Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Screening of Key Part in IFN Pathway for Herpes Zoster: Evidence from Bioinformatics Analysis

Author(s): Zimeng Li, Jie Wu*, Shijie Huang, Zhengqi Pan and Jing Huang

Volume 26, Issue 4, 2023

Published on: 05 August, 2022

Page: [719 - 727] Pages: 9

DOI: 10.2174/1386207325666220509182242

Price: $65

Abstract

Background: Herpes zoster is one of the most common diseases in middle and old ages, and the incidence rate is constantly increasing. Long-term, severe neuropathological pain continues to afflict the patients, causing trouble and even the inability to live a normal life. Since the occurrence and development of herpes zoster are related to many mechanisms, there is no uniform conclusion and specific treatment method, and only a limited number of people are currently vaccinated against HZ.

Objective: This study aimed at exploring the potential mechanism or biomarkers for Herpes zoster.

Methods: In this study, a data set GSE165112 containing 12 samples was downloaded, out of which, 6 samples were treated with interferon, and 6 samples were not treated. Differentially expressed genes (DEG) analysis, KEGG, GO enrichment analysis, and GSEA were carried out.

Results: A total of 264 DEGs were identified, including 32 uP-regulated DEGs and 232 downregulated DEGs. DEGs are mainly enriched in immune response, inflammatory response, chemotaxis, etc. Four key pathways were found to be related to HZ, including IL2-STAT5 signaling, inflammatory response, TNF-a signaling via NF-κB, and IFN-α. Moreover, ten hub genes were also identified.

Conclusion: This study shows that exploring DEGs and pathways through bioinformatics analysis is of great significance for understanding the molecular mechanism of HZ, especially the defect of the IFN pathway. It may be helpful in improving the treatment for HZ.

Keywords: Herpes zoster, bioinformatic analysis, protein-protein interaction network, gene ontology, Kyoto Encyclopedia of Genes and Genomes, gene set enrichment analysis, interferon.

Graphical Abstract
[1]
Gershon, A.A.; Breuer, J.; Cohen, J.I.; Cohrs, R.J.; Gershon, M.D.; Gilden, D.; Grose, C.; Hambleton, S.; Kennedy, P.G.; Oxman, M.N.; Seward, J.F.; Yamanishi, K. Varicella zoster virus infection. Nat. Rev. Dis. Primers, 2015, 1(1), 15016.
[http://dx.doi.org/10.1038/nrdp.2015.16] [PMID: 27188665]
[2]
Koshy, E.; Mengting, L.; Kumar, H.; Jianbo, W. Epidemiology, treatment and prevention of herpes zoster: A comprehensive review. Indian J. Dermatol. Venereol. Leprol., 2018, 84(3), 251-262.
[http://dx.doi.org/10.4103/ijdvl.IJDVL_1021_16] [PMID: 29516900]
[3]
Kawai, K.; Yawn, B.P.; Wollan, P.; Harpaz, R. Increasing incidence of herpes zoster over a 60-year period from a population-based study. Clin. Infect. Dis., 2016, 63(2), 221-226.
[http://dx.doi.org/10.1093/cid/ciw296] [PMID: 27161774]
[4]
Johnson, R.W.; Alvarez-Pasquin, M.J.; Bijl, M.; Franco, E.; Gaillat, J.; Clara, J.G.; Labetoulle, M.; Michel, J.P.; Naldi, L.; Sanmarti, L.S.; Weinke, T. Herpes zoster epidemiology, management, and disease and economic burden in Europe: A multidisciplinary perspective. Ther. Adv. Vaccines, 2015, 3(4), 109-120.
[http://dx.doi.org/10.1177/2051013615599151] [PMID: 26478818]
[5]
Reis, A.D.; Pannuti, C.S.; de Souza, V.A. Prevalence of varicella-zoster virus antibodies in young adults from different Brazilian climatic regions. Rev. Soc. Bras. Med. Trop., 2003, 36(3), 317-320.
[http://dx.doi.org/10.1590/S0037-86822003000300001] [PMID: 12908030]
[6]
Elsaie, M.L.; Youssef, E.A.; Nada, H.A. Herpes zoster might be an indicator for latent COVID 19 infection. Dermatol. Ther., 2020, 33(4), e13666.
[http://dx.doi.org/10.1111/dth.13666] [PMID: 32447801]
[7]
Esposito, S.; Principi, N. Herpes zoster prevention: A difficult problem to solve. Vaccine, 2018, 36(36), 5442-5448.
[http://dx.doi.org/10.1016/j.vaccine.2017.07.099] [PMID: 28784283]
[8]
Gibbons, A.; Galor, A. Current vaccines for the prevention of herpes zoster. Curr. Opin. Ophthalmol., 2018, 29(4), 355-359.
[http://dx.doi.org/10.1097/ICU.0000000000000480] [PMID: 29702494]
[9]
Morrison, V.A.; Johnson, G.R.; Schmader, K.E.; Levin, M.J.; Zhang, J.H.; Looney, D.J.; Betts, R.; Gelb, L.; Guatelli, J.C.; Harbecke, R.; Pachucki, C.; Keay, S.; Menzies, B.; Griffin, M.R.; Kauffman, C.A.; Marques, A.; Toney, J.; Boardman, K.; Su, S.C.; Li, X.; Chan, I.S.; Parrino, J.; Annunziato, P.; Oxman, M.N.; Davis, L.; Kauffman, C.A.; Keay, S.K.; Straus, S.E.; Marques, A.R.; Soto, N.E.; Brunell, P.; Gnann, J.W.; Serrao, R.; Cotton, D.J.; Goodman, R.P.; Arbeit, R.D.; Pachucki, C.T.; Levin, M.J.; Schmader, K.E.; Keitel, W.A.; Greenberg, R.N.; Morrison, V.A.; Wright, P.F.; Griffin, M.R.; Simberkoff, M.S.; Yeh, S.S.; Lobo, Z.; Holodniy, M.; Loutit, J.; Betts, R.F.; Gelb, L.D.; Crawford, G.E.; Guatelli, J.; Brooks, P.A.; Looney, D.J.; Neuzil, K.M.; Toney, J.F.; Kauffman, C.A.; Keay, S.K.; Marques, A.R.; Pachucki, C.T.; Levin, M.J.; Schmader, K.E.; Morrison, V.A.; Wright, P.F.; Griffin, M.R.; Betts, R.F.; Gelb, L.D.; Guatelli, J.C.; Looney, D.J.; Neuzil, K.M.; Menzies, B.; Toney, J.F. Long-term persistence of zoster vaccine efficacy. Clin. Infect. Dis., 2015, 60(6), 900-909.
[http://dx.doi.org/10.1093/cid/ciu918] [PMID: 25416754]
[10]
Hsu, C.Y.; Ke, D.S.; Lin, C.L.; Kao, C.H. Association between de Quervain syndrome and herpes zoster: A population-based cohort study. BMJ Open, 2021, 11(12), e046891.
[http://dx.doi.org/10.1136/bmjopen-2020-046891] [PMID: 34949602]
[11]
Yu, T.M.; Sun, K.T.; Kung, S.C.; Lee, B.K.; Wu, M.J.; Chen, C.H.; Sun, C.S.; Lo, Y.C.; Lan, T.H.; Li, C.Y.; Chiu, T.F.; Lin, M.C.; Kao, C.H. Severe herpes simplex and varicella-zoster viral infection in patients with solid organ transplantation: A nationwide population-based cohort study with propensity score matching analysis. J. Am. Acad. Dermatol., 2021, S0190-9622(21)02659-1.
[http://dx.doi.org/10.1016/j.jaad.2021.10.016] [PMID: 34687787]
[12]
Ansari, R.; Rosen, L.B.; Lisco, A.; Gilden, D.; Holland, S.M.; Zerbe, C.S.; Bonomo, R.A.; Cohen, J.I. Primary and acquired immunodeficiencies associated with severe varicella-zoster virus infections. Clin. Infect. Dis., 2021, 73(9), e2705-e2712.
[http://dx.doi.org/10.1093/cid/ciaa1274] [PMID: 32856043]
[13]
Wu, H.; Li, S.; Hu, X.; Qin, W.; Wang, Y.; Sun, T.; Wu, Z.; Wang, X.; Lu, S.; Xu, D.; Li, Y.; Guan, S.; Zhao, H.; Yao, W.; Liu, M.; Wei, M. Associations of mRNA expression of DNA repair genes and genetic polymorphisms with cancer risk: A bioinformatics analysis and meta-analysis. J. Cancer, 2019, 10(16), 3593-3607.
[http://dx.doi.org/10.7150/jca.30975] [PMID: 31333776]
[14]
Li, G.M.; Zhang, C.L.; Rui, R.P.; Sun, B.; Guo, W. Bioinformatics analysis of common differential genes of coronary artery disease and ischemic cardiomyopathy. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(11), 3553-3569.
[PMID: 29917210]
[15]
Huang, D.W.; Sherman, B.T.; Tan, Q.; Collins, J.R.; Alvord, W.G.; Roayaei, J.; Stephens, R.; Baseler, M.W.; Lane, H.C.; Lempicki, R.A. The DAVID gene functional classification tool: A novel biological module-centric algorithm to functionally analyze large gene lists. Genome Biol., 2007, 8(9), R183.
[http://dx.doi.org/10.1186/gb-2007-8-9-r183] [PMID: 17784955]
[16]
Kanehisa, M. The KEGG database. Novartis Found Symp, 2002, 247, 91-101. discussion 101-3, 119-28, 244-52.
[http://dx.doi.org/10.1002/0470857897.ch8]
[17]
Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M.; Davis, A.P.; Dolinski, K.; Dwight, S.S.; Eppig, J.T.; Harris, M.A.; Hill, D.P.; Issel-Tarver, L.; Kasarskis, A.; Lewis, S.; Matese, J.C.; Richardson, J.E.; Ringwald, M.; Rubin, G.M.; Sherlock, G. Gene ontology: Tool for the unification of biology. Nat. Genet., 2000, 25(1), 25-29.
[http://dx.doi.org/10.1038/75556] [PMID: 10802651]
[18]
Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; Pomeroy, S.L.; Golub, T.R.; Lander, E.S.; Mesirov, J.P. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA, 2005, 102(43), 15545-15550.
[http://dx.doi.org/10.1073/pnas.0506580102] [PMID: 16199517]
[19]
Schaap, A.; Fortin, J.F.; Sommer, M.; Zerboni, L.; Stamatis, S.; Ku, C.C.; Nolan, G.P.; Arvin, A.M. T-cell tropism and the role of ORF66 protein in pathogenesis of varicella-zoster virus infection. J. Virol., 2005, 79(20), 12921-12933.
[http://dx.doi.org/10.1128/JVI.79.20.12921-12933.2005] [PMID: 16188994]
[20]
Zimmer, J.; Hentges, F.; Andrès, E. Natural killer cell deficiencies and severe varicella infection. J. Pediatr., 2006, 148(4), 563.
[http://dx.doi.org/10.1016/j.jpeds.2005.06.029] [PMID: 16647427]
[21]
Koenig, A.; Wolff, M.H. Infectibility of separated peripheral blood mononuclear cell subpopulations by varicella-zoster virus (VZV). J. Med. Virol., 2003, 70(S1)(Suppl. 1), S59-S63.
[http://dx.doi.org/10.1002/jmv.10323] [PMID: 12627490]
[22]
Huch, J.H.; Cunningham, A.L.; Arvin, A.M.; Nasr, N.; Santegoets, S.J.; Slobedman, E.; Slobedman, B.; Abendroth, A. Impact of varicella-zoster virus on dendritic cell subsets in human skin during natural infection. J. Virol., 2010, 84(8), 4060-4072.
[http://dx.doi.org/10.1128/JVI.01450-09] [PMID: 20130046]
[23]
Ogunjimi, B.; Zhang, S.Y.; Sørensen, K.B.; Skipper, K.A.; Carter-Timofte, M.; Kerner, G.; Luecke, S.; Prabakaran, T.; Cai, Y.; Meester, J.; Bartholomeus, E.; Bolar, N.A.; Vandeweyer, G.; Claes, C.; Sillis, Y.; Lorenzo, L.; Fiorenza, R.A.; Boucherit, S.; Dielman, C.; Heynderickx, S.; Elias, G.; Kurotova, A.; Auwera, A.V.; Verstraete, L.; Lagae, L.; Verhelst, H.; Jansen, A.; Ramet, J.; Suls, A.; Smits, E.; Ceulemans, B.; Van Laer, L.; Plat Wilson, G.; Kreth, J.; Picard, C.; Von Bernuth, H.; Fluss, J.; Chabrier, S.; Abel, L.; Mortier, G.; Fribourg, S.; Mikkelsen, J.G.; Casanova, J.L.; Paludan, S.R.; Mogensen, T.H. Inborn errors in RNA polymerase III underlie severe varicella zoster virus infections. J. Clin. Invest., 2017, 127(9), 3543-3556.
[http://dx.doi.org/10.1172/JCI92280] [PMID: 28783042]
[24]
Thompson, C.D.; Matta, B.; Barnes, B.J. Therapeutic targeting of IRFs: Pathway-dependence or structure-based? Front. Immunol., 2018, 9, 2622.
[http://dx.doi.org/10.3389/fimmu.2018.02622] [PMID: 30515152]
[25]
Barnes, B.; Lubyova, B.; Pitha, P.M. On the role of IRF in host defense. J. Interferon Cytokine Res., 2002, 22(1), 59-71.
[http://dx.doi.org/10.1089/107999002753452665] [PMID: 11846976]
[26]
Vandevenne, P.; Lebrun, M.; El Mjiyad, N.; Ote, I.; Di Valentin, E.; Habraken, Y.; Dortu, E.; Piette, J.; Sadzot-Delvaux, C. The varicella-zoster virus ORF47 kinase interferes with host innate immune response by inhibiting the activation of IRF3. PLoS One, 2011, 6(2), e16870.
[http://dx.doi.org/10.1371/journal.pone.0016870] [PMID: 21347389]
[27]
Sen, N.; Sommer, M.; Che, X.; White, K.; Ruyechan, W.T.; Arvin, A.M. Varicella-zoster virus immediate-early protein 62 blocks interferon regulatory factor 3 (IRF3) phosphorylation at key serine residues: A novel mechanism of IRF3 inhibition among herpesviruses. J. Virol., 2010, 84(18), 9240-9253.
[http://dx.doi.org/10.1128/JVI.01147-10] [PMID: 20631144]
[28]
Zhu, H.; Zheng, C.; Xing, J.; Wang, S.; Li, S.; Lin, R.; Mossman, K.L. Varicella-zoster virus immediate-early protein ORF61 abrogates the IRF3-mediated innate immune response through degradation of activated IRF3. J. Virol., 2011, 85(21), 11079-11089.
[http://dx.doi.org/10.1128/JVI.05098-11] [PMID: 21835786]
[29]
Sloan, E.; Henriquez, R.; Kinchington, P.R.; Slobedman, B.; Abendroth, A. Varicella-zoster virus inhibition of the NF-κB pathway during infection of human dendritic cells: Role for open reading frame 61 as a modulator of NF-κB activity. J. Virol., 2012, 86(2), 1193-1202.
[http://dx.doi.org/10.1128/JVI.06400-11] [PMID: 22090112]
[30]
Tada, Y.; Ho, A.; Matsuyama, T.; Mak, T.W. Reduced incidence and severity of antigen-induced autoimmune diseases in mice lacking interferon regulatory factor-1. J. Exp. Med., 1997, 185(2), 231-238.
[http://dx.doi.org/10.1084/jem.185.2.231] [PMID: 9016872]
[31]
Au, W.C.; Moore, P.A.; LaFleur, D.W.; Tombal, B.; Pitha, P.M. Characterization of the interferon regulatory factor-7 and its potential role in the transcription activation of interferon A genes. J. Biol. Chem., 1998, 273(44), 29210-29217.
[http://dx.doi.org/10.1074/jbc.273.44.29210] [PMID: 9786932]
[32]
Civas, A.; Island, M.L.; Génin, P.; Morin, P.; Navarro, S. Regulation of virus-induced interferon-A genes. Biochimie, 2002, 84(7), 643-654.
[http://dx.doi.org/10.1016/S0300-9084(02)01431-1] [PMID: 12453636]
[33]
Schoggins, J.W. Interferon-stimulated genes: What do they all do? Annu. Rev. Virol., 2019, 6(1), 567-584.
[http://dx.doi.org/10.1146/annurev-virology-092818-015756] [PMID: 31283436]
[34]
Chapgier, A.; Boisson-Dupuis, S.; Jouanguy, E.; Vogt, G.; Feinberg, J.; Prochnicka-Chalufour, A.; Casrouge, A.; Yang, K.; Soudais, C.; Fieschi, C.; Santos, O.F.; Bustamante, J.; Picard, C.; de Beaucoudrey, L.; Emile, J.F.; Arkwright, P.D.; Schreiber, R.D.; Rolinck-Werninghaus, C.; Rösen-Wolff, A.; Magdorf, K.; Roesler, J.; Casanova, J.L. Novel STAT1 alleles in otherwise healthy patients with mycobacterial disease. PLoS Genet., 2006, 2(8), e131.
[http://dx.doi.org/10.1371/journal.pgen.0020131] [PMID: 16934001]
[35]
Chapgier, A.; Kong, X.F.; Boisson-Dupuis, S.; Jouanguy, E.; Averbuch, D.; Feinberg, J.; Zhang, S.Y.; Bustamante, J.; Vogt, G.; Lejeune, J.; Mayola, E.; de Beaucoudrey, L.; Abel, L.; Engelhard, D.; Casanova, J.L. A partial form of recessive STAT1 deficiency in humans. J. Clin. Invest., 2009, 119(6), 1502-1514.
[http://dx.doi.org/10.1172/JCI37083] [PMID: 19436109]
[36]
Haller, O.; Kochs, G. Interferon-induced mx proteins: Dynamin-like GTPases with antiviral activity. Traffic, 2002, 3(10), 710-717.
[http://dx.doi.org/10.1034/j.1600-0854.2002.31003.x] [PMID: 12230469]
[37]
Lee, S.H.; Vidal, S.M. Functional diversity of Mx proteins: Variations on a theme of host resistance to infection. Genome Res., 2002, 12(4), 527-530.
[http://dx.doi.org/10.1101/gr.20102] [PMID: 11932237]
[38]
Staeheli, P.; Haller, O.; Boll, W.; Lindenmann, J.; Weissmann, C. Mx protein: Constitutive expression in 3T3 cells transformed with cloned Mx cDNA confers selective resistance to influenza virus. Cell, 1986, 44(1), 147-158.
[http://dx.doi.org/10.1016/0092-8674(86)90493-9] [PMID: 3000619]
[39]
Dao, C.T.; Zhang, D.E. ISG15: A ubiquitin-like enigma. Front. Biosci., 2005, 10(1-3), 2701-2722.
[http://dx.doi.org/10.2741/1730] [PMID: 15970528]
[40]
Verweij, M.C.; Wellish, M.; Whitmer, T.; Malouli, D.; Lapel, M.; Jonjić, S.; Haas, J.G.; DeFilippis, V.R.; Mahalingam, R.; Früh, K. Varicella viruses inhibit interferon-stimulated JAK-STAT signaling through multiple mechanisms. PLoS Pathog., 2015, 11(5), e1004901.
[http://dx.doi.org/10.1371/journal.ppat.1004901] [PMID: 25973608]
[41]
Ouwendijk, W.J.D.; van Veen, S.; Mahalingam, R.; Verjans, G.M.G.M. Simian varicella virus inhibits the interferon gamma signalling pathway. J. Gen. Virol., 2017, 98(10), 2582-2588.
[http://dx.doi.org/10.1099/jgv.0.000925] [PMID: 28901902]
[42]
Hawerkamp, H.C.; Domdey, A.; Radau, L.; Sewerin, P.; Oláh, P.; Homey, B.; Meller, S. Tofacitinib downregulates antiviral immune defence in keratinocytes and reduces T cell activation. Arthritis Res. Ther., 2021, 23(1), 144.
[http://dx.doi.org/10.1186/s13075-021-02509-8] [PMID: 34020693]
[43]
Varrassi, G.; Fusco, M.; Coaccioli, S.; Paladini, A. Chronic pain and neurodegenerative processes in elderly people. Pain Pract., 2015, 15(1), 1-3.
[http://dx.doi.org/10.1111/papr.12254] [PMID: 25353291]
[44]
Jiang, B.C.; He, L.N.; Wu, X.B.; Shi, H.; Zhang, W.W.; Zhang, Z.J.; Cao, D.L.; Li, C.H.; Gu, J.; Gao, Y.J. Promoted interaction of C/EBPα with demethylated Cxcr3 gene promoter contributes to neuropathic pain in mice. J. Neurosci., 2017, 37(3), 685-700.
[http://dx.doi.org/10.1523/JNEUROSCI.2262-16.2016] [PMID: 28100749]
[45]
Walsh, C.M.; Hill, R.Z.; Schwendinger-Schreck, J.; Deguine, J.; Brock, E.C.; Kucirek, N.; Rifi, Z.; Wei, J.; Gronert, K.; Brem, R.B.; Barton, G.M.; Bautista, D.M. Neutrophils promote CXCR3-dependent itch in the development of atopic dermatitis. eLife, 2019, 8, 8.
[http://dx.doi.org/10.7554/eLife.48448] [PMID: 31631836]
[46]
Steain, M.; Gowrishankar, K.; Rodriguez, M.; Slobedman, B.; Abendroth, A. Upregulation of CXCL10 in human dorsal root ganglia during experimental and natural varicella-zoster virus infection. J. Virol., 2011, 85(1), 626-631.
[http://dx.doi.org/10.1128/JVI.01816-10] [PMID: 20980518]
[47]
Lind, L.; Eriksson, K.; Grahn, A. Chemokines and matrix metalloproteinases in cerebrospinal fluid of patients with central nervous system complications caused by varicella-zoster virus. J. Neuroinflammation, 2019, 16(1), 42.
[http://dx.doi.org/10.1186/s12974-019-1428-1] [PMID: 30777092]
[48]
Honkala, A.T.; Tailor, D.; Malhotra, S.V. Guanylate-binding protein 1: An emerging target in inflammation and cancer. Front. Immunol., 2020, 10, 3139.
[http://dx.doi.org/10.3389/fimmu.2019.03139] [PMID: 32117203]
[49]
Justesen, J.; Hartmann, R.; Kjeldgaard, N.O. Gene structure and function of the 2′-5′-oligoadenylate synthetase family. Cell. Mol. Life Sci., 2000, 57(11), 1593-1612.
[http://dx.doi.org/10.1007/PL00000644] [PMID: 11092454]
[50]
Kato, H.; Takeuchi, O.; Sato, S.; Yoneyama, M.; Yamamoto, M.; Matsui, K.; Uematsu, S.; Jung, A.; Kawai, T.; Ishii, K.J.; Yamaguchi, O.; Otsu, K.; Tsujimura, T.; Koh, C.S.; Reis e Sousa, C.; Matsuura, Y.; Fujita, T.; Akira, S. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature, 2006, 441(7089), 101-105.
[http://dx.doi.org/10.1038/nature04734] [PMID: 16625202]
[51]
Meylan, E.; Tschopp, J.; Karin, M. Intracellular pattern recognition receptors in the host response. Nature, 2006, 442(7098), 39-44.
[http://dx.doi.org/10.1038/nature04946] [PMID: 16823444]
[52]
Kim, M.S.; Kim, D.J.; Na, C.H.; Shin, B.S. A study of the changes of T helper 17 cells and regulatory T cells in herpes zoster. Ann. Dermatol., 2017, 29(5), 578-585.
[http://dx.doi.org/10.5021/ad.2017.29.5.578] [PMID: 28966514]
[53]
Tak, P.P.; Firestein, G.S. NF-kappaB: A key role in inflammatory diseases. J. Clin. Invest., 2001, 107(1), 7-11.
[http://dx.doi.org/10.1172/JCI11830] [PMID: 11134171]
[54]
Liu, J.; Tang, J.; Zuo, Y.; Yu, Y.; Luo, P.; Yao, X.; Dong, Y.; Wang, P.; Liu, L.; Zhou, H. Stauntoside B inhibits macrophage activation by inhibiting NF-κB and ERK MAPK signalling. Pharmacol. Res., 2016, 111, 303-315.
[http://dx.doi.org/10.1016/j.phrs.2016.06.022] [PMID: 27343699]
[55]
Yu, S.; Chen, X.; Xiu, M.; He, F.; Xing, J.; Min, D.; Guo, F. The regulation of Jmjd3 upon the expression of NF-κB downstream inflammatory genes in LPS activated vascular endothelial cells. Biochem. Biophys. Res. Commun., 2017, 485(1), 62-68.
[http://dx.doi.org/10.1016/j.bbrc.2017.02.020] [PMID: 28189690]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy