dx.doi.org/10.1016/j.neures.2020.06.008] [PMID: 32645363]
[147]
Farombi, E.O.; Alabi, M.C.; Akuru, T.O. Kolaviron modulates cellular redox status and impairment of membrane protein activities induced by potassium bromate (KBrO3) in rats. Pharmacol. Res., 2002, 45(1), 63-68.
[http://dx.doi.org/10.1006/phrs.2001.0907] [PMID: 11820864]
[148]
Watanabe, A.; de Almeida, M.O.; Deguchi, Y.; Kozuka, R.; Arruda, C.; Berreta, A.A.; Bastos, J.K.; Woo, J.T.; Yonezawa, T. Effects of baccharin isolated from brazilian green propolis on adipocyte differentiation and hyperglycemia in ob/ob diabetic mice. Int. J. Mol. Sci., 2021, 22(13), 6954.
[http://dx.doi.org/10.3390/ijms22136954] [PMID: 34203569]
[149]
Geddo, F.; Antoniotti, S.; Querio, G.; Salaroglio, I.C.; Costamagna, C.; Riganti, C.; Gallo, M.P. Plant-derived trans-β-caryophyllene boosts glucose metabolism and ATP synthesis in skeletal muscle cells through cannabinoid type 2 receptor stimulation. Nutrients, 2021, 13(3), 916.
[http://dx.doi.org/10.3390/nu13030916] [PMID: 33809114]
[150]
Lim, S.H.; Yu, J.S.; Lee, H.S.; Choi, C.I.; Kim, K.H. Antidiabetic flavonoids from fruits of Morus alba promoting insulin-stimulated glucose uptake via Akt and AMP-activated protein kinase activation in 3T3-L1 adipocytes. Pharmaceutics, 2021, 13(4), 526.
[http://dx.doi.org/10.3390/pharmaceutics13040526] [PMID: 33918969]
[151]
Bian, G.; Yang, J.; Elango, J.; Wu, W.; Bao, B.; Bao, C. natural triterpenoids isolated from Akebia trifoliata stem explants exert a hypoglycemic effect via α-glucosidase inhibition and glucose uptake stimulation in insulin-resistant HepG2 cells. Chem. Biodivers., 2021, 18(5), e2001030.
[http://dx.doi.org/10.1002/cbdv.202001030] [PMID: 33779055]
[152]
Salau, V.F.; Erukainure, O.L.; Koorbanally, N.A.; Islam, M.S. Ferulic acid promotes muscle glucose uptake and modulate dysregulated redox balance and metabolic pathways in ferric-induced pancreatic oxidative injury. J. Food Biochem., 2021, 8, e13641.
[http://dx.doi.org/10.1111/jfbc.13641] [PMID: 33555086]
[153]
Dai, T.; Li, L.; Qi, W.; Liu, B.; Jiang, Z.; Song, J.; Hua, H. Balanophorin B inhibited glycolysis with the involvement of HIF-1&#945. Life Sci., 2021, 267, 118910.
[http://dx.doi.org/10.1016/j.lfs.2020.118910] [PMID: 33359671]
[154]
Yamada, H.; Oshiro, E.; Kikuchi, S.; Hakozaki, M.; Takahashi, H.; Kimura, K. Hydroxyeicosapentaenoic acids from the Pacific krill show high ligand activities for PPARs. J. Lipid Res., 2014, 55(5), 895-904.
[http://dx.doi.org/10.1194/jlr.M047514] [PMID: 24668940]
[155]
Chen, B.; Zhang, J.; Han, J.; Zhao, R.; Bao, L.; Huang, Y.; Liu, H. Lanostane triterpenoids with glucose-uptake-stimulatory activity from peels of the cultivated edible mushroom Wolfiporia cocos. J. Agric. Food Chem., 2019, 67(26), 7348-7364.
[http://dx.doi.org/10.1021/acs.jafc.9b02606] [PMID: 31180673]
[156]
Yang, Z.; Wu, F.; He, Y.; Zhang, Q.; Zhang, Y.; Zhou, G.; Yang, H.; Zhou, P. A novel PTP1B inhibitor extracted from Ganoderma lucidum ameliorates insulin resistance by regulating IRS1-GLUT4 cascades in the insulin signaling pathway. Food Funct., 2018, 9(1), 397-406.
[http://dx.doi.org/10.1039/C7FO01489A] [PMID: 29215104]
[157]
Woo, J.K.; Ha, T.K.Q.; Oh, D.C.; Oh, W.K.; Oh, K.B.; Shin, J. Polyoxygenated steroids from the sponge Clathria gombawuiensis. J. Nat. Prod., 2017, 80(12), 3224-3233.
[http://dx.doi.org/10.1021/acs.jnatprod.7b00651] [PMID: 29182331]
[158]
Wang, F.; Yang, X.; Lu, Y.; Li, Z.; Xu, Y.; Hu, J.; Liu, J.; Xiong, W. The natural product antroalbol H promotes phosphorylation of liver kinase B1 (LKB1) at threonine 189 and thereby enhances cellular glucose uptake. J. Biol. Chem., 2019, 294(27), 10415-10427.
[http://dx.doi.org/10.1074/jbc.RA118.007231] [PMID: 31113861]
[159]
Olson, A.L.; Knight, J.B. Regulation of GLUT4 expression in vivo and in vitro. Front. Biosci., 2003, 8(6), s401-s409.
[http://dx.doi.org/10.2741/1072] [PMID: 12700047]
[160]
Olson, A.L.; Pessin, J.E. Structure, function, and regulation of the mammalian facilitative glucose transporter gene family. Annu. Rev. Nutr., 1996, 16(1), 235-256.
[http://dx.doi.org/10.1146/annurev.nu.16.070196.001315] [PMID: 8839927]
[161]
Stephens, J.M.; Pilch, P.F. The metabolic regulation and vesicular transport of GLUT4, the major insulin-responsive glucose transporter. Endocr. Rev., 1995, 16(4), 529-546.
[PMID: 8521793]
[162]
Mayorov, A.Y. Insulin resistance in pathogenesis of type 2 diabetes mellitus. DM, 2011, 14, 35-45.
[163]
Hardie, D.G. AMPK: a key regulator of energy balance in the single cell and the whole organism. Int. J. Obes., 2008, 32(4)(Suppl. 4), S7-S12.
[http://dx.doi.org/10.1038/ijo.2008.116] [PMID: 18719601]
[164]
Vazirian, M.; Nabavi, S.M.; Jafari, S.; Manayi, A. Natural activators of adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) and their pharmacological activities. Food Chem. Toxicol., 2018, 122, 69-79.
[http://dx.doi.org/10.1016/j.fct.2018.09.079] [PMID: 30290216]
[165]
Holmes, B.F.; Kurth-Kraczek, E.J.; Winder, W.W. Chronic activation of 5'-AMP-activated protein kinase increases GLUT-4, hexokinase, and glycogen in muscle. J. Appl. Physiol., 1999, 87(5), 1990-1995.
[http://dx.doi.org/10.1152/jappl.1999.87.5.1990] [PMID: 10562646]
[166]
Zheng, D.; MacLean, P.S.; Pohnert, S.C.; Knight, J.B.; Olson, A.L.; Winder, W.W.; Dohm, G.L. Regulation of muscle GLUT-4 transcription by AMP-activated protein kinase. J. Appl. Physiol., 2001, 91(3), 1073-1083.
[http://dx.doi.org/10.1152/jappl.2001.91.3.1073] [PMID: 11509501]
[167]
Stein, S.C.; Woods, A.; Jones, N.A.; Davison, M.D.; Carling, D. The regulation of AMP-activated protein kinase by phosphorylation. Biochem. J., 2000, 345(Pt 3), 437-443.
[http://dx.doi.org/10.1042/bj3450437] [PMID: 10642499]
[168]
Huang, S.; Czech, M.P. The GLUT4 glucose transporter. Cell Metab., 2007, 5(4), 237-252.
[http://dx.doi.org/10.1016/j.cmet.2007.03.006] [PMID: 17403369]
[169]
Moller, D.E. New drug targets for type 2 diabetes and the metabolic syndrome. Nature, 2001, 414(6865), 821-827.
[http://dx.doi.org/10.1038/414821a] [PMID: 11742415]
[170]
Ukkola, O.; Santaniemi, M. Protein tyrosine phosphatase 1B: a new target for the treatment of obesity and associated co-morbidities. J. Intern. Med., 2002, 251(6), 467-475.
[http://dx.doi.org/10.1046/j.1365-2796.2002.00992.x] [PMID: 12028501]
[171]
Goldstein, B.J.; Bittner-Kowalczyk, A.; White, M.F.; Harbeck, M. Tyrosine dephosphorylation and deactivation of insulin receptor substrate-1 by protein-tyrosine phosphatase 1B. Possible facilitation by the formation of a ternary complex with the Grb2 adaptor protein. J. Biol. Chem., 2000, 275(6), 4283-4289.
[http://dx.doi.org/10.1074/jbc.275.6.4283] [PMID: 10660596]
[172]
Chen, H.; Cong, L.N.; Li, Y.; Yao, Z.J.; Wu, L.; Zhang, Z.Y.; Burke, T.R., Jr; Quon, M.J. A phosphotyrosyl mimetic peptide reverses impairment of insulin-stimulated translocation of GLUT4 caused by overexpression of PTP1B in rat adipose cells. Biochemistry, 1999, 38(1), 384-389.
[http://dx.doi.org/10.1021/bi9816103] [PMID: 9890920]
[173]
Venable, C.L.; Frevert, E.U.; Kim, Y.B.; Fischer, B.M.; Kamatkar, S.; Neel, B.G.; Kahn, B.B. Overexpression of protein-tyrosine phosphatase-1B in adipocytes inhibits insulin-stimulated phosphoinositide 3-kinase activity without altering glucose transport or Akt/Protein kinase B activation. J. Biol. Chem., 2000, 275(24), 18318-18326.
[http://dx.doi.org/10.1074/jbc.M908392199] [PMID: 10751417]
[174]
Elchebly, M.; Payette, P.; Michaliszyn, E.; Cromlish, W.; Collins, S.; Loy, A.L.; Normandin, D.; Cheng, A.; Himms-Hagen, J.; Chan, C.C.; Ramachandran, C.; Gresser, M.J.; Tremblay, M.L.; Kennedy, B.P. Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science, 1999, 283(5407), 1544-1548.
[http://dx.doi.org/10.1126/science.283.5407.1544] [PMID: 10066179]
[175]
Gomez, E.; Vercauteren, M.; Kurtz, B.; Ouvrard-Pascaud, A.; Mulder, P.; Henry, J.P.; Besnier, M.; Waget, A.; Hooft Van Huijsduijnen, R.; Tremblay, M.L.; Burcelin, R.; Thuillez, C.; Richard, V. Reduction of heart failure by pharmacological inhibition or gene deletion of protein tyrosine phosphatase 1B. J. Mol. Cell. Cardiol., 2012, 52(6), 1257-1264.
[http://dx.doi.org/10.1016/j.yjmcc.2012.03.003] [PMID: 22446161]
[176]
Chen, W.; Zhou, X.B.; Liu, H.Y.; Xu, C.; Wang, L.L.; Li, S. P633H, a novel dual agonist at peroxisome proliferator-activated receptors alpha and gamma, with different anti-diabetic effects in db/db and KK-Ay mice. Br. J. Pharmacol., 2009, 157(5), 724-735.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00231.x] [PMID: 19422369]
[177]
Hajer, G.R.; van Haeften, T.W.; Visseren, F.L. Adipose tissue dysfunction in obesity, diabetes, and vascular diseases. Eur. Heart J., 2008, 29(24), 2959-2971.
[http://dx.doi.org/10.1093/eurheartj/ehn387] [PMID: 18775919]
[178]
Wang, L.; Waltenberger, B.; Pferschy-Wenzig, E.M.; Blunder, M.; Liu, X.; Malainer, C.; Blazevic, T.; Schwaiger, S.; Rollinger, J.M.; Heiss, E.H.; Schuster, D.; Kopp, B.; Bauer, R.; Stuppner, H.; Dirsch, V.M.; Atanasov, A.G. Natural product agonists of peroxisome proliferator-activated receptor gamma (PPARγ): a review. Biochem. Pharmacol., 2014, 92(1), 73-89.
[http://dx.doi.org/10.1016/j.bcp.2014.07.018] [PMID: 25083916]
[179]
Chen, Z.; Zhang, L.; Yi, J.; Yang, Z.; Zhang, Z.; Li, Z. Promotion of adiponectin multimerization by emodin: a novel AMPK activator with PPARγ-agonist activity. J. Cell. Biochem., 2012, 113(11), 3547-3558.
[http://dx.doi.org/10.1002/jcb.24232] [PMID: 22730200]
[180]
Berger, J.P.; Akiyama, T.E.; Meinke, P.T. PPARs: therapeutic targets for metabolic disease. Trends Pharmacol. Sci., 2005, 26(5), 244-251.
[http://dx.doi.org/10.1016/j.tips.2005.03.003] [PMID: 15860371]
[181]
Chinetti-Gbaguidi, G.; Fruchart, J.C.; Staels, B. Role of the PPAR family of nuclear receptors in the regulation of metabolic and cardiovascular homeostasis: new approaches to therapy. Curr. Opin. Pharmacol., 2005, 5(2), 177-183.
[http://dx.doi.org/10.1016/j.coph.2004.11.004] [PMID: 15780828]
[182]
Riss, T.L.; Moravec, R.A.; Niles, A.L.; Duellman, S.; Benink, H.A.; Worzella, T.J.; Lisa Minor, L. Cell Viability Assays.In: Assay Guidance Manual; Markossian, S.; Sittampalam, G.S, Eds.; Eli Lilly & Company and the National Center for Advancing Translational Sciences: Bethesda (MD), 2013. Available from:; https://www.ncbi.nlm.nih.gov/books/NBK144065/
[183]
Hannah, R.R.; Hall, M.P.; Beck, M.T.; Wood, K.V. Evolution of a thermostable luciferase for application in ATP assays. Bioluminesce. Chemiluminesce., 2001, 289-292, 289-292.
[http://dx.doi.org/10.1142/9789812811158_0071]
[184]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63.
[http://dx.doi.org/10.1016/0022-1759(83)90303-4] [PMID: 6606682]
[185]
Rizvi, S.I.; Zaid, M.A.; Anis, R.; Mishra, N. Protective role of tea catechins against oxidation-induced damage of type 2 diabetic erythrocytes. Clin. Exp. Pharmacol. Physiol., 2005, 32(1-2), 70-75.
[http://dx.doi.org/10.1111/j.1440-1681.2005.04160.x] [PMID: 15730438]
[186]
Nagao, T.; Meguro, S.; Hase, T.; Otsuka, K.; Komikado, M.; Tokimitsu, I.; Yamamoto, T.; Yamamoto, K. A catechin-rich beverage improves obesity and blood glucose control in patients with type 2 diabetes. Obesity (Silver Spring), 2009, 17(2), 310-317.
[http://dx.doi.org/10.1038/oby.2008.505] [PMID: 19008868]
[187]
Taub, P.R.; Ramirez-Sanchez, I.; Ciaraldi, T.P.; Perkins, G.; Murphy, A.N.; Naviaux, R.; Hogan, M.; Maisel, A.S.; Henry, R.R.; Ceballos, G.; Villarreal, F. Alterations in skeletal muscle indicators of mitochondrial structure and biogenesis in patients with type 2 diabetes and heart failure: effects of epicatechin rich cocoa. Clin. Transl. Sci., 2012, 5(1), 43-47.
[http://dx.doi.org/10.1111/j.1752-8062.2011.00357.x] [PMID: 22376256]
[188]
Ramirez-Sanchez, I.; Taub, P.R.; Ciaraldi, T.P.; Nogueira, L.; Coe, T.; Perkins, G.; Hogan, M.; Maisel, A.S.; Henry, R.R.; Ceballos, G.; Villarreal, F. (-)-Epicatechin rich cocoa mediated modulation of oxidative stress regulators in skeletal muscle of heart failure and type 2 diabetes patients. Int. J. Cardiol., 2013, 168(4), 3982-3990.
[http://dx.doi.org/10.1016/j.ijcard.2013.06.089] [PMID: 23870648]
[189]
Moreno-Ulloa, A.; Nájera-García, N.; Hernández, M.; Ramírez-Sánchez, I.; Taub, P.R.; Su, Y.; Beltrán-Partida, E.; Ceballos, G.; Dugar, S.; Schreiner, G.; Best, B.M.; Ciaraldi, T.P.; Henry, R.R.; Villarreal, F. A pilot study on clinical pharmacokinetics and preclinical pharmacodynamics of (+)-epicatechin on cardiometabolic endpoints. Food Funct., 2018, 9(1), 307-319.
[http://dx.doi.org/10.1039/C7FO01028A] [PMID: 29171848]
[190]
Gutiérrez-Salmeán, G.; Meaney, E.; Lanaspa, M.A.; Cicerchi, C.; Johnson, R.J.; Dugar, S.; Taub, P.; Ramírez-Sánchez, I.; Villarreal, F.; Schreiner, G.; Ceballos, G. A randomized, placebo-controlled, double-blind study on the effects of (-)-epicatechin on the triglyceride/HDLc ratio and cardiometabolic profile of subjects with hypertriglyceridemia: Unique in vitro effects. Int. J. Cardiol., 2016, 223, 500-506.
[http://dx.doi.org/10.1016/j.ijcard.2016.08.158] [PMID: 27552564]
[191]
Takahashi, M.; Miyashita, M.; Suzuki, K.; Bae, S.R.; Kim, H.K.; Wakisaka, T.; Matsui, Y.; Takeshita, M.; Yasunaga, K. Acute ingestion of catechin-rich green tea improves postprandial glucose status and increases serum thioredoxin concentrations in postmenopausal women. Br. J. Nutr., 2014, 112(9), 1542-1550.
[http://dx.doi.org/10.1017/S0007114514002530] [PMID: 25230741]
[192]
Kirch, N.; Berk, L.; Liegl, Y.; Adelsbach, M.; Zimmermann, B.F.; Stehle, P.; Stoffel-Wagner, B.; Ludwig, N.; Schieber, A.; Helfrich, H.P.; Ellinger, S. A nutritive dose of pure (-)-epicatechin does not beneficially affect increased cardiometabolic risk factors in overweight-to-obese adults-a randomized, placebo-controlled, double-blind crossover study. Am. J. Clin. Nutr., 2018, 107(6), 948-956.
[http://dx.doi.org/10.1093/ajcn/nqy066] [PMID: 29868915]
[193]
Zhang, H.; Su, S.; Yu, X.; Li, Y. Dietary epigallocatechin 3-gallate supplement improves maternal and neonatal treatment outcome of gestational diabetes mellitus: a double-blind randomised controlled trial. J. Hum. Nutr. Diet., 2017, 30(6), 753-758.
[http://dx.doi.org/10.1111/jhn.12470] [PMID: 28266082]
[194]
Huang, S.M.; Chang, Y.H.; Chao, Y.C.; Lin, J.A.; Wu, C.H.; Lai, C.Y.; Chan, K.C.; Tseng, S.T.; Yen, G.C. EGCG-rich green tea extract stimulates sRAGE secretion to inhibit S100A12-RAGE axis through ADAM10-mediated ectodomain shedding of extracellular RAGE in type 2 diabetes. Mol. Nutr. Food Res., 2013, 57(12), 2264-2268.
[http://dx.doi.org/10.1002/mnfr.201300275] [PMID: 23901023]
[195]
Ahrens, M.J.; Thompson, D.L. Effect of emulin on blood glucose in type 2 diabetics. J. Med. Food, 2013, 16(3), 211-215.
[http://dx.doi.org/10.1089/jmf.2012.0069] [PMID: 23444965]
[196]
Van den Eynde, M.D.G.; Geleijnse, J.M.; Scheijen, J.L.J.M.; Hanssen, N.M.J.; Dower, J.I.; Afman, L.A.; Stehouwer, C.D.A.; Hollman, P.C.H.; Schalkwijk, C.G. Quercetin, but not epicatechin, decreases plasma concentrations of methylglyoxal in adults in a randomized, double-blind, placebo-controlled, crossover trial with pure flavonoids. J. Nutr., 2018, 148(12), 1911-1916.
[http://dx.doi.org/10.1093/jn/nxy236] [PMID: 30398646]
[197]
Shi, Y.; Williamson, G. Quercetin lowers plasma uric acid in pre-hyperuricaemic males: a randomised, double-blinded, placebo-controlled, cross-over trial. Br. J. Nutr., 2016, 115(5), 800-806.
[http://dx.doi.org/10.1017/S0007114515005310] [PMID: 26785820]
[198]
Hussain, S.A.; Ahmed, Z.A.; Mahwi, T.O.; Aziz, T.A. Quercetin dampens postprandial hyperglycemia in type 2 diabetic patients challenged with carbohydrates load. Int. J. Diabetes Res., 2012, 1(3), 32-35.
[http://dx.doi.org/10.5923/j.diabetes.20120103.01]
[199]
Yin, J.; Xing, H.; Ye, J. Efficacy of berberine in patients with type 2 diabetes mellitus. Metabolism, 2008, 57(5), 712-717.
[http://dx.doi.org/10.1016/j.metabol.2008.01.013] [PMID: 18442638]
[200]
Zhang, H.; Wei, J.; Xue, R.; Wu, J.D.; Zhao, W.; Wang, Z.Z.; Wang, S.K.; Zhou, Z.X.; Song, D.Q.; Wang, Y.M.; Pan, H.N.; Kong, W.J.; Jiang, J.D. Berberine lowers blood glucose in type 2 diabetes mellitus patients through increasing insulin receptor expression. Metabolism, 2010, 59(2), 285-292.
[http://dx.doi.org/10.1016/j.metabol.2009.07.029] [PMID: 19800084]
[201]
Zhang, Y.; Li, X.; Zou, D.; Liu, W.; Yang, J.; Zhu, N.; Huo, L.; Wang, M.; Hong, J.; Wu, P.; Ren, G.; Ning, G. Treatment of type 2 diabetes and dyslipidemia with the natural plant alkaloid berberine. J. Clin. Endocrinol. Metab., 2008, 93(7), 2559-2565.
[http://dx.doi.org/10.1210/jc.2007-2404] [PMID: 18397984]
[202]
Tian, P.; Ge, H.; Liu, H.; Kern, T.S.; Du, L.; Guan, L.; Su, S.; Liu, P. Leukocytes from diabetic patients kill retinal endothelial cells: effects of berberine. Mol. Vis., 2013, 19, 2092-2105.
[PMID: 24146542]
[203]
Chang, X.; Wang, Z.; Zhang, J.; Yan, H.; Bian, H.; Xia, M.; Lin, H.; Jiang, J.; Gao, X. Lipid profiling of the therapeutic effects of berberine in patients with nonalcoholic fatty liver disease. J. Transl. Med., 2016, 14(1), 266.
[http://dx.doi.org/10.1186/s12967-016-0982-x] [PMID: 27629750]
[204]
Li, Z.Y.; Liu, B.; Zhuang, X.J.; Shen, Y.D.; Tian, H.R.; Ji, Y.; Li, L.X.; Liu, F. Effects of berberine on the serum cystatin C levels and urine albumin/creatine ratio in patients with type 2 diabetes mellitus. Zhonghua Yi Xue Za Zhi, 2018, 98(46), 3756-3761.
[PMID: 30541217]
[205]
Zhuang, Q.; Pan, R.; Liu, X.; Xu, W.; Wang, H.; Zhang, X.; Lai, X.; Wang, H.; Zhang, L.; Jiang, J. A validated ultra-HPLC-MS/MS method for determination of honokiol in human plasma and its application to a clinical pharmacokinetic study. Bioanalysis, 2019, 11(11), 1085-1098.
[http://dx.doi.org/10.4155/bio-2019-0030] [PMID: 31251102]
[206]
Ragheb, S.R.; El Wakeel, L.M.; Nasr, M.S.; Sabri, N.A. Impact of Rutin and Vitamin C combination on oxidative stress and glycemic control in patients with type 2 diabetes. Clin. Nutr. ESPEN, 2020, 35, 128-135.
[http://dx.doi.org/10.1016/j.clnesp.2019.10.015] [PMID: 31987106]
[207]
Cesarone, M.R.; Laurora, G.; Ricci, A.; Belcaro, G.; Pomante, P.; Candiani, C.; Leon, M.; Nicolaides, A.N. Acute effects of hydroxyethylrutosides on capillary filtration in normal volunteers, patients with venous hypertension and in patients with diabetic microangiopathy (a dose comparison study). Vasa, 1992, 21(1), 76-80.
[PMID: 1580094]
[208]
Belcaro, G.; Cesarone, M.R.; Ledda, A.; Cacchio, M.; Ruffini, I.; Ricci, A.; Ippolito, E.; Di Renzo, A.; Dugall, M.; Corsi, M.; Marino Santarelli, A.R.; Grossi, M.G. 5-Year control and treatment of edema and increased capillary filtration in venous hypertension and diabetic microangiopathy using O-(beta-hydroxyethyl)-rutosides: a prospective comparative clinical registry. Angiology, 2008, 59(1)(Suppl. 1), 14S-20S.
[http://dx.doi.org/10.1177/0003319707312683] [PMID: 18287163]
[209]
Norris, L.E.; Collene, A.L.; Asp, M.L.; Hsu, J.C.; Liu, L.F.; Richardson, J.R.; Li, D.; Bell, D.; Osei, K.; Jackson, R.D.; Belury, M.A. Comparison of dietary conjugated linoleic acid with safflower oil on body composition in obese postmenopausal women with type 2 diabetes mellitus. Am. J. Clin. Nutr., 2009, 90(3), 468-476.
[http://dx.doi.org/10.3945/ajcn.2008.27371] [PMID: 19535429]
[210]
Lee, T.C.; Ivester, P.; Hester, A.G.; Sergeant, S.; Case, L.D.; Morgan, T.; Kouba, E.O.; Chilton, F.H. The impact of polyunsaturated fatty acid-based dietary supplements on disease biomarkers in a metabolic syndrome/diabetes population. Lipids Health Dis., 2014, 13(1), 196.
[http://dx.doi.org/10.1186/1476-511X-13-196] [PMID: 25515553]
[211]
Santos-Lozano, J.M.; Rada, M.; Lapetra, J.; Guinda, Á.; Jiménez-Rodríguez, M.C.; Cayuela, J.A.; Ángel-Lugo, A.; Vilches-Arenas, Á.; Gómez-Martín, A.M.; Ortega-Calvo, M.; Castellano, J.M. Prevention of type 2 diabetes in prediabetic patients by using functional olive oil enriched in oleanolic acid: The PREDIABOLE study, a randomized controlled trial. Diabetes Obes. Metab., 2019, 21(11), 2526-2534.
[http://dx.doi.org/10.1111/dom.13838] [PMID: 31364228]
[212]
van Dijk, A.E.; Olthof, M.R.; Meeuse, J.C.; Seebus, E.; Heine, R.J.; van Dam, R.M. Acute effects of decaffeinated coffee and the major coffee components chlorogenic acid and trigonelline on glucose tolerance. Diabetes Care, 2009, 32(6), 1023-1025.
[http://dx.doi.org/10.2337/dc09-0207] [PMID: 19324944]
[213]
Cicero, A.F.; Rosticci, M.; Parini, A.; Morbini, M.; Urso, R.; Grandi, E.; Borghi, C. Short-term effects of a combined nutraceutical of insulin-sensitivity, lipid level and indexes of liver steatosis: a double-blind, randomized, cross-over clinical trial. Nutr. J., 2015, 14(1), 30.
[http://dx.doi.org/10.1186/s12937-015-0019-y] [PMID: 25886384]
[214]
Zuñiga, L.Y.; Aceves-de la Mora, M.C.A.; González-Ortiz, M.; Ramos-Núñez, J.L.; Martínez-Abundis, E. Effect of Chlorogenic Acid administration on glycemic control, insulin secretion, and insulin sensitivity in patients with impaired glucose tolerance. J. Med. Food, 2018, 21(5), 469-473.
[http://dx.doi.org/10.1089/jmf.2017.0110] [PMID: 29261010]
[215]
Ferk, F.; Kundi, M.; Brath, H.; Szekeres, T.; Al-Serori, H.; Mišík, M.; Saiko, P.; Marculescu, R.; Wagner, K.H.; Knasmueller, S. Gallic acid improves health-associated biochemical parameters and prevents oxidative damage of DNA in type 2 diabetes patients: results of a placebo-controlled pilot study. Mol. Nutr. Food Res., 2018, 62(4), 1700482.
[http://dx.doi.org/10.1002/mnfr.201700482] [PMID: 29193677]
[216]
Ribeiro, C.B.; Ramos, F.M.; Manthey, J.A.; Cesar, T.B. Effectiveness of Eriomin® in managing hyperglycemia and reversal of prediabetes condition: A double-blind, randomized, controlled study. Phytother. Res., 2019, 33(7), 1921-1933.
[http://dx.doi.org/10.1002/ptr.6386] [PMID: 31183921]
[217]
Homayouni, F.; Haidari, F.; Hedayati, M.; Zakerkish, M.; Ahmadi, K. Blood pressure lowering and anti-inflammatory effects of hesperidin in type 2 diabetes; a randomized double-blind controlled clinical trial. Phytother. Res., 2018, 32(6), 1073-1079.
[http://dx.doi.org/10.1002/ptr.6046] [PMID: 29468764]
[218]
Homayouni, F.; Haidari, F.; Hedayati, M.; Zakerkish, M.; Ahmadi, K. hesperidin supplementation alleviates oxidative dna damage and lipid peroxidation in type 2 diabetes: a randomized double-blind placebo-controlled clinical trial. Phytother. Res., 2017, 31(10), 1539-1545.
[http://dx.doi.org/10.1002/ptr.5881] [PMID: 28805022]
[219]
Fukushima, M.; Matsuyama, F.; Ueda, N.; Egawa, K.; Takemoto, J.; Kajimoto, Y.; Yonaha, N.; Miura, T.; Kaneko, T.; Nishi, Y.; Mitsui, R.; Fujita, Y.; Yamada, Y.; Seino, Y. Effect of corosolic acid on postchallenge plasma glucose levels. Diabetes Res. Clin. Pract., 2006, 73(2), 174-177.
[http://dx.doi.org/10.1016/j.diabres.2006.01.010] [PMID: 16549220]
[220]
Sala-Cirtog, M.; Marian, C.; Anghel, A. New insights of medicinal plant therapeutic activity-The miRNA transfer. Biomed. Pharmacother., 2015, 74, 228-232.
[http://dx.doi.org/10.1016/j.biopha.2015.08.016] [PMID: 26349990]
[221]
Gismondi, A.; Nanni, V.; Monteleone, V.; Colao, C.; Di Marco, G.; Canini, A. Plant miR171 modulates mTOR pathway in HEK293 cells by targeting GNA12. Mol. Biol. Rep., 2021, 48(1), 435-449.
[http://dx.doi.org/10.1007/s11033-020-06070-6] [PMID: 33386590]
[222]
Zhang, H.; Li, Y.; Liu, Y.; Liu, H.; Wang, H.; Jin, W.; Zhang, Y.; Zhang, C.; Xu, D. Role of plant MicroRNA in cross-species regulatory networks of humans. BMC Syst. Biol., 2016, 10(1), 60.
[http://dx.doi.org/10.1186/s12918-016-0292-1] [PMID: 27502923]
[223]
Ražná, K.; Bežo, B. Hlavačková, L.; Žiarovská, J.; Miko, M.; Gažo, J.; Habán, M. MicroRNA(miRNA) in food ressources and medicinal plants. Potravinárstvo, 2016, 10(1), 188-1.
[http://dx.doi.org/10.5219/583]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy