Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Research Article

Degree of Gelatination on Ag-Nanoparticles to Inactivate Multi-drug Resistant Bacterial Biofilm Isolated from Sewage Treatment Plant

Author(s): Nagaraj Saraswathi, Koyeli Girigoswami, Kurunchi Chellapathi Divya, Subbaraj Gowtham Kumar and Agnishwar Girigoswami*

Volume 20, Issue 5, 2023

Published on: 01 August, 2022

Page: [566 - 574] Pages: 9

DOI: 10.2174/1567201819666220509160432

Price: $65

Abstract

Introduction: Overuse and improper dosage of antibiotics have generated antimicrobial resistance (AMR) worldwide. Pseudomonas aeruginosa (PA), a well-known bacterial strain can establish MDR leading to a variety of infections in humans. Furthermore, these PA strains hold the ability to form biofilms by generating extracellular polymeric substances on the surface of medical tools and critical care units. To supersede the infectious effect of MDR organisms, silver nanoparticles have been known to be the choice.

Materials and Methods: Hence, the present study concentrates on the engineering of varying concentrations of gelatin-based polymeric hydrogel embedded with silver nanoparticles (G-AgNPs) for controlled bactericidal activity against MDR PA biofilms. Biofilms formation by MDR PA was confirmed microscopically and spectroscopy was taken as a tool to characterize and analyze the efficacy at every stage of experiments.

Results: When MDR PA biofilms were treated with G-AgNPs prepared with 5 % gelatin concentration (AgNP3), they exhibited superior bactericidal activity. Furthermore, a dose-dependent study showed that 800 nM of AgNP3 could inhibit the growth of MDR PA.

Conclusion: Hence it can be concluded that silver nanoparticles synthesized in the presence of 5% gelatin can act as a bactericidal agent in the inactivation of MDR PA biofilms, thereby controlling the infections caused by these biofilms.

Keywords: Multidrug resistant, gelatin, silver nanoparticles, Pseudomonas aeruginosa, biofilm, sewage treatment.

Graphical Abstract
[1]
Lobanovska, M.; Pilla, G. Focus: Drug development: Penicillin’s discovery and antibiotic resistance: Lessons for the future? Yale J. Biol. Med., 2017, 90(1), 135-145.
[PMID: 28356901]
[2]
Pajares-Chamorro, N.; Shook, J.; Hammer, N.D.; Chatzistavrou, X. Resurrection of antibiotics that methicillin-resistant Staphylococcus aureus resists by silver-doped bioactive glass-ceramic microparticles. Acta Biomater., 2019, 96, 537-546.
[http://dx.doi.org/10.1016/j.actbio.2019.07.012] [PMID: 31302297]
[3]
Thangamani, S.; Younis, W.; Seleem, M.N. Repurposing ebselen for treatment of multidrug-resistant Staphylococcal infections. Sci. Rep., 2015, 5(1), 11596.
[http://dx.doi.org/10.1038/srep11596] [PMID: 26111644]
[4]
Mirzaei, R.; Mohammadzadeh, R.; Alikhani, M.Y.; Shokri Moghadam, M.; Karampoor, S.; Kazemi, S.; Barfipoursalar, A.; Yousefimashouf, R. The biofilm-associated bacterial infections unrelated to indwelling devices. IUBMB Life, 2020, 72(7), 1271-1285.
[http://dx.doi.org/10.1002/iub.2266] [PMID: 32150327]
[5]
Vasudevan, R. Biofilms: Microbial cities of scientific significance. J. Microbiol. Exp., 2014, 1(3), 00014.
[http://dx.doi.org/10.15406/jmen.2014.01.00014]
[6]
Srivastava, S.; Bhargava, A. Biofilms and human health. Biotechnol. Lett., 2016, 38(1), 1-22.
[http://dx.doi.org/10.1007/s10529-015-1960-8] [PMID: 26386834]
[7]
Chen, M.; Yu, Q.; Sun, H. Novel strategies for the prevention and treatment of biofilm related infections. Int. J. Mol. Sci., 2013, 14(9), 18488-18501.
[http://dx.doi.org/10.3390/ijms140918488] [PMID: 24018891]
[8]
Ghosh, A.; Jayaraman, N.; Chatterji, D. Small-molecule inhibition of bacterial biofilm. ACS Omega, 2020, 5(7), 3108-3115.
[http://dx.doi.org/10.1021/acsomega.9b03695] [PMID: 32118127]
[9]
Amsaveni, G.; Farook, A.S.; Haribabu, V.; Murugesan, R.; Girigoswami, A. Engineered multifunctional nanoparticles for DLA cancer cells targeting, sorting, MR imaging and drug delivery. Adv. Sci. Eng. Med., 2013, 5(12), 1340-1348.
[http://dx.doi.org/10.1166/asem.2013.1425]
[10]
Ghosh, S.; Girigoswami, K.; Girigoswami, A. Membrane-encapsulated camouflaged nanomedicines in drug delivery. Nanomedicine (Lond.), 2019, 14(15), 2067-2082.
[http://dx.doi.org/10.2217/nnm-2019-0155] [PMID: 31355709]
[11]
Haribabu, V.; Sharmiladevi, P.; Akhtar, N.; Farook, A.S.; Girigoswami, K.; Girigoswami, A. Label free ultrasmall fluoromagnetic ferrite-clusters for targeted cancer imaging and drug delivery. Curr. Drug Deliv., 2019, 16(3), 233-241.
[http://dx.doi.org/10.2174/1567201816666181119112410] [PMID: 30451110]
[12]
Sharmiladevi, P.; Akhtar, N.; Haribabu, V.; Girigoswami, K.; Chattopadhyay, S.; Girigoswami, A. Excitation wavelength independent carbon-decorated ferrite nanodots for multimodal diagnosis and stimuli responsive therapy. ACS Appl. Bio Mater., 2019, 2(4), 1634-1642.
[http://dx.doi.org/10.1021/acsabm.9b00039] [PMID: 35026897]
[13]
Anjum, S.; Ishaque, S.; Fatima, H.; Farooq, W.; Hano, C.; Abbasi, B.H.; Anjum, I. Emerging applications of nanotechnology in healthcare systems: Grand challenges and perspectives. Pharmaceuticals (Basel), 2021, 14(8), 707.
[http://dx.doi.org/10.3390/ph14080707] [PMID: 34451803]
[14]
Joo, J. Diagnostic and therapeutic nanomedicine. 2021.
[http://dx.doi.org/10.1007/978-981-33-6064-8_15]
[15]
Mozafari, M.; Torkaman, S.; Karamouzian, F.M.; Rasti, B.; Baral, B. Antimicrobial applications of nanoliposome encapsulated silver nanoparticles: A potential strategy to overcome bacterial resistance. Curr. Nanosci., 2021, 17(1), 26-40.
[http://dx.doi.org/10.2174/1573413716999200712184148]
[16]
Abdel-Mageed, H.M. AbuelEzz, N.Z.; Radwan, R.A.; Mohamed, S.A. Nanoparticles in nanomedicine: A comprehensive updated review on current status, challenges and emerging opportunities. J. Microencapsul., 2021, 38(6), 414-436.
[17]
Salam, M.A.; Obaid, A.Y.; El-Shishtawy, R.M.; Mohamed, S.A. Synthesis of nanocomposites of polypyrrole/carbon nanotubes/silver nano particles and their application in water disinfection. RSC Advances, 2017, 7(27), 16878-16884.
[http://dx.doi.org/10.1039/C7RA01033H]
[18]
Su, Z.; Dong, S.; Zhao, S-C.; Liu, K.; Tan, Y.; Jiang, X.; Assaraf, Y.G.; Qin, B.; Chen, Z-S.; Zou, C. Novel nanomedicines to overcome cancer multidrug resistance. Drug Resist. Updat., 2021, 58, 100777.
[http://dx.doi.org/10.1016/j.drup.2021.100777] [PMID: 34481195]
[19]
Sharmiladevi, P.; Haribabu, V.; Girigoswami, K.; Sulaiman Farook, A.; Girigoswami, A. Effect of mesoporous nano water reservoir on MR relaxivity. Sci. Rep., 2017, 7(1), 11179.
[http://dx.doi.org/10.1038/s41598-017-11710-2] [PMID: 28894269]
[20]
Vimaladevi, M.; Divya, K.C.; Girigoswami, A. Liposomal nanoformulations of rhodamine for targeted photodynamic inactivation of multidrug resistant gram negative bacteria in sewage treatment plant. J. Photochem. Photobiol. B, 2016, 162, 146-152.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.06.034] [PMID: 27371913]
[21]
Xu, L.; Wang, Y-Y.; Huang, J.; Chen, C-Y.; Wang, Z-X.; Xie, H. Silver nanoparticles: Synthesis, medical applications and biosafety. Theranostics, 2020, 10(20), 8996-9031.
[http://dx.doi.org/10.7150/thno.45413] [PMID: 32802176]
[22]
Girigoswami, A.; Yassine, W.; Sharmiladevi, P.; Haribabu, V.; Girigoswami, K. Camouflaged nanosilver with excitation wavelength dependent high quantum yield for targeted theranostic. Sci. Rep., 2018, 8(1), 16459.
[http://dx.doi.org/10.1038/s41598-018-34843-4] [PMID: 30405190]
[23]
Jaiswal, S.; Mishra, P. Antimicrobial and antibiofilm activity of curcumin-silver nanoparticles with improved stability and selective toxicity to bacteria over mammalian cells. Med. Microbiol. Immunol. (Berl.), 2018, 207(1), 39-53.
[http://dx.doi.org/10.1007/s00430-017-0525-y] [PMID: 29081001]
[24]
Zhang, T.; Wang, L.; Chen, Q.; Chen, C. Cytotoxic potential of silver nanoparticles. Yonsei Med. J., 2014, 55(2), 283-291.
[http://dx.doi.org/10.3349/ymj.2014.55.2.283] [PMID: 24532494]
[25]
Hosseini Ravandi, S.; Gandhimathi, C.; Valizadeh, M.; Ramakrishna, S. Application of electrospun natural biopolymer nanofibers. Curr. Nanosci., 2013, 9(4), 423-433.
[http://dx.doi.org/10.2174/1573413711309040002]
[26]
Haidari, H.; Garg, S.; Vasilev, K.; Kopecki, Z.; Cowin, A.J. Silver-based wound dressings: Current issues and future developments for treating bacterial infections. wound practice research. J. Australian Wound Manage. Associat., 2020, 28, 173-180.
[27]
Boateng, J.; Catanzano, O. Silver and silver nanoparticle-based antimicrobial dressings. Thera. Dress. Wound Heal. Appl, 2020, 157-184.
[http://dx.doi.org/10.1002/9781119433316.ch8]
[28]
Kumar, S.S.D.; Rajendran, N.K.; Houreld, N.N.; Abrahamse, H. Recent advances on silver nanoparticle and biopolymer-based biomaterials for wound healing applications. Int. J. Biol. Macromol., 2018, 115, 165-175.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.04.003] [PMID: 29627463]
[29]
Mohan, Y.M.; Lee, K.; Premkumar, T.; Geckeler, K.E. Hydrogel networks as nanoreactors: A novel approach to silver nanoparticles for antibacterial applications. Polymer (Guildf.), 2007, 48(1), 158-164.
[http://dx.doi.org/10.1016/j.polymer.2006.10.045]
[30]
Bandla, M.; Abbavaram, B.R.; Kokkarachedu, V.; Sadiku, R.E. Silver nanoparticles incorporated within intercalated clay/polymer nanocomposite hydrogels for antibacterial studies. Polym. Compos., 2017, 38, E16-E23.
[http://dx.doi.org/10.1002/pc.23963]
[31]
Sarkar, A.K.; Saha, A.; Midya, L.; Banerjee, C.; Mandre, N.; Panda, A.B.; Pal, S. Cross-linked biopolymer stabilized exfoliated titanate nanosheet-supported AgNPs: A green sustainable ternary nanocomposite hydrogel for catalytic and antimicrobial activity. ACS Sustain. Chem.& Eng., 2017, 5(2), 1881-1891.
[http://dx.doi.org/10.1021/acssuschemeng.6b02594]
[32]
Jiang, Y.; Huang, J.; Wu, X.; Ren, Y.; Li, Z.; Ren, J. Controlled release of silver ions from AgNPs using a hydrogel based on konjac glucomannan and chitosan for infected wounds. Int. J. Biol. Macromol., 2020, 149, 148-157.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.01.221] [PMID: 31982523]
[33]
GhavamiNejad. A.; Park, C.H.; Kim, C.S. In situ synthesis of antimicrobial silver nanoparticles within antifouling zwitterionic hydrogels by catecholic redox chemistry for wound healing application. Biomacromolecules, 2016, 17(3), 1213-1223.
[http://dx.doi.org/10.1021/acs.biomac.6b00039] [PMID: 26891456]
[34]
Jaiganesh, T.; Rani, J.D.V.; Girigoswami, A. Spectroscopically characterized cadmium sulfide quantum dots lengthening the lag phase of escherichia coli growth. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2012, 92, 29-32.
[http://dx.doi.org/10.1016/j.saa.2012.02.044] [PMID: 22407211]
[35]
Sharmiladevi, P.; Breghatha, M.; Dhanavardhini, K.; Priya, R.; Girigoswami, K.; Girigoswami, A. Efficient wormlike micelles for the controlled delivery of anticancer drugs. Nanosci. Nanotechnol. Asia, 2021, 11(3), 350-356.
[http://dx.doi.org/10.2174/2210681210999200728115601]
[36]
Deepika, R.; Girigoswami, K.; Murugesan, R.; Girigoswami, A. Influence of divalent cation on morphology and drug delivery efficiency of mixed polymer nanoparticles. Curr. Drug Deliv., 2018, 15(5), 652-657.
[http://dx.doi.org/10.2174/1567201814666170825160617] [PMID: 28847271]
[37]
Dondi, R.; Su, W.; Griffith, G.A.; Clark, G.; Burley, G.A. Highly size- and shape-controlled synthesis of silver nanoparticles via a templated tollens reaction. Small, 2012, 8(5), 770-776.
[http://dx.doi.org/10.1002/smll.201101474] [PMID: 22228675]
[38]
Haribabu, V.; Girigoswami, K.; Girigoswami, A. Magneto-silver core–shell nanohybrids for theragnosis. Nano-Structures Nano-Objects, 2021, 25, 100636.
[http://dx.doi.org/10.1016/j.nanoso.2020.100636]
[39]
Casanovas-Massana, A.; Lucena, F.; Blanch, A.R. Identification of pseudomonas aeruginosa in water-bottling plants on the basis of procedures included in ISO 16266:2006. J. Microbiol. Methods, 2010, 81(1), 1-5.
[http://dx.doi.org/10.1016/j.mimet.2009.12.013] [PMID: 20079387]
[40]
Mun, H.; Girigoswami, A.; Jung, C.; Cho, D-Y.; Park, H.G. SNPs detection by a single-strand specific nuclease on a PNA zip-code microarray. Biosens. Bioelectron., 2009, 24(6), 1706-1711.
[http://dx.doi.org/10.1016/j.bios.2008.08.049]
[41]
Girigoswami, A.; Jung, C.; Mun, H.Y.; Park, H.G. PCR-free mutation detection of BRCA1 on a zip-code microarray using ligase chain reaction. J. Biochem. Biophys. Methods, 2008, 70(6), 897-902.
[http://dx.doi.org/10.1016/j.jprot.2008.01.005] [PMID: 18276013]
[42]
Girigoswami, A.; Li, T.; Jung, C.; Mun, H.Y.; Park, H.G. Gold nanoparticle-based label-free detection of BRCA1 mutations utilizing DNA ligation on DNA microarray. J. Nanosci. Nanotechnol., 2009, 9(2), 1019-1024.
[http://dx.doi.org/10.1166/jnn.2009.C077] [PMID: 19441445]
[43]
Stepanović, S.; Vuković, D.; Dakić, I.; Savić, B.; Švabić,-Vlahović, M. A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J. Microbiol. Methods, 2000, 40(2), 175-179.
[http://dx.doi.org/10.1016/S0167-7012(00)00122-6] [PMID: 10699673]
[44]
Parai, D.; Banerjee, M.; Dey, P.; Chakraborty, A.; Islam, E.; Mukherjee, S.K. Effect of reserpine on pseudomonas aeruginosa quorum sensing mediated virulence factors and biofilm formation. Biofouling, 2018, 34(3), 320-334.
[http://dx.doi.org/10.1080/08927014.2018.1437910] [PMID: 29482361]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy