Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Review Article

The Emerging Role of LncRNA FENDRR in Multiple Cancers: A Review

Author(s): Hoda Fazaeli, Azar Sheikholeslami, Fatemeh Ghasemian, Elaheh Amini and Mohsen Sheykhhasan*

Volume 23, Issue 7, 2023

Published on: 08 September, 2022

Page: [606 - 629] Pages: 24

DOI: 10.2174/1566524022666220509122505

Price: $65

Open Access Journals Promotions 2
Abstract

Long noncoding RNAs (lncRNAs) are prominent as crucial regulators of tumor establishment and are repeatedly dysregulated in multiple cancers. Therefore, lncRNAs have been identified to play an essential function in carcinogenesis and progression of cancer at genetic and epigenetic levels. FENDRR (fetal-lethal noncoding developmental regulatory RNA) as a LncRNA is a hallmark of various malignancies. FENDRR is crucial for multiple organs' development, such as the lung and heart. The effects of FENDRR under signaling pathways in different cancers have been identified. In addition, it has been verified that FENDRR can affect the development and progression of various cancers. In addition, FENDRR expression has been associated with epigenetic regulation of target genes participating in tumor immunity. Furthermore, FENDRR downregulation was observed in various types of cancers, including colorectal cancer, gastric cancer, pancreatic cancer, cholangiocarcinoma, liver cancer, gallbladder cancer, lung cancer, breast cancer, endometrial cancer, prostate cancer, chronic myeloid leukemia, osteosarcoma, and cutaneous malignant melanoma cells. Here, we review the biological functions and molecular mechanisms of FENDRR in several cancers, and we will discuss its potential as a cancer biomarker and as a probable option for cancer treatment.

Keywords: FENDRR, lncRNAs, cancer, regulatory mechanism, biomarker, RNAs.

[1]
Bartonicek N, Maag JL, Dinger ME. Long noncoding RNAs in cancer: Mechanisms of action and technological advancements. Mol Cancer 2016; 15(1): 43.
[http://dx.doi.org/10.1186/s12943-016-0530-6] [PMID: 27233618]
[2]
Okazaki Y, Furuno M, Kasukawa T, et al. FANTOM Consortium. RIKEN Genome Exploration Research Group Phase I & II Team. Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. Nature 2002; 420(6915): 563-73.
[http://dx.doi.org/10.1038/nature01266] [PMID: 12466851]
[3]
Ma L, Bajic VB, Zhang Z. On the classification of long non-coding RNAs. RNA Biol 2013; 10(6): 925-33.
[http://dx.doi.org/10.4161/rna.24604] [PMID: 23696037]
[4]
Li J, Ma W, Zeng P, et al. LncTar: A tool for predicting the RNA targets of long noncoding RNAs. Brief Bioinform 2015; 16(5): 806-12.
[http://dx.doi.org/10.1093/bib/bbu048] [PMID: 25524864]
[5]
Zheng Q, Jia J, Zhou Z, Chu Q, Lian W, Chen Z. The emerging role of thymopoietin-antisense RNA 1 as long noncoding RNA in the pathogenesis of human cancers. DNA Cell Biol 2021; 40(7): 848-57.
[http://dx.doi.org/10.1089/dna.2021.0024] [PMID: 34096793]
[6]
Wapinski O, Chang HY. Long noncoding RNAs and human disease. Trends Cell Biol 2011; 21(6): 354-61.
[http://dx.doi.org/10.1016/j.tcb.2011.04.001] [PMID: 21550244]
[7]
Iyer MK, Niknafs YS, Malik R, et al. The landscape of long noncoding RNAs in the human transcriptome. Nat Genet 2015; 47(3): 199-208.
[http://dx.doi.org/10.1038/ng.3192] [PMID: 25599403]
[8]
Hosseini NF, Manoochehri H, Khoei SG, Sheykhhasan M. The functional role of long non-coding RNA UCA1 in human multiple cancers: A review study. Curr Mol Med 2021; 21(2): 96-110.
[http://dx.doi.org/10.2174/1566524020666200619124543] [PMID: 32560605]
[9]
Sheykhhasan M, Ahmadyousefi Y, Seyedebrahimi R, et al. DLX6-AS1: A putative lncRNA candidate in multiple human cancers. Expert Rev Mol Med 2021; 23: e17.
[http://dx.doi.org/10.1017/erm.2021.17] [PMID: 34823630]
[10]
Amaral PP, Clark MB, Gascoigne DK, Dinger ME, Mattick JS. lncRNAdb: A reference database for long noncoding RNAs. Nucleic Acids Res 2011; 39 (suppl_1): D146-5.1.
[11]
Ma H, Hao Y, Dong X, et al. Molecular mechanisms and function prediction of long noncoding RNA. Sci World J 2012; 2012
[http://dx.doi.org/10.1100/2012/541786]
[12]
Nam JW, Bartel DP. Long noncoding RNAs in C. elegans. Genome Res 2012; 22(12): 2529-40.
[http://dx.doi.org/10.1101/gr.140475.112] [PMID: 22707570]
[13]
Derrien T, Johnson R, Bussotti G, et al. The GENCODE v7 catalog of human long noncoding RNAs: Analysis of their gene structure, evolution, and expression. Genome Res 2012; 22(9): 1775-89.
[http://dx.doi.org/10.1101/gr.132159.111] [PMID: 22955988]
[14]
Tsai MC, Spitale RC, Chang HY. Long intergenic noncoding RNAs: New links in cancer progression. Cancer Res 2011; 71(1): 3-7.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-2483] [PMID: 21199792]
[15]
Wilusz JE, Freier SM, Spector DL. 3′ end processing of a long nuclear-retained noncoding RNA yields a tRNA-like cytoplasmic RNA. Cell 2008; 135(5): 919-32.
[http://dx.doi.org/10.1016/j.cell.2008.10.012] [PMID: 19041754]
[16]
Munteanu MC, Huang C, Liang Y, Sathiaseelan R, Zeng X, Liu L. Long non-coding RNA FENDRR regulates IFNγ-induced M1 phenotype in macrophages. Sci Rep 2020; 10(1): 1-12.
[http://dx.doi.org/10.1038/s41598-020-70633-7] [PMID: 31913322]
[17]
Kun-Peng Z, Chun-Lin Z, Xiao-Long M. Antisense lncRNA FOXF1-AS1 promotes migration and invasion of osteosarcoma cells through the FOXF1/MMP-2/-9 pathway. Int J Biol Sci 2017; 13(9): 1180-91.
[http://dx.doi.org/10.7150/ijbs.21722] [PMID: 29104509]
[18]
Geisler S, Coller J. RNA in unexpected places: Long non-coding RNA functions in diverse cellular contexts. Nat Rev Mol Cell Biol 2013; 14(11): 699-712.
[http://dx.doi.org/10.1038/nrm3679] [PMID: 24105322]
[19]
Szafranski P, Dharmadhikari AV, Brosens E, et al. Small noncoding differentially methylated copy-number variants, including lncRNA genes, cause a lethal lung developmental disorder. Genome Res 2013; 23(1): 23-33.
[http://dx.doi.org/10.1101/gr.141887.112] [PMID: 23034409]
[20]
Cabili MN, Dunagin MC, McClanahan PD, et al. Localization and abundance analysis of human lncRNAs at single-cell and single-molecule resolution. Genome Biol 2015; 16(1): 20.
[http://dx.doi.org/10.1186/s13059-015-0586-4] [PMID: 25630241]
[21]
Grote P, Herrmann BG. The long non-coding RNA Fendrr links epigenetic control mechanisms to gene regulatory networks in mammalian embryogenesis. RNA Biol 2013; 10(10): 1579-85.
[http://dx.doi.org/10.4161/rna.26165] [PMID: 24036695]
[22]
Hänzelmann S, Kuo CC, Kalwa M, Wagner W, Costa IG. Triplex domain finder: Detection of triple helix binding domains in long non-coding RNAS. bioRxiv 2015; 020297.
[http://dx.doi.org/10.1101/020297]
[23]
Grote P, Wittler L, Hendrix D, et al. The tissue-specific lncRNA Fendrr is an essential regulator of heart and body wall development in the mouse. Dev Cell 2013; 24(2): 206-14.
[http://dx.doi.org/10.1016/j.devcel.2012.12.012] [PMID: 23369715]
[24]
Li Y, Zhang W, Liu P, et al. Long non-coding RNA FENDRR inhibits cell proliferation and is associated with good prognosis in breast cancer. OncoTargets Ther 2018; 11: 1403-12.
[http://dx.doi.org/10.2147/OTT.S149511] [PMID: 29559798]
[25]
Huang D, Chen J, Yang L, et al. NKILA lncRNA promotes tumor immune evasion by sensitizing T cells to activation-induced cell death. Nat Immunol 2018; 19(10): 1112-25.
[http://dx.doi.org/10.1038/s41590-018-0207-y] [PMID: 30224822]
[26]
Pan H, Yu T, Sun L, Chai W, Liu X, Yan M. LncRNA FENDRR-mediated tumor suppression and tumor-immune microenvironment changes in non-small cell lung cancer. Transl Cancer Res 2020; 9(6): 3946-59.
[http://dx.doi.org/10.21037/tcr-20-2147] [PMID: 35117761]
[27]
Xu TP, Huang MD, Xia R, et al. Decreased expression of the long non-coding RNA FENDRR is associated with poor prognosis in gastric cancer and FENDRR regulates gastric cancer cell metastasis by affecting fibronectin1 expression. J Hematol Oncol 2014; 7(1): 63.
[http://dx.doi.org/10.1186/s13045-014-0063-7] [PMID: 25167886]
[28]
Qin X, Lu M, Zhou Y, Li G, Liu Z. LncRNA FENDRR represses proliferation, migration and invasion through suppression of survivin in cholangiocarcinoma cells. Cell Cycle 2019; 18(8): 889-97.
[http://dx.doi.org/10.1080/15384101.2019.1598726] [PMID: 30983519]
[29]
Duan Y, Li WX, Wang Y, et al. Integrated analysis of lncRNAs and mRNAs identifies a potential driver lncRNA FENDRR in lung cancer in Xuanwei, China. Nutr Cancer 2020; 1-13.
[PMID: 32590916]
[30]
Szafranski P, Stankiewicz P. Long non-coding RNA FENDRR: Gene structure, expression, and biological relevance. Genes (Basel) 2021; 12(2): 177.
[http://dx.doi.org/10.3390/genes12020177] [PMID: 33513839]
[31]
Zheng Q, Zhang Q, Yu X, He Y, Guo W. FENDRR: A pivotal, cancer-related, long non-coding RNA. Biomed Pharmacother 2021; 137: 111390.
[http://dx.doi.org/10.1016/j.biopha.2021.111390] [PMID: 33761608]
[32]
Barzi A, Lenz HJ, Quinn DI, Sadeghi S. Comparative effectiveness of screening strategies for colorectal cancer. Cancer 2017; 123(9): 1516-27.
[http://dx.doi.org/10.1002/cncr.30518] [PMID: 28117881]
[33]
Yin SL, Xiao F, Liu YF, Chen H, Guo GC. Long non-coding RNA FENDRR restrains the aggressiveness of CRC via regulating miR-18a-5p/ING4 axis. J Cell Biochem 2019. Epub ahead of print
[http://dx.doi.org/10.1002/jcb.29555] [PMID: 31724220]
[34]
Siegel R, Desantis C, Jemal A. Colorectal cancer statistics, 2014. CA Cancer J Clin 2014; 64(2): 104-17.
[http://dx.doi.org/10.3322/caac.21220] [PMID: 24639052]
[35]
Zhu P, Wu J, Wang Y, et al. LncGata6 maintains stemness of intestinal stem cells and promotes intestinal tumorigenesis. Nat Cell Biol 2018; 20(10): 1134-44.
[http://dx.doi.org/10.1038/s41556-018-0194-0] [PMID: 30224759]
[36]
Zhang G, Han G, Zhang X, et al. Long non-coding RNA FENDRR reduces prostate cancer malignancy by competitively binding miR-18a-5p with RUNX1. Biomarkers 2018; 23(5): 435-45.
[http://dx.doi.org/10.1080/1354750X.2018.1443509] [PMID: 29465000]
[37]
Hu CY, Wu KY, Lin TY, Chen CC. The crosstalk of long non-coding RNA and microRNA in castration-resistant and neuroendocrine prostate cancer: Their interaction and clinical importance. Int J Mol Sci 2021; 23(1): 392.
[http://dx.doi.org/10.3390/ijms23010392] [PMID: 35008817]
[38]
Liu J, Du W. LncRNA FENDRR attenuates colon cancer progression by repression of SOX4 protein. OncoTargets Ther 2019; 12: 4287-95.
[http://dx.doi.org/10.2147/OTT.S195853] [PMID: 31213846]
[39]
Khalil AM, Guttman M, Huarte M, et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci USA 2009; 106(28): 11667-72.
[http://dx.doi.org/10.1073/pnas.0904715106] [PMID: 19571010]
[40]
Cheng C, Li H, Zheng J, Xu J, Gao P, Wang J. FENDRR sponges miR-424-5p to inhibit cell proliferation, migration and invasion in colorectal cancer. Technol Cancer Res Treat 2020; 19: 1533033820980102.
[http://dx.doi.org/10.1177/1533033820980102] [PMID: 33356998]
[41]
Xing Y, Zhao Z, Zhu Y, Zhao L, Zhu A, Piao D. Comprehensive analysis of differential expression profiles of mRNAs and lncRNAs and identification of a 14-lncRNA prognostic signature for patients with colon adenocarcinoma. Oncol Rep 2018; 39(5): 2365-75.
[http://dx.doi.org/10.3892/or.2018.6324] [PMID: 29565464]
[42]
Lin Y, Pan X, Chen Z, Lin S, Chen S. Identification of an immune-related Nine-lncRNA signature predictive of overall survival in colon cancer. Front Genet 2020; 11: 318.
[http://dx.doi.org/10.3389/fgene.2020.00318] [PMID: 32425969]
[43]
Munteanu MC, Sethuraman SN, Singh MP, Malayer J, Ranjan A. LncRNA FENDRR expression correlates with tumor immunogenicity. Genes 2021; 12(6): 897.
[http://dx.doi.org/10.3390/genes12060897] [PMID: 34200642]
[44]
Jou E, Rajdev L. Current and emerging therapies in unresectable and recurrent gastric cancer. World J Gastroenterol 2016; 22(20): 4812-23.
[http://dx.doi.org/10.3748/wjg.v22.i20.4812] [PMID: 27239108]
[45]
Suh YS, Yang HK. Screening and early detection of gastric cancer: East versus west. Surg Clin North Am 2015; 95(5): 1053-66.
[http://dx.doi.org/10.1016/j.suc.2015.05.012] [PMID: 26315523]
[46]
Mihmanli M, Ilhan E, Idiz UO, Alemdar A, Demir U. Recent developments and innovations in gastric cancer. World J Gastroenterol 2016; 22(17): 4307-20.
[http://dx.doi.org/10.3748/wjg.v22.i17.4307] [PMID: 27158199]
[47]
He Z, Wang X, Huang C, et al. The FENDRR/miR-214-3P/TET2 axis affects cell malignant activity via RASSF1A methylation in gastric cancer. Am J Transl Res 2018; 10(10): 3211-23.
[PMID: 30416662]
[48]
Liu XJ, Li SL, Li JS, et al. Long non-coding RNA ZEB1-AS1 is associated with poor prognosis in gastric cancer and promotes cancer cell metastasis. Eur Rev Med Pharmacol Sci 2018; 22(9): 2624-30.
[http://dx.doi.org/10.26355/eurrev_201805_14956] [PMID: 29771411]
[49]
Sun M, Jin FY, Xia R, et al. Decreased expression of long noncoding RNA GAS5 indicates a poor prognosis and promotes cell proliferation in gastric cancer. BMC Cancer 2014; 14: 319.
[http://dx.doi.org/10.1186/1471-2407-14-319] [PMID: 24884417]
[50]
Zhou Z, Lin Z, Pang X, et al. Epigenetic regulation of long non-coding RNAs in gastric cancer. Oncotarget 2017; 9(27): 19443-58.
[http://dx.doi.org/10.18632/oncotarget.23821] [PMID: 29721215]
[51]
Wang Z, Qin B. Prognostic and clinicopathological significance of long noncoding RNA CTD-2510F5.4 in gastric cancer. Gastric Cancer 2019; 22(4): 692-704.
[http://dx.doi.org/10.1007/s10120-018-00911-x] [PMID: 30560474]
[52]
Zhang Y, Zhang Q, Zhang M, et al. DC - SIGNR by influencing the lncRNA HNRNPKP2 upregulates the expression of CXCR4 in gastric cancer liver metastasis. Mol Cancer 2017; 16(1): 78.
[http://dx.doi.org/10.1186/s12943-017-0639-2] [PMID: 28403883]
[53]
Li T, Mo X, Fu L, Xiao B, Guo J. Molecular mechanisms of long noncoding RNAs on gastric cancer. Oncotarget 2016; 7(8): 8601-12.
[http://dx.doi.org/10.18632/oncotarget.6926] [PMID: 26788991]
[54]
Hao NB, He YF, Li XQ, Wang K, Wang RL. The role of miRNA and lncRNA in gastric cancer. Oncotarget 2017; 8(46): 81572-82.
[http://dx.doi.org/10.18632/oncotarget.19197] [PMID: 29113415]
[55]
Yang ZG, Gao L, Guo XB, Shi YL. Roles of long non-coding RNAs in gastric cancer metastasis. World J Gastroenterol 2015; 21(17): 5220-30.
[http://dx.doi.org/10.3748/wjg.v21.i17.5220] [PMID: 25954095]
[56]
Lin MT, Song HJ, Ding XY. Long non-coding RNAs involved in metastasis of gastric cancer. World J Gastroenterol 2018; 24(33): 3724-37.
[http://dx.doi.org/10.3748/wjg.v24.i33.3724] [PMID: 30197478]
[57]
Ma J, Zhao G, Du J, Li J, Lin G, Zhang J. LncRNA FENDRR inhibits gastric cancer cell proliferation and invasion via the miR-421/SIRT3/Notch-1 axis. Cancer Manag Res 2021; 13: 9175-87.
[http://dx.doi.org/10.2147/CMAR.S329419] [PMID: 34938121]
[58]
Liu H, Zhang Z, Han Y, et al. The FENDRR/FOXC2 axis contributes to multidrug resistance in gastric cancer and correlates with poor prognosis. Front Oncol 2021; 11: 634579.
[http://dx.doi.org/10.3389/fonc.2021.634579] [PMID: 33869020]
[59]
Zhou D, Zhu X, Wu X, Zheng J, Tou L, Zhou Y. The effect of splicing MST1R in gastric cancer was enhanced by lncRNA FENDRR. Exp Ther Med 2021; 22(2): 798.
[http://dx.doi.org/10.3892/etm.2021.10230] [PMID: 34093754]
[60]
Jiang D, Xu L, Ni J, Zhang J, Cai M, Shen L. Functional polymorphisms in LncRNA HOTAIR contribute to susceptibility of pancreatic cancer. Cancer Cell Int 2019; 19(1): 47.
[http://dx.doi.org/10.1186/s12935-019-0761-x] [PMID: 30867650]
[61]
Hu P, Qiao O, Wang J, et al. rs1859168 A > C polymorphism regulates HOTTIP expression and reduces risk of pancreatic cancer in a Chinese population. World J Surg Oncol 2017; 15(1): 155.
[http://dx.doi.org/10.1186/s12957-017-1218-0] [PMID: 28818070]
[62]
Zhang H, Feng X, Zhang M, et al. Long non-coding RNA CASC2 upregulates PTEN to suppress pancreatic carcinoma cell metastasis by downregulating miR-21. Cancer Cell Int 2019; 19(1): 18.
[http://dx.doi.org/10.1186/s12935-019-0728-y] [PMID: 30675129]
[63]
Zhong Y, Cheng F, Yang M, Song H, Zhao R. Time series expression patterns reveal the molecular processes of pancreatic cancer progression. J BUON 2020; 25(4): 1960-8.
[PMID: 33099939]
[64]
Wang WT, Ye H, Wei PP, et al. LncRNAs H19 and HULC, activated by oxidative stress, promote cell migration and invasion in cholangiocarcinoma through a ceRNA manner. J Hematol Oncol 2016; 9(1): 117.
[http://dx.doi.org/10.1186/s13045-016-0348-0] [PMID: 27809873]
[65]
Bergquist A, von Seth E. Epidemiology of cholangiocarcinoma. Best Pract Res Clin Gastroenterol 2015; 29(2): 221-32.
[http://dx.doi.org/10.1016/j.bpg.2015.02.003] [PMID: 25966423]
[66]
Lv Y, Wang Z, Zhao K, Zhang G, Huang S, Zhao Y. Role of noncoding RNAs in cholangiocarcinoma (Review). Int J Oncol 2020; 57(1): 7-20.
[http://dx.doi.org/10.3892/ijo.2020.5047] [PMID: 32319584]
[67]
DeOliveira ML, Cunningham SC, Cameron JL, et al. Cholangiocarcinoma: Thirty-one-year experience with 564 patients at a single institution. Ann Surg 2007; 245(5): 755-62.
[http://dx.doi.org/10.1097/01.sla.0000251366.62632.d3] [PMID: 17457168]
[68]
Pennati M, Folini M, Zaffaroni N. Targeting survivin in cancer therapy: Fulfilled promises and open questions. Carcinogenesis 2007; 28(6): 1133-9.
[http://dx.doi.org/10.1093/carcin/bgm047] [PMID: 17341657]
[69]
Zhong F, Yang J, Tong ZT, et al. Guggulsterone inhibits human cholangiocarcinoma Sk-ChA-1 and Mz-ChA-1 cell growth by inducing caspase-dependent apoptosis and downregulation of survivin and Bcl-2 expression. Oncol Lett 2015; 10(3): 1416-22.
[http://dx.doi.org/10.3892/ol.2015.3391] [PMID: 26622683]
[70]
Wangyang Z, Daolin J, Yi X, et al. NcRNAs and Cholangiocarcinoma. J Cancer 2018; 9(1): 100-7.
[http://dx.doi.org/10.7150/jca.21785] [PMID: 29290774]
[71]
Glazkova DV, Urusov FA, Bogoslovskaya EV, Shipulin GA. Retrovirus restriction factor TRIM5α: The mechanism of action and prospects for use in gene therapy of HIV infection. Mol Biol 2020; 54(5): 707-17.
[http://dx.doi.org/10.31857/S0026898420050031]
[72]
Liu ZH, Wang N, Wang FQ, Dong Q, Ding J. High expression of XRCC5 is associated with metastasis through Wnt signaling pathway and predicts poor prognosis in patients with hepatocellular carcinoma. Eur Rev Med Pharmacol Sci 2019; 23(18): 7835-47.
[http://dx.doi.org/10.26355/eurrev_201909_18993] [PMID: 31599408]
[73]
Akhade VS, Pal D, Kanduri C. Long noncoding RNA: Genome organization and mechanism of action. Adv Exp Med Biol 2017; 1008: 47-74.
[http://dx.doi.org/10.1007/978-981-10-5203-3_2] [PMID: 28815536]
[74]
Qiu L, Tang Q, Li G, Chen K. Long non-coding RNAs as biomarkers and therapeutic targets: Recent insights into hepatocellular carcinoma. Life Sci 2017; 191: 273-82.
[http://dx.doi.org/10.1016/j.lfs.2017.10.007] [PMID: 28987633]
[75]
Ni F, Zhao H, Cui H, et al. MicroRNA-362-5p promotes tumor growth and metastasis by targeting CYLD in hepatocellular carcinoma. Cancer Lett 2015; 356 (2 Pt B): 809-18.
[http://dx.doi.org/10.1016/j.canlet.2014.10.041] [PMID: 25449782]
[76]
Yu Z, Zhao H, Feng X, et al. Long non-coding RNA FENDRR acts as a miR-423-5p sponge to suppress the treg-mediated immune escape of hepatocellular carcinoma cells. Mol Ther Nucleic Acids 2019; 17: 516-29.
[http://dx.doi.org/10.1016/j.omtn.2019.05.027] [PMID: 31351327]
[77]
Qian G, Jin X, Zhang L. LncRNA FENDRR Upregulation promotes hepatic carcinoma cells apoptosis by targeting miR-362-5p via NPR3 and p38-MAPK pathway. Cancer Biother Radiopharm 2020; 35(9): 629-39.
[http://dx.doi.org/10.1089/cbr.2019.3468] [PMID: 32251605]
[78]
Rawla P, Sunkara T, Muralidharan P, Raj JP. Update in global trends and aetiology of hepatocellular carcinoma. Contemp Oncol (Pozn) 2018; 22(3): 141-50.
[http://dx.doi.org/10.5114/wo.2018.78941] [PMID: 30455585]
[79]
Sakamoto K, Nagano H. Outcomes of surgery for hepatocellular carcinoma with tumor thrombus in the inferior vena cava or right atrium. Surg Today 2018; 48(9): 819-24.
[http://dx.doi.org/10.1007/s00595-017-1619-2] [PMID: 29279997]
[80]
Li L, Jin R, Zhang X, et al. Oncogenic activation of glypican-3 by c-Myc in human hepatocellular carcinoma. Hepatology 2012; 56(4): 1380-90.
[http://dx.doi.org/10.1002/hep.25891] [PMID: 22706665]
[81]
Miao HL, Pan ZJ, Lei CJ, et al. Knockdown of GPC3 inhibits the proliferation of Huh7 hepatocellular carcinoma cells through down-regulation of YAP. J Cell Biochem 2013; 114(3): 625-31.
[http://dx.doi.org/10.1002/jcb.24404] [PMID: 23060277]
[82]
Wang B, Xian J, Zang J, et al. Long non-coding RNA FENDRR inhibits proliferation and invasion of hepatocellular carcinoma by down-regulating glypican-3 expression. Biochem Biophys Res Commun 2019; 509(1): 143-7.
[http://dx.doi.org/10.1016/j.bbrc.2018.12.091] [PMID: 30573358]
[83]
Mou Y, Wang D, Xing R, et al. Identification of long noncoding RNAs biomarkers in patients with hepatitis B virus-associated hepatocellular carcinoma. Cancer Biomark 2018; 23(1): 95-106.
[http://dx.doi.org/10.3233/CBM-181424] [PMID: 29991128]
[84]
Yang Y, Chen L, Gu J, et al. Recurrently deregulated lncRNAs in hepatocellular carcinoma. Nat Commun 2017; 8: 14421.
[http://dx.doi.org/10.1038/ncomms14421] [PMID: 28194035]
[85]
Li Z, Ding Z, Rong D, Tang W, Cao H. Overexpression of lncRNA AFAP1-AS1 promotes cell proliferation and invasion in gastric cancer. Oncol Lett 2019; 18(3): 3211-7.
[http://dx.doi.org/10.3892/ol.2019.10640] [PMID: 31452798]
[86]
Zhang L, Geng Z, Meng X, Meng F, Wang L. Screening for key lncRNAs in the progression of gallbladder cancer using bioinformatics analyses. Mol Med Rep 2018; 17(5): 6449-55.
[http://dx.doi.org/10.3892/mmr.2018.8655] [PMID: 29512694]
[87]
Zeeshan R, Mutahir Z. Cancer metastasis - tricks of the trade. Bosn J Basic Med Sci 2017; 17(3): 172-82.
[PMID: 28278128]
[88]
Zhang G, Wang Q, Zhang X, Ding Z, Liu R. LncRNA FENDRR suppresses the progression of NSCLC via regulating miR-761/TIMP2 axis. Biomed Pharmacother 2019; 118: 109309.
[http://dx.doi.org/10.1016/j.biopha.2019.109309] [PMID: 31545237]
[89]
Xu Y, Lin G, Liu Y, Lin X, Lin H, Guo Z, et al. An integrated analysis of the competing endogenous RNA network associated of prognosis of stage I lung adenocarcinoma. 2021.
[http://dx.doi.org/10.21203/rs.3.rs-208860/v1]
[90]
Zhang MY, Zhang ZL, Cui HX, Wang RK, Fu L. Long non-coding RNA FENDRR inhibits NSCLC cell growth and aggressiveness by sponging miR-761. Eur Rev Med Pharmacol Sci 2018; 22(23): 8324-32.
[http://dx.doi.org/10.26355/eurrev_201812_16530] [PMID: 30556873]
[91]
Li Q, Wu C, Song G, et al. Genome-wide analysis of long noncoding RNA expression profiles in human xuanwei lung cancer. Clin Lab 2015; 61(10): 1515-23.
[http://dx.doi.org/10.7754/Clin.Lab.2015.150323] [PMID: 26642714]
[92]
Herrera-Merchan A, Cuadros M, Rodriguez MI, et al. The value of lncRNA FENDRR and FOXF1 as a prognostic factor for survival of lung adenocarcinoma. Oncotarget 2017; 11(13): 1172-85.
[http://dx.doi.org/10.18632/oncotarget.22154] [PMID: 32284793]
[93]
Lo PK, Lee JS, Liang X, et al. Epigenetic inactivation of the potential tumor suppressor gene FOXF1 in breast cancer. Cancer Res 2010; 70(14): 6047-58.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-1576] [PMID: 20587515]
[94]
Miao L, Huang Z, Zengli Z, et al. Loss of long noncoding RNA FOXF1-AS1 regulates epithelial-mesenchymal transition, stemness and metastasis of non-small cell lung cancer cells. Oncotarget 2016; 7(42): 68339-49.
[http://dx.doi.org/10.18632/oncotarget.11630] [PMID: 27577075]
[95]
Yang L, Wu D, Chen J, et al. A functional CNVR_3425.1 damping lincRNA FENDRR increases lifetime risk of lung cancer and COPD in Chinese. Carcinogenesis 2018; 39(3): 347-59.
[http://dx.doi.org/10.1093/carcin/bgx149] [PMID: 29293945]
[96]
Xu R, Han Y. Long non-coding RNA FOXF1 adjacent non-coding developmental regulatory RNA inhibits growth and chemotherapy resistance in non-small cell lung cancer. Arch Med Sci 2019; 15(6): 1539-46.
[http://dx.doi.org/10.5114/aoms.2019.86707] [PMID: 31749883]
[97]
Gong F, Dong D, Zhang T, Xu W. Long non-coding RNA FENDRR attenuates the stemness of non-small cell lung cancer cells via decreasing multidrug resistance gene 1 (MDR1) expression through competitively binding with RNA binding protein HuR. Eur J Pharmacol 2019; 853: 345-52.
[http://dx.doi.org/10.1016/j.ejphar.2019.04.022] [PMID: 30981768]
[98]
Navarro C, Cano C, Cuadros M, Herrera-Merchan A, Molina M, Blanco A. A mechanistic study of lncRNA Fendrr regulation of FoxF1 lung cancer tumor supressor. Int Conf Bioinform Biomed Eng. In: Springer; 2016; pp. 781-9.
[99]
Dong B, Zhou B, Sun Z, et al. LncRNA-FENDRR mediates VEGFA to promote the apoptosis of brain microvascular endothelial cells via regulating miR-126 in mice with hypertensive intracerebral hemorrhage. Microcirculation 2018; 25(8): e12499.
[http://dx.doi.org/10.1111/micc.12499] [PMID: 30120860]
[100]
Huang C, Liang Y, Zeng X, et al. Long noncoding RNA FENDRR exhibits antifibrotic activity in pulmonary fibrosis. Am J Respir Cell Mol Biol 2020; 62(4): 440-53.
[http://dx.doi.org/10.1165/rcmb.2018-0293OC] [PMID: 31697569]
[101]
Ginn L, Shi L, Montagna M, Garofalo M. LncRNAs in non-small-cell lung cancer. Noncoding RNA 2020; 6(3): 25.
[http://dx.doi.org/10.3390/ncrna6030025] [PMID: 32629922]
[102]
Chen R, Li WX, Sun Y, et al. Comprehensive analysis of lncRNA and mRNA expression profiles in lung cancer. Clin Lab 2017; 63(2): 313-20.
[http://dx.doi.org/10.7754/Clin.Lab.2016.160812] [PMID: 28182363]
[103]
Yu H, Xu Q, Liu F, Ye X, Wang J, Meng X. Identification and validation of long noncoding RNA biomarkers in human non-small-cell lung carcinomas. J Thorac Oncol 2015; 10(4): 645-54.
[http://dx.doi.org/10.1097/JTO.0000000000000470] [PMID: 25590602]
[104]
Szafranski P, Gambin T, Karolak JA, Popek E, Stankiewicz P. Lung-specific distant enhancer CIS regulates expression of FOXF1 and lncRNA FENDRR. Hum Mutat 2021; 42(6): 694-8.
[http://dx.doi.org/10.1002/humu.24198] [PMID: 33739555]
[105]
Sheykhhasan M, Kalhor N, Sheikholeslami A, Dolati M, Amini E, Fazaeli H. Exosomes of mesenchymal stem cells as a proper vehicle for transfecting miR-145 into the breast cancer cell line and its effect on metastasis. BioMed Res Int 2021; 2021: 5516078.
[http://dx.doi.org/10.1155/2021/5516078] [PMID: 34307654]
[106]
Roohallah F, Nikyar A, Milani A. The roles and diagnostic potential of long non-coding RNAs in some cancers: A review. J Clin Basic Res 2019; 3(4): 13-22.
[http://dx.doi.org/10.29252/jcbr.3.4.13]
[107]
Dong P, Xiong Y, Yue J, et al. Long noncoding RNA NEAT1 drives aggressive endometrial cancer progression via miR-361-regulated networks involving STAT3 and tumor microenvironment-related genes. J Exp Clin Cancer Res 2019; 38(1): 295.
[http://dx.doi.org/10.1186/s13046-019-1306-9] [PMID: 31287002]
[108]
Dong P, Xiong Y, Yue J, et al. Long non-coding RNA NEAT1: A novel target for diagnosis and therapy in human tumors. Front Genet 2018; 9: 471.
[http://dx.doi.org/10.3389/fgene.2018.00471] [PMID: 30374364]
[109]
Shen J, Feng XP, Hu RB, et al. N-methyladenosine reader YTHDF2-mediated long noncoding RNA FENDRR degradation promotes cell proliferation in endometrioid endometrial carcinoma. Lab Invest 2021; 101(6): 775-84.
[http://dx.doi.org/10.1038/s41374-021-00543-3] [PMID: 33692441]
[110]
Prajapati KS, Singh AK, Shuaib M, Kushwaha PP, Kumar S, Gupta S. Long non-coding RNAs in castration-resistant and neuroendocrine prostate cancer: Potential role and therapeutic impact. Ann Urol Oncol 2020; 3(2): 71-81.
[http://dx.doi.org/10.32948/auo.2020.12.03]
[111]
He W, Zhong G, Wang P, Jiang C, Jiang N, Huang J. Downregulation of long noncoding RNA FENDRR predicts poor prognosis in renal cell carcinoma. Oncol Lett 2019; 17(1): 103-12.
[http://dx.doi.org/10.3892/ol.2018.9624] [PMID: 30655744]
[112]
Ramnarine VR, Alshalalfa M, Mo F, et al. The long noncoding RNA landscape of neuroendocrine prostate cancer and its clinical implications. Gigascience 2018; 7(6): giy050.
[http://dx.doi.org/10.1093/gigascience/giy050] [PMID: 29757368]
[113]
Gong X, Ning B. Five lncRNAs associated with prostate cancer prognosis identified by coexpression network analysis. Technol Cancer Res Treat 2020; 19: 1533033820963578.
[http://dx.doi.org/10.1177/1533033820963578] [PMID: 33084528]
[114]
Zhang YQ, Chen X, Fu CL, et al. FENDRR reduces tumor invasiveness in prostate cancer PC-3 cells by targeting CSNK1E. Eur Rev Med Pharmacol Sci 2019; 23(17): 7327-37.
[http://dx.doi.org/10.26355/eurrev_201909_18838] [PMID: 31539119]
[115]
Eadie LN, Dang P, Saunders VA, et al. The clinical significance of ABCB1 overexpression in predicting outcome of CML patients undergoing first-line Imatinib treatment. Leukemia 2017; 31(1): 75-82.
[http://dx.doi.org/10.1038/leu.2016.179] [PMID: 27416909]
[116]
Mughal TI, Radich JP, Deininger MW, et al. Chronic myeloid leukemia: Reminiscences and dreams. Haematologica 2016; 101(5): 541-58.
[http://dx.doi.org/10.3324/haematol.2015.139337] [PMID: 27132280]
[117]
Peng XX, Tiwari AK, Wu HC, Chen ZS. Overexpression of P-glycoprotein induces acquired resistance to imatinib in chronic myelogenous leukemia cells. Chin J Cancer 2012; 31(2): 110-8.
[http://dx.doi.org/10.5732/cjc.011.10327] [PMID: 22098951]
[118]
Li W, Zhang H, Assaraf YG, et al. Overcoming ABC transporter-mediated multidrug resistance: Molecular mechanisms and novel therapeutic drug strategies. Drug Resist Updat 2016; 27: 14-29.
[http://dx.doi.org/10.1016/j.drup.2016.05.001] [PMID: 27449595]
[119]
Waghray D, Zhang Q. Inhibit or evade multidrug resistance P-glycoprotein in cancer treatment. J Med Chem 2018; 61(12): 5108-21.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01457] [PMID: 29251920]
[120]
Zhang F, Ni H, Li X, Liu H, Xi T, Zheng L. LncRNA FENDRR attenuates adriamycin resistance via suppressing MDR1 expression through sponging HuR and miR-184 in chronic myelogenous leukaemia cells. FEBS Lett 2019; 593(15): 1993-2007.
[http://dx.doi.org/10.1002/1873-3468.13480] [PMID: 31180580]
[121]
Kun-Peng Z, Xiao-Long M, Chun-Lin Z. LncRNA FENDRR sensitizes doxorubicin-resistance of osteosarcoma cells through down-regulating ABCB1 and ABCC1. Oncotarget 2017; 8(42): 71881-93.
[http://dx.doi.org/10.18632/oncotarget.17985] [PMID: 29069754]
[122]
Zhu KP, Zhang CL, Ma XL, Hu JP, Cai T, Zhang L. Analyzing the interactions of mRNAs and ncRNAs to predict competing endogenous RNA networks in osteosarcoma chemo-resistance. Mol Ther 2019; 27(3): 518-30.
[http://dx.doi.org/10.1016/j.ymthe.2019.01.001] [PMID: 30692017]
[123]
Yang G, Lu X, Yuan L. LncRNA: A link between RNA and cancer. Biochim Biophys Acta 2014; 1839(11): 1097-109.
[http://dx.doi.org/10.1016/j.bbagrm.2014.08.012] [PMID: 25159663]
[124]
Sharom FJ. ABC multidrug transporters: Structure, function and role in chemoresistance. Pharmacogenomics 2008; 9(1): 105-27.
[http://dx.doi.org/10.2217/14622416.9.1.105]
[125]
Gong L, Zhu L, Yang T. Fendrr involves in the pathogenesis of cardiac fibrosis via regulating miR-106b/SMAD3 axis. Biochem Biophys Res Commun 2020; 524(1): 169-77.
[http://dx.doi.org/10.1016/j.bbrc.2020.01.062]
[126]
Roomi MW, Kalinovsky T, Rath M, Niedzwiecki A. In vitro modulation of MMP-2 and MMP-9 in pediatric human sarcoma cell lines by cytokines, inducers and inhibitors. Int J Oncol 2014; 44(1): 27-34.
[http://dx.doi.org/10.3892/ijo.2013.2159] [PMID: 24190483]
[127]
Nagpal N, Agarwal S. Telomerase RNA processing: Implications for human health and disease. Stem Cells 2020; 38(12): 1532-43.
[http://dx.doi.org/10.1002/stem.3270] [PMID: 32875693]
[128]
Yang X, Xie Z, Lei X, Gan R. Long non-coding RNA GAS5 in human cancer. Oncol Lett 2020; 20(3): 2587-94.
[http://dx.doi.org/10.3892/ol.2020.11809] [PMID: 32782576]
[129]
Wu L, Li K, Lin W, et al. Long noncoding RNA LINC01291 promotes the aggressive properties of melanoma by functioning as a competing endogenous RNA for microRNA-625-5p and subsequently increasing IGF-1R expression. Cancer Gene Ther 2021; 1-17.
[http://dx.doi.org/10.1038/s41417-021-00313-9] [PMID: 33674778]
[130]
Chen XE, Chen P, Chen S, et al. Long non-coding RNA FENDRR inhibits migration and invasion of cutaneous malignant melanoma cells. Biosci Rep 2020; 40(3): BSR20191194.
[http://dx.doi.org/10.1042/BSR20191194] [PMID: 32134466]
[131]
Xu W, Wang B, Cai Y, et al. The therapeutic value and molecular mechanisms of lncRNA FENDRR in human cancer. Curr Pharm Des 2021; 27(39): 4100-6.
[http://dx.doi.org/10.2174/1381612827666210820094702] [PMID: 34414867]
[132]
He J, Zhao H, Deng D, et al. Screening of significant biomarkers related with prognosis of liver cancer by lncRNA-associated ceRNAs analysis. J Cell Physiol 2020; 235(3): 2464-77.
[http://dx.doi.org/10.1002/jcp.29151] [PMID: 31502679]
[133]
Acha-Sagredo A, Uko B, Pantazi P, et al. Long non-coding RNA dysregulation is a frequent event in non-small cell lung carcinoma pathogenesis. Br J Cancer 2020; 122(7): 1050-8.
[http://dx.doi.org/10.1038/s41416-020-0742-9] [PMID: 32020063]
[134]
Ran C. Expression and biological function of lncRNA FENDRR in Xuanwei lung cancer cells. Kunming Med Uni 2017.
[135]
Xu Ran MY, Chen K, Wenjun Y. Long non-coding RNA-FENDRR improves the chemotherapy sensitivity of non-small cell lung cancer cells to cisplatin. Mod Oncol Med 2017; 25(19): 3050-3.
[136]
Jialun H. The effect of lncRNA FENDRR on the biological behavior of lung cancer cells in Xuanwei area. Kunming Med Uni 2018.
[137]
Chang Y, Xue X, Li C, et al. MIR205HG facilitates carcinogenesis of lung squamous cell carcinoma In vitro revealed by long noncoding RNA profiling. Acta Biochim Biophys Sin (Shanghai) 2020; 52(4): 371-81.
[http://dx.doi.org/10.1093/abbs/gmaa006] [PMID: 32188965]
[138]
Zhang L, Li S, Choi YL, et al. Systematic identification of cancer-related long noncoding RNAs and aberrant alternative splicing of quintuple-negative lung adenocarcinoma through RNA-Seq. Lung Cancer 2017; 109: 21-7.
[http://dx.doi.org/10.1016/j.lungcan.2017.04.009]
[139]
Tian Z, Wen S, Zhang Y, et al. Identification of dysregulated long non-coding RNAs/microRNAs/mRNAs in TNM I stage lung adenocarcinoma. Oncotarget 2017; 8(31): 51703-18.
[http://dx.doi.org/10.18632/oncotarget.18512] [PMID: 28881680]
[140]
Li W, Liu J, Zhao H. Identification of a nomogram based on long non-coding RNA to improve prognosis prediction of esophageal squamous cell carcinoma. Aging (Albany NY) 2020; 12(2): 1512-26.
[http://dx.doi.org/10.18632/aging.102697] [PMID: 31978896]
[141]
Liu Y, Yang B, Su Y, Xiang Q, Li Q. Downregulation of long noncoding RNA LINC00683 associated with unfavorable prognosis in prostate cancer based on TCGA. J Cell Biochem 2019; 120(8): 14165-74.
[http://dx.doi.org/10.1002/jcb.28691] [PMID: 30963639]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy