Review Article

在额颞叶痴呆中聚焦Tau和TDP-43:有前途的化合物综述

卷 29, 期 38, 2022

发表于: 15 August, 2022

页: [5903 - 5924] 页: 22

弟呕挨: 10.2174/0929867329666220508175340

价格: $65

摘要

神经退行性疾病种类繁多,其中额颞叶痴呆最为突出。这些是世界上第二常见的痴呆症病因,需要寻找有效的治疗方法。这种疾病与蛋白质的异常行为有关,蛋白质聚集在一起形成不溶性聚集体。已经表明,tau蛋白和TDP-43是参与这些病理的主要蛋白。这篇文章详细介绍了11种已经在不同神经病学中使用的化合物,它们可能是对抗这些蛋白质的潜在药物。强调了大多数这些分子如何抑制tau和TDP-43聚集过程的机制。重要的是,据报道,姜黄素、原花青素B2、油酸甘油酯、木犀草素苷元、硫氨酸和白藜芦醇是tau的直接抑制剂。而4-氨基喹啉、二甲氧基姜黄素和奥兰芬直接抑制TDP-43。表没食子酸儿茶素-3-没食子酸酯和亚甲基蓝被描述为tau和TDP-43抑制剂。在这篇综述中,有人提出,未来的研究可以阐明这些化合物的详细抑制机制,以获得相关数据,从而在额颞叶痴呆的治疗中寻找这些共存蛋白。

关键词: 额颞叶痴呆、蛋白质病、tau、TDP-43、蛋白质聚集、化合物。

Next »
[1]
Dugger, B.N.; Dickson, D.W. Pathology of neurodegenerative diseases. Cold Spring Harb. Perspect. Biol., 2017, 9(7), a028035.
[http://dx.doi.org/10.1101/cshperspect.a028035] [PMID: 28062563]
[2]
Gitler, A.D.; Dhillon, P.; Shorter, J. Neurodegenerative disease: Models, mechanisms, and a new hope. Dis. Model. Mech., 2017, 10(5), 499-502.
[http://dx.doi.org/10.1242/dmm.030205] [PMID: 28468935]
[3]
World Health Organization. Global Action Plan on the Public Health Response to Dementia 2017–2025; World Health Organization, 2017.
[4]
International, A. D.; University, M. World Alzheimer report 2021: Journey through the diagnosis of dementia. 2021.
[5]
Alves, L.C.S.; Monteiro, D.Q.; Bento, S.R.; Hayashi, V.D.; Pelegrini, L.N.C.; Vale, F.A.C. Burnout syndrome in informal caregivers of older adults with dementia: A systematic review. Dement. Neuropsychol., 2019, 13(4), 415-421.
[http://dx.doi.org/10.1590/1980-57642018dn13-040008] [PMID: 31844495]
[6]
OECD. Unleashing the power of big data for Alzheimer’s disease and dementia research: Main points of the OECD expert consultation on unlocking global collaboration to accelerate innovation for Alzheimer´s disease and dementia. 2014.
[http://dx.doi.org/10.1787/20716826]
[7]
Stefani, M.; Dobson, C.M. Protein aggregation and aggregate toxicity: New insights into protein folding, misfolding diseases and biological evolution. J. Mol. Med. (Berl.), 2003, 81(11), 678-699.
[http://dx.doi.org/10.1007/s00109-003-0464-5] [PMID: 12942175]
[8]
Forman, M.S.; Trojanowski, J.Q.; Lee, V.M-Y. Neurodegenerative diseases: A decade of discoveries paves the way for therapeutic breakthroughs. Nat. Med., 2004, 10(10), 1055-1063.
[http://dx.doi.org/10.1038/nm1113] [PMID: 15459709]
[9]
Luca, A.; Calandra, C.; Luca, M. Molecular bases of Alzheimer’s disease and neurodegeneration: The role of neuroglia. Aging Dis., 2018, 9(6), 1134-1152.
[http://dx.doi.org/10.14336/AD.2018.0201] [PMID: 30574424]
[10]
Chaves, R.S.; Melo, T.Q.; Martins, S.A.; Ferrari, M.F. Protein aggregation containing β-amyloid, α-synuclein and hyperphosphorylated τ in cultured cells of hippocampus, substantia nigra and locus coeruleus after rotenone exposure. BMC Neurosci., 2010, 11(1), 144.
[http://dx.doi.org/10.1186/1471-2202-11-144] [PMID: 21067569]
[11]
Rowe, C.C.; Villemagne, V.L. Amyloid imaging with PET in early Alzheimer disease diagnosis. Med. Clin. North Am., 2013, 97(3), 377-398.
[http://dx.doi.org/10.1016/j.mcna.2012.12.017] [PMID: 23642577]
[12]
Mikuła, E. Recent advancements in electrochemical biosensors for Alzheimer’s disease biomarkers detection. Curr. Med. Chem., 2021, 28(20), 4049-4073.
[http://dx.doi.org/10.2174/0929867327666201111141341] [PMID: 33176635]
[13]
Mikula, E.; Wyslouch-Cieszynska, A.; Zhukova, L.; Verwilst, P.; Dehaen, W.; Radecki, J.; Radecka, H. Electrochemical biosensor for the detection of glycated albumin. Curr. Alzheimer Res., 2017, 14(3), 345-351.
[PMID: 27829338]
[14]
Iannuzzi, C.; Irace, G.; Sirangelo, I. Differential effects of glycation on protein aggregation and amyloid formation. Front. Mol. Biosci., 2014, 1, 9.
[http://dx.doi.org/10.3389/fmolb.2014.00009] [PMID: 25988150]
[15]
Alonso, A. del C.; Mederlyova, A.; Novak, M.; Grundke-Iqbal, I.; Iqbal, K. Promotion of hyperphosphorylation by frontotemporal dementia tau mutations. J. Biol. Chem., 2004, 279(33), 34873-34881.
[http://dx.doi.org/10.1074/jbc.M405131200] [PMID: 15190058]
[16]
Mamun, A.A.; Uddin, M.S.; Mathew, B.; Ashraf, G.M. Toxic tau: Structural origins of tau aggregation in Alzheimer’s disease. Neural Regen. Res., 2020, 15(8), 1417-1420.
[http://dx.doi.org/10.4103/1673-5374.274329] [PMID: 31997800]
[17]
Giau, V.V.; Bagyinszky, E.; An, S.S.A.; Kim, S.Y. Role of apolipoprotein E in neurodegenerative diseases. Neuropsychiatr. Dis. Treat., 2015, 11, 1723-1737.
[http://dx.doi.org/10.2147/NDT.S84266] [PMID: 26213471]
[18]
Li, X.; Dong, C.; Hoffmann, M.; Garen, C.R.; Cortez, L.M.; Petersen, N.O.; Woodside, M.T. Early stages of aggregation of engineered α-synuclein monomers and oligomers in solution. Sci. Rep., 2019, 9(1), 1734.
[http://dx.doi.org/10.1038/s41598-018-37584-6] [PMID: 30741954]
[19]
Scherzinger, E.; Lurz, R.; Turmaine, M.; Mangiarini, L.; Hollenbach, B.; Hasenbank, R.; Bates, G.P.; Davies, S.W.; Lehrach, H.; Wanker, E.E. Huntingtin-encoded polyglutamine expansions form amyloid-like protein aggregates in vitro and in vivo. Cell, 1997, 90(3), 549-558.
[http://dx.doi.org/10.1016/S0092-8674(00)80514-0] [PMID: 9267034]
[20]
Hergesheimer, R.C.; Chami, A.A.; de Assis, D.R.; Vourc’h, P.; Andres, C.R.; Corcia, P.; Lanznaster, D.; Blasco, H. The debated toxic role of aggregated TDP-43 in amyotrophic lateral sclerosis: A resolution in sight? Brain, 2019, 142(5), 1176-1194.
[http://dx.doi.org/10.1093/brain/awz078] [PMID: 30938443]
[21]
Knopman, D.S.; Roberts, R.O. Estimating the number of persons with frontotemporal lobar degeneration in the US population. J. Mol. Neurosci., 2011, 45(3), 330-335.
[http://dx.doi.org/10.1007/s12031-011-9538-y] [PMID: 21584654]
[22]
Merrilees, J. A model for management of behavioral symptoms in frontotemporal lobar degeneration. Alzheimer Dis. Assoc. Disord., 2007, 21(4), S64-S69.
[http://dx.doi.org/10.1097/WAD.0b013e31815bf774] [PMID: 18090427]
[23]
Cheng, S-T.; Chow, P.K.; Song, Y-Q.; Yu, E.C.S.; Chan, A.C.M.; Lee, T.M.C.; Lam, J.H.M. Mental and physical activities delay cognitive decline in older persons with dementia. Am. J. Geriatr. Psychiatry, 2014, 22(1), 63-74.
[http://dx.doi.org/10.1016/j.jagp.2013.01.060] [PMID: 23582750]
[24]
Rogalski, E.J.; Saxon, M.; McKenna, H.; Wieneke, C.; Rademaker, A.; Corden, M.E.; Borio, K.; Mesulam, M-M.; Khayum, B. Communication Bridge: A pilot feasibility study of Internet-based speech-language therapy for individuals with progressive aphasia. Alzheimers Dement. (N. Y.), 2016, 2(4), 213-221.
[http://dx.doi.org/10.1016/j.trci.2016.08.005] [PMID: 28503656]
[25]
Bang, J.; Spina, S.; Miller, B.L. Non-Alzheimer’s Dementia 1. Lancet, 2015, 386(10004), 1672-1682.
[http://dx.doi.org/10.1016/S0140-6736(15)00461-4]
[26]
Kolarova, M.; García-Sierra, F.; Bartos, A.; Ricny, J.; Ripova, D. Structure and pathology of tau protein in Alzheimer disease. Int. J. Alzheimers Dis., 2012, 2012, e731526.
[http://dx.doi.org/10.1155/2012/731526]
[27]
Martin, L.; Latypova, X.; Terro, F. Post-translational modifications of tau protein: Implications for Alzheimer’s disease. Neurochem. Int., 2011, 58(4), 458-471.
[http://dx.doi.org/10.1016/j.neuint.2010.12.023] [PMID: 21215781]
[28]
Barbier, P.; Zejneli, O.; Martinho, M.; Lasorsa, A.; Belle, V.; Smet-Nocca, C.; Tsvetkov, P.O.; Devred, F.; Landrieu, I. Role of Tau as a microtubule-associated protein: Structural and functional aspects. Front. Aging Neurosci., 2019, 11, 204.
[http://dx.doi.org/10.3389/fnagi.2019.00204] [PMID: 31447664]
[29]
Wegmann, S.; Biernat, J.; Mandelkow, E. A current view on Tau protein phosphorylation in Alzheimer’s disease. Curr. Opin. Neurobiol., 2021, 69, 131-138.
[http://dx.doi.org/10.1016/j.conb.2021.03.003] [PMID: 33892381]
[30]
Kimura, T.; Sharma, G.; Ishiguro, K.; Hisanaga, S.I. Phospho-Tau Bar Code: Analysis of Phosphoisotypes of Tau and Its Application to Tauopathy. Front. Neurosci., 2018, 12, 44.
[http://dx.doi.org/10.3389/fnins.2018.00044] [PMID: 29467609]
[31]
Šimić, G.; Babić Leko, M.; Wray, S.; Harrington, C.; Delalle, I.; Jovanov-Milošević, N.; Bažadona, D.; Buée, L.; de Silva, R.; Di Giovanni, G.; Wischik, C.; Hof, P.R. Tau protein hyperphosphorylation and aggregation in Alzheimer’s disease and other tauopathies, and possible neuroprotective strategies. Biomolecules, 2016, 6(1), 6.
[http://dx.doi.org/10.3390/biom6010006] [PMID: 26751493]
[32]
Grundke-Iqbal, I.; Iqbal, K.; Tung, Y.C.; Quinlan, M.; Wisniewski, H.M.; Binder, L.I. Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc. Natl. Acad. Sci. USA, 1986, 83(13), 4913-4917.
[http://dx.doi.org/10.1073/pnas.83.13.4913] [PMID: 3088567]
[33]
von Bergen, M.; Barghorn, S.; Li, L.; Marx, A.; Biernat, J.; Mandelkow, E-M.; Mandelkow, E. Mutations of tau protein in frontotemporal dementia promote aggregation of paired helical filaments by enhancing local β-structure. J. Biol. Chem., 2001, 276(51), 48165-48174.
[http://dx.doi.org/10.1074/jbc.M105196200] [PMID: 11606569]
[34]
Wang, Y.; Mandelkow, E. Tau in physiology and pathology. Nat. Rev. Neurosci., 2016, 17(1), 5-21.
[http://dx.doi.org/10.1038/nrn.2015.1] [PMID: 26631930]
[35]
Goedert, M.; Spillantini, M.G. Propagation of Tau aggregates. Mol. Brain, 2017, 10(1), 18.
[http://dx.doi.org/10.1186/s13041-017-0298-7] [PMID: 28558799]
[36]
Wang, I-F.; Wu, L-S.; Shen, C-K.J. TDP-43: An emerging new player in neurodegenerative diseases. Trends Mol. Med., 2008, 14(11), 479-485.
[http://dx.doi.org/10.1016/j.molmed.2008.09.001] [PMID: 18929508]
[37]
Buratti, E.; Baralle, F. Multiple Roles of TDP-43 in Gene Expression; Splicing Regulation, and Human Disease, 2008.
[http://dx.doi.org/10.2741/2727]
[38]
Wu, L.-S.; Cheng, W.-C.; Hou, S.-C.; Yan, Y.-T.; Jiang, S.-T.; Shen, C.-K. J. TDP-43, a neuro-pathosignature factor, is essential for early mouse embryogenesis. Genesis, 2010, 48(1), 56-62.
[http://dx.doi.org/10.1002/dvg.20584]
[39]
Suzuki, H.; Lee, K.; Matsuoka, M. TDP-43-induced death is associated with altered regulation of BIM and Bcl-xL and attenuated by caspase-mediated TDP-43 cleavage. J. Biol. Chem., 2011, 286(15), 13171-13183.
[http://dx.doi.org/10.1074/jbc.M110.197483] [PMID: 21339291]
[40]
Shiga, A.; Ishihara, T.; Miyashita, A.; Kuwabara, M.; Kato, T.; Watanabe, N.; Yamahira, A.; Kondo, C.; Yokoseki, A.; Takahashi, M.; Kuwano, R.; Kakita, A.; Nishizawa, M.; Takahashi, H.; Onodera, O. Alteration of POLDIP3 splicing associated with loss of function of TDP-43 in tissues affected with ALS. PLoS One, 2012, 7(8), e43120.
[http://dx.doi.org/10.1371/journal.pone.0043120] [PMID: 22900096]
[41]
Buratti, E.; De Conti, L.; Stuani, C.; Romano, M.; Baralle, M.; Baralle, F. Nuclear factor TDP-43 can affect selected MicroRNA levels. 2010.
[http://dx.doi.org/10.1111/j.1742-4658.2010.07643.x]
[42]
Buratti, E.; Baralle, F. The multiple roles of TDP-43. Pre-MRNA processing and gene expression regulation. RNA Biol., 2010, 7(4), 420-9.
[http://dx.doi.org/10.4161/rna.7.4.12205]
[43]
Neumann, M.; Sampathu, D.M.; Kwong, L.K.; Truax, A.C.; Micsenyi, M.C.; Chou, T.T.; Bruce, J.; Schuck, T.; Grossman, M.; Clark, C.M.; McCluskey, L.F.; Miller, B.L.; Masliah, E.; Mackenzie, I.R.; Feldman, H.; Feiden, W.; Kretzschmar, H.A.; Trojanowski, J.Q.; Lee, V.M. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science, 2006, 314(5796), 130-133.
[http://dx.doi.org/10.1126/science.1134108] [PMID: 17023659]
[44]
Arai, T.; Hasegawa, M.; Nonoka, T.; Kametani, F.; Yamashita, M.; Hosokawa, M.; Niizato, K.; Tsuchiya, K.; Kobayashi, Z.; Ikeda, K.; Yoshida, M.; Onaya, M.; Fujishiro, H.; Akiyama, H. Phosphorylated and cleaved TDP-43 in ALS, FTLD and other neurodegenerative disorders and in cellular models of TDP-43 proteinopathy. Neuropathology, 2010, 30(2), 170-181.
[http://dx.doi.org/10.1111/j.1440-1789.2009.01089.x] [PMID: 20102522]
[45]
Laurents, D.V.; Stuani, C.; Pantoja-Uceda, D.; Buratti, E.; Mompeán, M. Aromatic and aliphatic residues of the disordered region of TDP-43 are on a fast track for self-assembly. Biochem. Biophys. Res. Commun., 2021, 578, 110-114.
[http://dx.doi.org/10.1016/j.bbrc.2021.09.040] [PMID: 34560580]
[46]
Tsuiji, H.; Inoue, I.; Takeuchi, M.; Furuya, A.; Yamakage, Y.; Watanabe, S.; Koike, M.; Hattori, M.; Yamanaka, K. TDP-43 accelerates age-dependent degeneration of interneurons. Sci. Rep., 2017, 7(1), 14972.
[http://dx.doi.org/10.1038/s41598-017-14966-w] [PMID: 29097807]
[47]
Davis, S.A.; Itaman, S.; Khalid-Janney, C.M.; Sherard, J.A.; Dowell, J.A.; Cairns, N.J.; Gitcho, M.A. TDP-43 interacts with mitochondrial proteins critical for mitophagy and mitochondrial dynamics. Neurosci. Lett., 2018, 678, 8-15.
[http://dx.doi.org/10.1016/j.neulet.2018.04.053] [PMID: 29715546]
[48]
Vanden Broeck, L.; Naval-Sánchez, M.; Adachi, Y.; Diaper, D.; Dourlen, P.; Chapuis, J.; Kleinberger, G.; Gistelinck, M.; Van Broeckhoven, C.; Lambert, J-C.; Hirth, F.; Aerts, S.; Callaerts, P.; Dermaut, B. TDP-43 loss-of-function causes neuronal loss due to defective steroid receptor-mediated gene program switching in Drosophila. Cell Rep., 2013, 3(1), 160-172.
[http://dx.doi.org/10.1016/j.celrep.2012.12.014] [PMID: 23333275]
[49]
Leverenz, J.B.; Yu, C.E.; Montine, T.J.; Steinbart, E.; Bekris, L.M.; Zabetian, C.; Kwong, L.K.; Lee, V.M-Y.; Schellenberg, G.D.; Bird, T.D. A novel progranulin mutation associated with variable clinical presentation and tau, TDP43 and alpha-synuclein pathology. Brain, 2007, 130(Pt 5), 1360-1374.
[http://dx.doi.org/10.1093/brain/awm069] [PMID: 17439980]
[50]
Larson, M.E.; Sherman, M.A.; Greimel, S.; Kuskowski, M.; Schneider, J.A.; Bennett, D.A.; Lesné, S.E. Soluble α-synuclein is a novel modulator of Alzheimer’s disease pathophysiology. J. Neurosci., 2012, 32(30), 10253-10266.
[http://dx.doi.org/10.1523/JNEUROSCI.0581-12.2012] [PMID: 22836259]
[51]
Sengupta, U.; Guerrero-Muñoz, M.J.; Castillo-Carranza, D.L.; Lasagna-Reeves, C.A.; Gerson, J.E.; Paulucci-Holthauzen, A.A.; Krishnamurthy, S.; Farhed, M.; Jackson, G.R.; Kayed, R. Pathological interface between oligomeric alpha-synuclein and tau in synucleinopathies. Biol. Psychiatry, 2015, 78(10), 672-683.
[http://dx.doi.org/10.1016/j.biopsych.2014.12.019] [PMID: 25676491]
[52]
Sengupta, U.; Puangmalai, N.; Bhatt, N.; Garcia, S.; Zhao, Y.; Kayed, R. Polymorphic α-synuclein strains modified by dopamine and docosahexaenoic acid interact differentially with Tau protein. Mol. Neurobiol., 2020, 57(6), 2741-2765.
[http://dx.doi.org/10.1007/s12035-020-01913-6] [PMID: 32350746]
[53]
Shih, Y-H.; Tu, L-H.; Chang, T-Y.; Ganesan, K.; Chang, W-W.; Chang, P-S.; Fang, Y-S.; Lin, Y-T.; Jin, L-W.; Chen, Y-R. TDP-43 interacts with amyloid-β, inhibits fibrillization, and worsens pathology in a model of Alzheimer’s disease. Nat. Commun., 2020, 11(1), 5950.
[http://dx.doi.org/10.1038/s41467-020-19786-7] [PMID: 33230138]
[54]
Yamashita, S.; Sakashita, N.; Yamashita, T.; Tawara, N.; Tasaki, M.; Kawakami, K.; Komohara, Y.; Fujiwara, Y.; Kamikawa, M.; Nakagawa, T.; Hirano, T.; Maeda, Y.; Hasegawa, M.; Takeya, M.; Ando, Y. Concomitant accumulation of α-synuclein and TDP-43 in a patient with corticobasal degeneration. J. Neurol., 2014, 261(11), 2209-2217.
[http://dx.doi.org/10.1007/s00415-014-7491-8] [PMID: 25209854]
[55]
Latimer, C.S.; Liachko, N.F. Tau and TDP-43 synergy: A novel therapeutic target for sporadic late-onset Alzheimer’s disease. Geroscience, 2021, 43(4), 1627-1634.
[http://dx.doi.org/10.1007/s11357-021-00407-0] [PMID: 34185246]
[56]
Latimer, C.S.; Burke, B.T.; Liachko, N.F.; Currey, H.N.; Kilgore, M.D.; Gibbons, L.E.; Henriksen, J.; Darvas, M.; Domoto-Reilly, K.; Jayadev, S.; Grabowski, T.J.; Crane, P.K.; Larson, E.B.; Kraemer, B.C.; Bird, T.D.; Keene, C.D. Resistance and resilience to Alzheimer’s disease pathology are associated with reduced cortical pTau and absence of limbic-predominant age-related TDP-43 encephalopathy in a community-based cohort. Acta Neuropathol. Commun., 2019, 7(1), 91.
[http://dx.doi.org/10.1186/s40478-019-0743-1] [PMID: 31174609]
[57]
Robinson, A.C.; Thompson, J.C.; Weedon, L.; Rollinson, S.; Pickering-Brown, S.; Snowden, J.S.; Davidson, Y.S.; Mann, D.M.A. No interaction between tau and TDP-43 pathologies in either frontotemporal lobar degeneration or motor neurone disease. Neuropathol. Appl. Neurobiol., 2014, 40(7), 844-854.
[http://dx.doi.org/10.1111/nan.12155] [PMID: 24861427]
[58]
Davis, S.A.; Gan, K.A.; Dowell, J.A.; Cairns, N.J.; Gitcho, M.A. TDP-43 expression influences amyloidβ plaque deposition and tau aggregation. Neurobiol. Dis., 2017, 103, 154-162.
[http://dx.doi.org/10.1016/j.nbd.2017.04.012] [PMID: 28416393]
[59]
Takeda, T. Possible concurrence of TDP-43, tau and other proteins in amyotrophic lateral sclerosis/frontotemporal lobar degeneration. Neuropathology, 2018, 38(1), 72-81.
[http://dx.doi.org/10.1111/neup.12428] [PMID: 28960544]
[60]
Montalbano, M.; McAllen, S.; Cascio, F.L.; Sengupta, U.; Garcia, S.; Bhatt, N.; Ellsworth, A.; Heidelman, E.A.; Johnson, O.D.; Doskocil, S.; Kayed, R. TDP-43 and tau oligomers in Alzheimer’s disease, amyotrophic lateral sclerosis, and frontotemporal dementia. Neurobiol. Dis., 2020, 146, 105130.
[http://dx.doi.org/10.1016/j.nbd.2020.105130] [PMID: 33065281]
[61]
Kim, E-J.; Brown, J.A.; Deng, J.; Hwang, J.L.; Spina, S.; Miller, Z.A.; DeMay, M.G.; Valcour, V.; Karydas, A.; Ramos, E.M.; Coppola, G.; Miller, B.L.; Rosen, H.J.; Seeley, W.W.; Grinberg, L.T. Mixed TDP-43 proteinopathy and tauopathy in frontotemporal lobar degeneration: Nine case series. J. Neurol., 2018, 265(12), 2960-2971.
[http://dx.doi.org/10.1007/s00415-018-9086-2] [PMID: 30324308]
[62]
Koga, S.; Zhou, X.; Murakami, A.; Castro, C. F. D.; Baker, M. C.; Rademakers, R.; Dickson, D. W. Concurrent tau pathologies in frontotemporal lobar degeneration with TDP-43 pathology. Neuropathol. Appl. Neurobiol., 2022, 48(2), e12778.
[http://dx.doi.org/10.1111/nan.12778]
[63]
Zhang, H.; Xu, L-Q.; Perrett, S. Studying the effects of chaperones on amyloid fibril formation. Methods, 2011, 53(3), 285-294.
[http://dx.doi.org/10.1016/j.ymeth.2010.11.009] [PMID: 21144901]
[64]
Cisek, K.; Cooper, G.L.; Huseby, C.J.; Kuret, J. Structure and mechanism of action of tau aggregation inhibitors. Curr. Alzheimer Res., 2014, 11(10), 918-927.
[http://dx.doi.org/10.2174/1567205011666141107150331] [PMID: 25387336]
[65]
Cristóvão, J.S.; Figueira, A.J.; Carapeto, A.P.; Rodrigues, M.S.; Cardoso, I.; Gomes, C.M. The S100B alarmin is a dual-function chaperone suppressing amyloid-β oligomerization through combined zinc chelation and inhibition of protein ACS Chem. Neurosci., 2020, 11(17), 2753-2760.
[http://dx.doi.org/10.1021/acschemneuro.0c00392] [PMID: 32706972]
[66]
Sonawane, S.K.; Ahmad, A.; Chinnathambi, S. Protein-capped metal nanoparticles inhibit tau aggregation in Alzheimer’s Disease. ACS Omega, 2019, 4(7), 12833-12840.
[http://dx.doi.org/10.1021/acsomega.9b01411] [PMID: 31460408]
[67]
Arosio, P.; Vendruscolo, M.; Dobson, C.M.; Knowles, T.P.J. Chemical kinetics for drug discovery to combat protein aggregation diseases. Trends Pharmacol. Sci., 2014, 35(3), 127-135.
[http://dx.doi.org/10.1016/j.tips.2013.12.005] [PMID: 24560688]
[68]
Alam, P.; Siddiqi, K.; Chturvedi, S.K.; Khan, R.H. Protein aggregation: From background to inhibition strategies. Int. J. Biol. Macromol., 2017, 103, 208-219.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.05.048] [PMID: 28522393]
[69]
Velander, P.; Wu, L.; Henderson, F.; Zhang, S.; Bevan, D.R.; Xu, B. Natural product-based amyloid inhibitors. Biochem. Pharmacol., 2017, 139, 40-55.
[http://dx.doi.org/10.1016/j.bcp.2017.04.004] [PMID: 28390938]
[70]
Berhanu, W.M.; Masunov, A.E. Atomistic mechanism of polyphenol amyloid aggregation inhibitors: Molecular dynamics study of Curcumin, Exifone, and Myricetin interaction with the segment of tau peptide oligomer. J. Biomol. Struct. Dyn., 2015, 33(7), 1399-1411.
[http://dx.doi.org/10.1080/07391102.2014.951689] [PMID: 25093402]
[71]
Alam, P.; Chaturvedi, S.K.; Siddiqi, M.K.; Rajpoot, R.K.; Ajmal, M.R.; Zaman, M.; Khan, R.H. Vitamin k3 inhibits protein aggregation: Implication in the treatment of amyloid diseases. Sci. Rep., 2016, 6(1), 26759.
[http://dx.doi.org/10.1038/srep26759] [PMID: 27230476]
[72]
Monti, M.C.; Margarucci, L.; Tosco, A.; Riccio, R.; Casapullo, A. New insights on the interaction mechanism between tau protein and oleocanthal, an extra-virgin olive-oil bioactive component. Food Funct., 2011, 2(7), 423-428.
[http://dx.doi.org/10.1039/c1fo10064e] [PMID: 21894330]
[73]
George, R.C.; Lew, J.; Graves, D.J. Interaction of cinnamaldehyde and epicatechin with tau: Implications of beneficial effects in modulating Alzheimer’s disease pathogenesis. J. Alzheimers Dis., 2013, 36(1), 21-40.
[http://dx.doi.org/10.3233/JAD-122113] [PMID: 23531502]
[74]
Yamashita, M.; Nonaka, T.; Arai, T.; Kametani, F.; Buchman, V.L.; Ninkina, N.; Bachurin, S.O.; Akiyama, H.; Goedert, M.; Hasegawa, M. Methylene blue and dimebon inhibit aggregation of TDP-43 in cellular models. FEBS Lett., 2009, 583(14), 2419-2424.
[http://dx.doi.org/10.1016/j.febslet.2009.06.042] [PMID: 19560462]
[75]
Chong, C.R.; Sullivan, D.J., Jr New uses for old drugs. Nature, 2007, 448(7154), 645-646.
[http://dx.doi.org/10.1038/448645a] [PMID: 17687303]
[76]
Jin, G.; Wong, S.T.C. Toward better drug repositioning: Prioritizing and integrating existing methods into efficient pipelines. Drug Discov. Today, 2014, 19(5), 637-644.
[http://dx.doi.org/10.1016/j.drudis.2013.11.005] [PMID: 24239728]
[77]
Durães, F.; Pinto, M.; Sousa, E. Old drugs as new treatments for neurodegenerative diseases. Pharmaceuticals (Basel), 2018, 11(2), 44.
[http://dx.doi.org/10.3390/ph11020044] [PMID: 29751602]
[78]
Rothstein, J.D.; Patel, S.; Regan, M.R.; Haenggeli, C.; Huang, Y.H.; Bergles, D.E.; Jin, L.; Dykes Hoberg, M.; Vidensky, S.; Chung, D.S.; Toan, S.V.; Bruijn, L.I.; Su, Z.Z.; Gupta, P.; Fisher, P.B. β-lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature, 2005, 433(7021), 73-77.
[http://dx.doi.org/10.1038/nature03180] [PMID: 15635412]
[79]
Zhang, T.; Zhang, J.; Derreumaux, P.; Mu, Y. Molecular mechanism of the inhibition of EGCG on the Alzheimer Aβ(1-42) dimer. J. Phys. Chem. B, 2013, 117(15), 3993-4002.
[http://dx.doi.org/10.1021/jp312573y] [PMID: 23537203]
[80]
Sanders, O. Sildenafil for the treatment of Alzheimer’s disease: A systematic review. J. Alzheimers Dis. Rep., 2020, 4(1), 91-106.
[http://dx.doi.org/10.3233/ADR-200166] [PMID: 32467879]
[81]
Halliday, M.; Radford, H.; Zents, K.A.M.; Molloy, C.; Moreno, J.A.; Verity, N.C.; Smith, E.; Ortori, C.A.; Barrett, D.A.; Bushell, M.; Mallucci, G.R. Repurposed drugs targeting eIF2 and α;-P-mediated translational repression prevent neurodegeneration in mice. Brain, 2017, 140(6), 1768-1783.
[http://dx.doi.org/10.1093/brain/awx074] [PMID: 28430857]
[82]
Akbari, V.; Ghobadi, S.; Mohammadi, S.; Khodarahmi, R. The antidepressant drug; trazodone inhibits Tau amyloidogenesis: Prospects for prophylaxis and treatment of AD. Arch. Biochem. Biophys., 2020, 679, 108218.
[http://dx.doi.org/10.1016/j.abb.2019.108218] [PMID: 31805267]
[83]
Sharma, R. A.; Gescher, A. J.; Steward, W. P. Curcumin: The story so far. Eur. J. Cancer Oxf. Engl., 2005, 41(13), 1955-1968.
[http://dx.doi.org/10.1016/j.ejca.2005.05.009]
[84]
Rane, J.S.; Bhaumik, P.; Panda, D. Curcumin inhibits tau aggregation and disintegrates preformed tau filaments in vitro. J. Alzheimers Dis., 2017, 60(3), 999-1014.
[http://dx.doi.org/10.3233/JAD-170351] [PMID: 28984591]
[85]
Ma, Z.; Wang, N.; He, H.; Tang, X. Pharmaceutical strategies of improving oral systemic bioavailability of curcumin for clinical application. J. Control. Release, 2019, 316, 359-380.
[http://dx.doi.org/10.1016/j.jconrel.2019.10.053] [PMID: 31682912]
[86]
Duan, W.; Guo, Y.; Xiao, J.; Chen, X.; Li, Z.; Han, H.; Li, C. Neuroprotection by monocarbonyl dimethoxycurcumin C: Ameliorating the toxicity of mutant TDP-43 via HO-1. Mol. Neurobiol., 2014, 49(1), 368-379.
[http://dx.doi.org/10.1007/s12035-013-8525-4] [PMID: 23934646]
[87]
Del Prado-Audelo, M.L.; Caballero-Florán, I.H.; Meza-Toledo, J.A.; Mendoza-Muñoz, N.; González-Torres, M.; Florán, B.; Cortés, H.; Leyva-Gómez, G. Formulations of curcumin nanoparticles for brain diseases. Biomolecules, 2019, 9(2), 56.
[http://dx.doi.org/10.3390/biom9020056] [PMID: 30743984]
[88]
Szymusiak, M.; Hu, X.; Leon Plata, P.A.; Ciupinski, P.; Wang, Z.J.; Liu, Y. Bioavailability of curcumin and curcumin glucuronide in the central nervous system of mice after oral delivery of nano-curcumin. Int. J. Pharm., 2016, 511(1), 415-423.
[http://dx.doi.org/10.1016/j.ijpharm.2016.07.027] [PMID: 27426105]
[89]
Ahmadi, M.; Agah, E.; Nafissi, S.; Jaafari, M.R.; Harirchian, M.H.; Sarraf, P.; Faghihi-Kashani, S.; Hosseini, S.J.; Ghoreishi, A.; Aghamollaii, V.; Hosseini, M.; Tafakhori, A. Safety andefficacy of nanocurcumin as add-on therapy to riluzole in patients with amyotrophic lateral sclerosis: A pilot randomized clinical trial. Neurother. J. Am. Soc. Exp. Neurother., 2018, 15(2), 430-438.
[http://dx.doi.org/10.1007/s13311-018-0606-7] [PMID: 29352425]
[90]
Snow, A.D.; Castillo, G.M.; Nguyen, B.P.; Choi, P.Y.; Cummings, J.A.; Cam, J.; Hu, Q.; Lake, T.; Pan, W.; Kastin, A.J.; Kirschner, D.A.; Wood, S.G.; Rockenstein, E.; Masliah, E.; Lorimer, S.; Tanzi, R.E.; Larsen, L. The Amazon rain forest plant Uncaria tomentosa (cat’s claw) and its specific proanthocyanidin constituents are potent inhibitors and reducers of both brain plaques and tangles. Sci. Rep., 2019, 9(1), 561.
[http://dx.doi.org/10.1038/s41598-019-38645-0] [PMID: 30728442]
[91]
Liu, G.; Shi, A.; Wang, N.; Li, M.; He, X.; Yin, C.; Tu, Q.; Shen, X.; Tao, Y.; Wang, Q.; Yin, H. Polyphenolic Proanthocyanidin-B2 suppresses proliferation of liver cancer cells and hepatocellular carcinogenesis through directly binding and inhibiting AKT activity. Redox Biol., 2020, 37, 101701.
[http://dx.doi.org/10.1016/j.redox.2020.101701] [PMID: 32863234]
[92]
Barbe, A.; Ramé, C.; Mellouk, N.; Estienne, A.; Bongrani, A.; Brossaud, A.; Riva, A.; Guérif, F.; Froment, P.; Dupont, J. Effects of grape seed extract and proanthocyanidin B2 on in vitro proliferation, viability, steroidogenesis, oxidative stress, and cell signaling in human granulosa cells. Int. J. Mol. Sci., 2019, 20(17), 4215.
[http://dx.doi.org/10.3390/ijms20174215] [PMID: 31466336]
[93]
Bagchi, D.; Bagchi, M.; Stohs, S.J.; Das, D.K.; Ray, S.D.; Kuszynski, C.A.; Joshi, S.S.; Pruess, H.G. Free radicals and grape seed proanthocyanidin extract: Importance in human health and disease prevention. Toxicology, 2000, 148(2-3), 187-197.
[http://dx.doi.org/10.1016/S0300-483X(00)00210-9] [PMID: 10962138]
[94]
Wu, X.; Yu, H.; Zhou, H.; Li, Z.; Huang, H.; Xiao, F.; Xu, S.; Yang, Y. Proanthocyanidin B2 inhibits proliferation and induces apoptosis of osteosarcoma cells by suppressing the PI3K/AKT pathway. J. Cell. Mol. Med., 2020, 24(20), 11960-11971.
[http://dx.doi.org/10.1111/jcmm.15818] [PMID: 32914567]
[95]
Zhang, Y.-P.; Liu, S.-Y.; Sun, Q.-Y.; Ren, J.; Liu, H.-X.; Li, H. Proanthocyanidin B2 attenuates high-glucose-induced neurotoxicity of dorsal root ganglion neurons through the PI3K/Akt signaling pathway. Neural. Regen. Res., 2018, 13(9), 1628-1636.
[http://dx.doi.org/10.4103/1673-5374.237174]
[96]
Li, Q.; Xiong, C.; Liu, H.; Ge, H.; Yao, X.; Liu, H. Computational insights into the inhibition mechanism of proanthocyanidin b2 on tau hexapeptide (PHF6) oligomer. Front Chem., 2021, 9, 666043.
[http://dx.doi.org/10.3389/fchem.2021.666043] [PMID: 34336783]
[97]
Trichopoulou, A.; Costacou, T.; Bamia, C.; Trichopoulos, D. Adherence to a Mediterranean diet and survival in a Greek population. N. Engl. J. Med., 2003, 348(26), 2599-2608.
[http://dx.doi.org/10.1056/NEJMoa025039] [PMID: 12826634]
[98]
Brenes, M.; García, A.; García, P.; Rios, J.J.; Garrido, A. Phenolic compounds in Spanish olive oils. J. Agric. Food Chem., 1999, 47(9), 3535-3540.
[http://dx.doi.org/10.1021/jf990009o] [PMID: 10552681]
[99]
Ryan, D.; Prenzler, P.D.; Lavee, S.; Antolovich, M.; Robards, K. Quantitative changes in phenolic content during physiological development of the olive (Olea europaea) cultivar Hardy’s Mammoth. J. Agric. Food Chem., 2003, 51(9), 2532-2538.
[http://dx.doi.org/10.1021/jf0261351] [PMID: 12696932]
[100]
Cicerale, S.; Lucas, L.J.; Keast, R.S. Antimicrobial, antioxidant and anti-inflammatory phenolic activities in extra virgin olive oil. Curr. Opin. Biotechnol., 2012, 23(2), 129-135.
[http://dx.doi.org/10.1016/j.copbio.2011.09.006] [PMID: 22000808]
[101]
Montedoro, G.; Servili, M.; Baldioli, M.; Miniati, E. Servili, Maurizio.; Baldioli, Maura.; Miniati, Enrico. Simple and Hydrolyzable Phenolic Compounds in Virgin Olive Oil. 1. Their extraction, separation, and quantitative and semiquantitative evaluation by HPLC. J. Agric. Food Chem., 1992, 40(9), 1571-1576.
[http://dx.doi.org/10.1021/jf00021a019]
[102]
Beauchamp, G.K.; Keast, R.S.J.; Morel, D.; Lin, J.; Pika, J.; Han, Q.; Lee, C-H.; Smith, A.B.; Breslin, P.A.S. Phytochemistry: Ibuprofen-like activity in extra-virgin olive oil. Nature, 2005, 437(7055), 45-46.
[http://dx.doi.org/10.1038/437045a] [PMID: 16136122]
[103]
Elnagar, A.Y.; Sylvester, P.W.; El Sayed, K.A. (-)-Oleocanthal as a c-Met inhibitor for the control of metastatic breast and prostate cancers. Planta Med., 2011, 77(10), 1013-1019.
[http://dx.doi.org/10.1055/s-0030-1270724] [PMID: 21328179]
[104]
Daccache, A.; Lion, C.; Sibille, N.; Gerard, M.; Slomianny, C.; Lippens, G.; Cotelle, P. Oleuropein and derivatives from olives as Tau aggregation inhibitors. Neurochem. Int., 2011, 58(6), 700-707.
[http://dx.doi.org/10.1016/j.neuint.2011.02.010] [PMID: 21333710]
[105]
Li, W.; Sperry, J.B.; Crowe, A.; Trojanowski, J.Q.; Smith, A.B., III; Lee, V.M-Y. Inhibition of tau fibrillization by oleocanthal via reaction with the amino groups of tau. J. Neurochem., 2009, 110(4), 1339-1351.
[http://dx.doi.org/10.1111/j.1471-4159.2009.06224.x] [PMID: 19549281]
[106]
Monti, M.C.; Margarucci, L.; Riccio, R.; Casapullo, A. Modulation of tau protein fibrillization by oleocanthal. J. Nat. Prod., 2012, 75(9), 1584-1588.
[http://dx.doi.org/10.1021/np300384h] [PMID: 22988908]
[107]
Qosa, H.; Batarseh, Y.S.; Mohyeldin, M.M.; El Sayed, K.A.; Keller, J.N.; Kaddoumi, A. Oleocanthal enhances amyloid-β clearance from the brains of TgSwDI mice and in vitro across a human blood-brain barrier model. ACS Chem. Neurosci., 2015, 6(11), 1849-1859.
[http://dx.doi.org/10.1021/acschemneuro.5b00190] [PMID: 26348065]
[108]
Al Rihani, S.B.; Darakjian, L.I.; Kaddoumi, A. Oleocanthal-rich extra-virgin olive oil restores the blood-brain barrier function through nlrp3 inflammasome inhibition simultaneously with autophagy induction in TgSwDI mice. ACS Chem. Neurosci., 2019, 10(8), 3543-3554.
[http://dx.doi.org/10.1021/acschemneuro.9b00175] [PMID: 31244050]
[109]
Tajmim, A.; Cuevas-Ocampo, A.K.; Siddique, A.B.; Qusa, M.H.; King, J.A.; Abdelwahed, K.S.; Sonju, J.J.; El Sayed, K.A. (-)-Oleocanthal nutraceuticals for alzheimer’s disease amyloid pathology: Novel oral formulations, therapeutic, and molecular insights in 5xFAD transgenic mice model. Nutrients, 2021, 13(5), 1702.
[http://dx.doi.org/10.3390/nu13051702] [PMID: 34069842]
[110]
Batarseh, Y.S.; Kaddoumi, A. Oleocanthal-rich extra-virgin olive oil enhances donepezil effect by reducing amyloid-β load and related toxicity in a mouse model of Alzheimer’s disease. J. Nutr. Biochem., 2018, 55, 113-123.
[http://dx.doi.org/10.1016/j.jnutbio.2017.12.006] [PMID: 29413486]
[111]
López-Yerena, A.; Vallverdú-Queralt, A.; Mols, R.; Augustijns, P.; Lamuela-Raventós, R.M.; Escribano-Ferrer, E. Absorption and intestinal metabolic profile of oleocanthal in rats. Pharmaceutics, 2020, 12(2), 134.
[http://dx.doi.org/10.3390/pharmaceutics12020134] [PMID: 32033424]
[112]
Serra, A.; Rubió, L.; Borràs, X.; Macià, A.; Romero, M-P.; Motilva, M-J. Distribution of olive oil phenolic compounds in rat tissues after administration of a phenolic extract from olive cake. Mol. Nutr. Food Res., 2012, 56(3), 486-496.
[http://dx.doi.org/10.1002/mnfr.201100436] [PMID: 22183818]
[113]
Rigacci, S. Guidotti, V.; Bucciantini, M.; Nichino, D.; Relini, A.; Berti, A.; Stefani, M. A & #946;(1-42) Aggregates into non-toxic amyloid assemblies in the presence of the natural polyphenol oleuropein aglycon. Curr. Alzheimer Res., 2011, 8(8), 841-852.
[http://dx.doi.org/10.2174/156720511798192682] [PMID: 21592051]
[114]
Xu, F.; Li, Y.; Zheng, M.; Xi, X.; Zhang, X.; Han, C. Structure properties, acquisition protocols, and biological activities of oleuropein aglycone. Front Chem., 2018, 6, 239.
[http://dx.doi.org/10.3389/fchem.2018.00239] [PMID: 30151359]
[115]
Grossi, C.; Rigacci, S.; Ambrosini, S.; Ed Dami, T.; Luccarini, I.; Traini, C.; Failli, P.; Berti, A.; Casamenti, F.; Stefani, M. The polyphenol oleuropein aglycone protects TgCRND8 mice against Aß plaque pathology. PLoS One, 2013, 8(8), e71702.
[http://dx.doi.org/10.1371/journal.pone.0071702] [PMID: 23951225]
[116]
Luccarini, I.; Ed Dami, T.; Grossi, C.; Rigacci, S.; Stefani, M.; Casamenti, F. Oleuropein aglycone counteracts Aβ42 toxicity in the rat brain. Neurosci. Lett., 2014, 558, 67-72.
[http://dx.doi.org/10.1016/j.neulet.2013.10.062] [PMID: 24211687]
[117]
Pantano, D.; Luccarini, I.; Nardiello, P.; Servili, M.; Stefani, M.; Casamenti, F. Oleuropein aglycone and polyphenols from olive mill waste water ameliorate cognitive deficits and neuropathology. Br. J. Clin. Pharmacol., 2017, 83(1), 54-62.
[http://dx.doi.org/10.1111/bcp.12993] [PMID: 27131215]
[118]
Joohari, S.; Montazerozohori, M.; Malekhoseini, A. Photolytic and photocatalytic decolorization of lauth’s violet using nano-titanium dioxide: A kinetics study. Iran. J. Environ. Technol., 2015, 1(1), 39-48.
[http://dx.doi.org/10.22108/ijet.2015.15581]
[119]
Li, Q.; Zhang, J.; Yan, H.; He, M.; Liu, Z. Thionine-mediated chemistry of carbon nanotubes. Carbon, 2004, 42(2), 287-291.
[http://dx.doi.org/10.1016/j.carbon.2003.10.030]
[120]
Wischik, C.M.; Edwards, P.C.; Lai, R.Y.; Roth, M.; Harrington, C.R. Selective inhibition of Alzheimer disease-like tau aggregation by phenothiazines. Proc. Natl. Acad. Sci. USA, 1996, 93(20), 11213-11218.
[http://dx.doi.org/10.1073/pnas.93.20.11213] [PMID: 8855335]
[121]
Taniguchi, S.; Suzuki, N.; Masuda, M.; Hisanaga, S.; Iwatsubo, T.; Goedert, M.; Hasegawa, M. Inhibition of heparin-induced tau filament formation by phenothiazines, polyphenols, and porphyrins. J. Biol. Chem., 2005, 280(9), 7614-7623.
[http://dx.doi.org/10.1074/jbc.M408714200] [PMID: 15611092]
[122]
Bulic, B.; Pickhardt, M.; Mandelkow, E. Progress and developments in tau aggregation inhibitors for Alzheimer disease. J. Med. Chem., 2013, 56(11), 4135-4155.
[http://dx.doi.org/10.1021/jm3017317] [PMID: 23484434]
[123]
Pezzuto, J.M. Resveratrol: Twenty years of growth, development and controversy. Biomol. Ther. (Seoul), 2019, 27(1), 1-14.
[http://dx.doi.org/10.4062/biomolther.2018.176] [PMID: 30332889]
[124]
Tian, B.; Liu, J. Resveratrol: A review of plant sources, synthesis, stability, modification and food application. J. Sci. Food Agric., 2020, 100(4), 1392-1404.
[http://dx.doi.org/10.1002/jsfa.10152] [PMID: 31756276]
[125]
King, R.E.; Bomser, J.A.; Min, D.B. Bioactivity of resveratrol. Compr. Rev. Food Sci. Food Saf., 2006, 5(3), 65-70.
[http://dx.doi.org/10.1111/j.1541-4337.2006.00001.x]
[126]
Berman, A.Y.; Motechin, R.A.; Wiesenfeld, M.Y.; Holz, M.K. The therapeutic potential of resveratrol: A review of clinical trials. NPJ Precis. Oncol., 2017, 1(1), 1-9.
[http://dx.doi.org/10.1038/s41698-017-0038-6] [PMID: 28989978]
[127]
Hausenblas, H.A.; Schoulda, J.A.; Smoliga, J.M. Resveratrol treatment as an adjunct to pharmacological management in type 2 diabetes mellitus--systematic review and meta-analysis. Mol. Nutr. Food Res., 2015, 59(1), 147-159.
[http://dx.doi.org/10.1002/mnfr.201400173] [PMID: 25138371]
[128]
Saud, S.M.; Li, W.; Morris, N.L.; Matter, M.S.; Colburn, N.H.; Kim, Y.S.; Young, M.R. Resveratrol prevents tumorigenesis in mouse model of Kras activated sporadic colorectal cancer by suppressing oncogenic Kras expression. Carcinogenesis, 2014, 35(12), 2778-2786.
[http://dx.doi.org/10.1093/carcin/bgu209] [PMID: 25280562]
[129]
Yousef, M.; Vlachogiannis, I.A.; Tsiani, E. Effects of resveratrol against lung cancer: In vitro and in vivo studies. Nutrients, 2017, 9(11), 1231.
[http://dx.doi.org/10.3390/nu9111231] [PMID: 29125563]
[130]
Magyar, K.; Halmosi, R.; Palfi, A.; Feher, G.; Czopf, L.; Fulop, A.; Battyany, I.; Sumegi, B.; Toth, K.; Szabados, E. Cardioprotection by resveratrol: A human clinical trial in patients with stable coronary artery disease. Clin. Hemorheol. Microcirc., 2012, 50(3), 179-187.
[http://dx.doi.org/10.3233/CH-2011-1424] [PMID: 22240353]
[131]
Cho, S.; Namkoong, K.; Shin, M.; Park, J.; Yang, E.; Ihm, J.; Thu, V.T.; Kim, H.K.; Han, J. Cardiovascular protective effects and clinical applications of resveratrol. J. Med. Food, 2017, 20(4), 323-334.
[http://dx.doi.org/10.1089/jmf.2016.3856] [PMID: 28346848]
[132]
Iuga, C.; Alvarez-Idaboy, J.R.; Russo, N. Antioxidant activity of trans-resveratrol toward hydroxyl and hydroperoxyl radicals: A quantum chemical and computational kinetics study. J. Org. Chem., 2012, 77(8), 3868-3877.
[http://dx.doi.org/10.1021/jo3002134] [PMID: 22475027]
[133]
Zhou, Z-X.; Mou, S-F.; Chen, X-Q.; Gong, L-L.; Ge, W-S. Anti-inflammatory activity of resveratrol prevents inflammation by inhibiting NF-κB in animal models of acute pharyngitis. Mol. Med. Rep., 2018, 17(1), 1269-1274.
[http://dx.doi.org/10.3892/mmr.2017.7933] [PMID: 29115472]
[134]
Wang, F.; Cui, N.; Yang, L.; Shi, L.; Li, Q.; Zhang, G.; Wu, J.; Zheng, J.; Jiao, B. Resveratrol rescues the impairments of hippocampal neurons stimulated by microglial over-activation in vitro. Cell. Mol. Neurobiol., 2015, 35(7), 1003-1015.
[http://dx.doi.org/10.1007/s10571-015-0195-5] [PMID: 25898934]
[135]
Cai, J-C.; Liu, W.; Lu, F.; Kong, W-B.; Zhou, X-X.; Miao, P.; Lei, C-X.; Wang, Y. Resveratrol attenuates neurological deficit and neuroinflammation following intracerebral hemorrhage. Exp. Ther. Med., 2018, 15(5), 4131-4138.
[http://dx.doi.org/10.3892/etm.2018.5938] [PMID: 29725362]
[136]
Corpas, R.; Griñán-Ferré, C.; Rodríguez-Farré, E.; Pallàs, M.; Sanfeliu, C. Resveratrol induces brain resilience against alzheimer neurodegeneration through proteostasis enhancement. Mol. Neurobiol., 2019, 56(2), 1502-1516.
[http://dx.doi.org/10.1007/s12035-018-1157-y] [PMID: 29948950]
[137]
Sawda, C.; Moussa, C.; Turner, R.S. Resveratrol for Alzheimer’s disease. Ann. N. Y. Acad. Sci., 2017, 1403(1), 142-149.
[http://dx.doi.org/10.1111/nyas.13431] [PMID: 28815614]
[138]
Sun, A.Y.; Wang, Q.; Simonyi, A.; Sun, G.Y. Resveratrol as a therapeutic agent for neurodegenerative diseases. Mol. Neurobiol., 2010, 41(2-3), 375-383.
[http://dx.doi.org/10.1007/s12035-010-8111-y] [PMID: 20306310]
[139]
He, X.; Li, Z.; Rizak, J.D.; Wu, S.; Wang, Z.; He, R.; Su, M.; Qin, D.; Wang, J.; Hu, X. Resveratrol attenuates formaldehyde induced hyperphosphorylation of tau protein and cytotoxicity in N2a cells. Front. Neurosci., 2017, 10, 598.
[http://dx.doi.org/10.3389/fnins.2016.00598] [PMID: 28197064]
[140]
Avila, J.; Santa-María, I.; Pérez, M.; Hernández, F.; Moreno, F. Tau phosphorylation, aggregation, and cell toxicity. J. Biomed. Biotechnol., 2006, 2006(3), 74539.
[http://dx.doi.org/10.1155/JBB/2006/74539] [PMID: 17047313]
[141]
Yu, K.C.; Kwan, P.; Cheung, S.K.K.; Ho, A.; Baum, L. Effects of resveratrol and morin on insoluble tau in tau transgenic mice. Transl. Neurosci., 2018, 9(1), 54-60.
[http://dx.doi.org/10.1515/tnsci-2018-0010] [PMID: 30479844]
[142]
Jhang, K.A.; Park, J-S.; Kim, H-S.; Chong, Y.H. Resveratrol ameliorates tau hyperphosphorylation at Ser396 site and oxidative damage in rat hippocampal slices exposed to vanadate: Implication of ERK1/2 and GSK-3β signaling cascades. J. Agric. Food Chem., 2017, 65(44), 9626-9634.
[http://dx.doi.org/10.1021/acs.jafc.7b03252] [PMID: 29022339]
[143]
Hu, Y.Y.; He, S.S.; Wang, X.; Duan, Q.H.; Grundke-Iqbal, I.; Iqbal, K.; Wang, J. Levels of nonphosphorylated and phosphorylated tau in cerebrospinal fluid of Alzheimer’s disease patients : An ultrasensitive bienzyme-substrate-recycle enzyme-linked immunosorbent assay. Am. J. Pathol., 2002, 160(4), 1269-1278.
[http://dx.doi.org/10.1016/S0002-9440(10)62554-0] [PMID: 11943712]
[144]
Mondragón-Rodríguez, S.; Perry, G.; Luna-Muñoz, J.; Acevedo-Aquino, M.C.; Williams, S. Phosphorylation of tau protein at sites Ser(396-404) is one of the earliest events in Alzheimer’s disease and Down syndrome. Neuropathol. Appl. Neurobiol., 2014, 40(2), 121-135.
[http://dx.doi.org/10.1111/nan.12084] [PMID: 24033439]
[145]
Walle, T. Bioavailability of resveratrol. Ann. N. Y. Acad. Sci., 2011, 1215(1), 9-15.
[http://dx.doi.org/10.1111/j.1749-6632.2010.05842.x] [PMID: 21261636]
[146]
Manohar, S.; Khan, S.I.; Rawat, D.S. Synthesis, antimalarial activity and cytotoxicity of 4-aminoquinoline-triazine conjugates. Bioorg. Med. Chem. Lett., 2010, 20(1), 322-325.
[http://dx.doi.org/10.1016/j.bmcl.2009.10.106] [PMID: 19910192]
[147]
de Meneses Santos, R.; Barros, P.R.; Bortoluzzi, J.H.; Meneghetti, M.R.; da Silva, Y.K.C.; da Silva, A.E.; da Silva Santos, M.; Alexandre-Moreira, M.S. Synthesis and evaluation of the anti-nociceptive and anti-inflammatory activity of 4-aminoquinoline derivatives. Bioorg. Med. Chem., 2015, 23(15), 4390-4396.
[http://dx.doi.org/10.1016/j.bmc.2015.06.029] [PMID: 26116178]
[148]
Cassel, J.A.; McDonnell, M.E.; Velvadapu, V.; Andrianov, V.; Reitz, A.B. Characterization of a series of 4-aminoquinolines that stimulate caspase-7 mediated cleavage of TDP-43 and inhibit its function. Biochimie, 2012, 94(9), 1974-1981.
[http://dx.doi.org/10.1016/j.biochi.2012.05.020] [PMID: 22659571]
[149]
Cassel, J. A.; Reitz, A. B. Ubiquilin-2 (UBQLN2) binds with high affinity to the C-terminal region of TDP-43 and modulates TDP-43 levels in H4 cells: Characterization of inhibition by nucleic acids and 4-aminoquinolines. 2013.
[http://dx.doi.org/10.1016/j.bbapap.2013.03.020]
[150]
Veldman, E.R.; Jia, Z.; Halldin, C.; Svedberg, M.M. Amyloid binding properties of curcumin analogues in Alzheimer’s disease postmortem brain tissue. Neurosci. Lett., 2016, 630, 183-188.
[http://dx.doi.org/10.1016/j.neulet.2016.07.045] [PMID: 27461789]
[151]
Teymouri, M.; Barati, N.; Pirro, M.; Sahebkar, A. Biological and pharmacological evaluation of dimethoxycurcumin: A metabolically stable curcumin analogue with a promising therapeutic potential. J. Cell. Physiol., 2018, 233(1), 124-140.
[http://dx.doi.org/10.1002/jcp.25749] [PMID: 27996095]
[152]
Lu, J.; Duan, W.; Guo, Y.; Jiang, H.; Li, Z.; Huang, J.; Hong, K.; Li, C. Mitochondrial dysfunction in human TDP-43 transfected NSC34 cell lines and the protective effect of dimethoxy curcumin. Brain Res. Bull., 2012, 89(5-6), 185-190.
[http://dx.doi.org/10.1016/j.brainresbull.2012.09.005] [PMID: 22986236]
[153]
Dong, H.; Xu, L.; Wu, L.; Wang, X.; Duan, W.; Li, H.; Li, C. Curcumin abolishes mutant TDP-43 induced excitability in a motoneuron-like cellular model of ALS. Neuroscience, 2014, 272, 141-153.
[http://dx.doi.org/10.1016/j.neuroscience.2014.04.032] [PMID: 24785678]
[154]
Kean, W.F.; Hart, L.; Buchanan, W.W. Auranofin. Br. J. Rheumatol., 1997, 36(5), 560-572.
[http://dx.doi.org/10.1093/rheumatology/36.5.560] [PMID: 9189058]
[155]
Stern, I.; Wataha, J.C.; Lewis, J.B.; Messer, R.L.W.; Lockwood, P.E.; Tseng, W.Y. Anti-rheumatic gold compounds as sublethal modulators of monocytic LPS-induced cytokine secretion. Toxicol. In Vitro, 2005, 19(3), 365-371.
[http://dx.doi.org/10.1016/j.tiv.2004.11.001] [PMID: 15713543]
[156]
Madeira, J.M.; Gibson, D.L.; Kean, W.F.; Klegeris, A. The biological activity of auranofin: Implications for novel treatment of diseases. Inflammopharmacology, 2012, 20(6), 297-306.
[http://dx.doi.org/10.1007/s10787-012-0149-1] [PMID: 22965242]
[157]
Roder, C.; Thomson, M.J. Auranofin: Repurposing an old drug for a golden new age. Drugs R D., 2015, 15(1), 13-20.
[http://dx.doi.org/10.1007/s40268-015-0083-y] [PMID: 25698589]
[158]
Hou, G-X.; Liu, P-P.; Zhang, S.; Yang, M.; Liao, J.; Yang, J.; Hu, Y.; Jiang, W-Q.; Wen, S.; Huang, P. Elimination of stem-like cancer cell side-population by auranofin through modulation of ROS and glycolysis. Cell Death Dis., 2018, 9(2), 89.
[http://dx.doi.org/10.1038/s41419-017-0159-4] [PMID: 29367724]
[159]
Peroutka-Bigus, N.; Bellaire, B.H. Antiparasitic activity of auranofin against pathogenic naegleria fowleri. J. Eukaryot. Microbiol., 2019, 66(4), 684-688.
[http://dx.doi.org/10.1111/jeu.12706] [PMID: 30520183]
[160]
Cassetta, M.I.; Marzo, T.; Fallani, S.; Novelli, A.; Messori, L. Drug repositioning: Auranofin as a prospective antimicrobial agent for the treatment of severe staphylococcal infections. Biometals, 2014, 27(4), 787-791.
[http://dx.doi.org/10.1007/s10534-014-9743-6] [PMID: 24820140]
[161]
Rothan, H.A.; Stone, S.; Natekar, J.; Kumari, P.; Arora, K.; Kumar, M. The FDA-approved gold drug auranofin inhibits novel coronavirus (SARS-COV-2) replication and attenuates inflammation in human cells. Virology, 2020, 547, 7-11.
[http://dx.doi.org/10.1016/j.virol.2020.05.002] [PMID: 32442105]
[162]
Madeira, J.M.; Renschler, C.J.; Mueller, B.; Hashioka, S.; Gibson, D.L.; Klegeris, A. Novel protective properties of auranofin: Inhibition of human astrocyte cytotoxic secretions and direct neuroprotection. Life Sci., 2013, 92(22), 1072-1080.
[http://dx.doi.org/10.1016/j.lfs.2013.04.005] [PMID: 23624233]
[163]
Madeira, J.M.; Bajwa, E.; Stuart, M.J.; Hashioka, S.; Klegeris, A. Gold drug auranofin could reduce neuroinflammation by inhibiting microglia cytotoxic secretions and primed respiratory burst. J. Neuroimmunol., 2014, 276(1-2), 71-79.
[http://dx.doi.org/10.1016/j.jneuroim.2014.08.615] [PMID: 25175064]
[164]
Oberstadt, M.; Stieler, J.; Simpong, D.L.; Römuß, U.; Urban, N.; Schaefer, M.; Arendt, T.; Holzer, M. TDP-43 self-interaction is modulated by redox-active compounds Auranofin, Chelerythrine and Riluzole. Sci. Rep., 2018, 8(1), 2248.
[http://dx.doi.org/10.1038/s41598-018-20565-0] [PMID: 29396541]
[165]
Gromer, S.; Arscott, L.D.; Williams, C.H., Jr; Schirmer, R.H.; Becker, K. Human placenta thioredoxin reductase. Isolation of the selenoenzyme, steady state kinetics, and inhibition by therapeutic gold compounds. J. Biol. Chem., 1998, 273(32), 20096-20101.
[http://dx.doi.org/10.1074/jbc.273.32.20096] [PMID: 9685351]
[166]
Chaffman, M.; Brogden, R.N.; Heel, R.C.; Speight, T.M.; Avery, G.S. Auranofin. A preliminary review of its pharmacological properties and therapeutic use in rheumatoid arthritis. Drugs, 1984, 27(5), 378-424.
[http://dx.doi.org/10.2165/00003495-198427050-00002] [PMID: 6426923]
[167]
Demeule, M.; Michaud-Levesque, J.; Annabi, B.; Gingras, D.; Boivin, D.; Jodoin, J.; Lamy, S.; Bertrand, Y.; Béliveau, R. Green tea catechins as novel antitumor and antiangiogenic compounds. Curr. Med. Chem. Anticancer Agents, 2002, 2(4), 441-463.
[http://dx.doi.org/10.2174/1568011023353930] [PMID: 12678730]
[168]
Katiyar, S.K.; Afaq, F.; Perez, A.; Mukhtar, H. Green tea polyphenol (-)-epigallocatechin-3-gallate treatment of human skin inhibits ultraviolet radiation-induced oxidative stress. Carcinogenesis, 2001, 22(2), 287-294.
[http://dx.doi.org/10.1093/carcin/22.2.287] [PMID: 11181450]
[169]
Mandel, S.; Weinreb, O.; Amit, T.; Youdim, M.B.H. Cell signaling pathways in the neuroprotective actions of the green tea polyphenol (-)-epigallocatechin-3-gallate: Implications for neurodegenerative diseases. J. Neurochem., 2004, 88(6), 1555-1569.
[http://dx.doi.org/10.1046/j.1471-4159.2003.02291.x] [PMID: 15009657]
[170]
Rezai-Zadeh, K.; Arendash, G.W.; Hou, H.; Fernandez, F.; Jensen, M.; Runfeldt, M.; Shytle, R.D.; Tan, J. Green tea epigallocatechin-3-gallate (EGCG) reduces β-amyloid mediated cognitive impairment and modulates tau pathology in Alzheimer transgenic mice. Brain Res., 2008, 1214, 177-187.
[http://dx.doi.org/10.1016/j.brainres.2008.02.107] [PMID: 18457818]
[171]
Nan, S.; Wang, P.; Zhang, Y.; Fan, J. Epigallocatechin-3-Gallate provides protection against alzheimer’s disease-induced learning and memory impairments in rats. Drug Des. Devel. Ther., 2021, 15, 2013-2024.
[http://dx.doi.org/10.2147/DDDT.S289473] [PMID: 34012254]
[172]
Sonawane, S.K.; Chidambaram, H.; Boral, D.; Gorantla, N.V.; Balmik, A.A.; Dangi, A.; Ramasamy, S.; Marelli, U.K.; Chinnathambi, S. EGCG impedes human Tau aggregation and interacts with Tau. Sci. Rep., 2020, 10(1), 12579.
[http://dx.doi.org/10.1038/s41598-020-69429-6] [PMID: 32724104]
[173]
Prevention of cognitive decline in apoE4 carriers with subjective cognitive decline after EGCG and a multimodal intervention - Tabular view ClinicalTrials.gov, https://clinicaltrials.gov/ct2/show/record/NCT03978052
[174]
Xu, Z.; Chen, S.; Li, X.; Luo, G.; Li, L.; Le, W. Neuroprotective effects of (-)-epigallocatechin-3-gallate in a transgenic mouse model of amyotrophic lateral sclerosis. Neurochem. Res., 2006, 31(10), 1263-1269.
[http://dx.doi.org/10.1007/s11064-006-9166-z] [PMID: 17021948]
[175]
Wang, I-F.; Chang, H-Y.; Hou, S-C.; Liou, G-G.; Way, T-D.; James Shen, C-K. The self-interaction of native TDP-43 C terminus inhibits its degradation and contributes to early proteinopathies. Nat. Commun., 2012, 3(1), 766.
[http://dx.doi.org/10.1038/ncomms1766] [PMID: 22473010]
[176]
Zhu, Q.Y.; Zhang, A.; Tsang, D.; Huang, Y.; Chen, Z-Y. Stability of Green Tea Catechins. J. Agric. Food Chem., 1997, 45(12), 4624-4628.
[http://dx.doi.org/10.1021/jf9706080]
[177]
Shi, M.; Ying, D-Y.; Hlaing, M.M.; Ye, J-H.; Sanguansri, L.; Augustin, M.A. Development of broccoli by-products as carriers for delivering EGCG. Food Chem., 2019, 301, 125301.
[http://dx.doi.org/10.1016/j.foodchem.2019.125301] [PMID: 31387032]
[178]
Ramesh, N.; Mandal, A.K.A. Pharmacokinetic, toxicokinetic, and bioavailability studies of epigallocatechin-3-gallate loaded solid lipid nanoparticle in rat model. Drug Dev. Ind. Pharm., 2019, 45(9), 1506-1514.
[http://dx.doi.org/10.1080/03639045.2019.1634091] [PMID: 31215261]
[179]
Schirmer, R.H.; Adler, H.; Pickhardt, M.; Mandelkow, E. “Lest we forget you--methylene blue...”. Neurobiol. Aging, 2011, 32(12), 2325.e7-2325.e16.
[http://dx.doi.org/10.1016/j.neurobiolaging.2010.12.012] [PMID: 21316815]
[180]
Barcia, J.J. The Giemsa stain: Its history and applications. Int. J. Surg. Pathol., 2007, 15(3), 292-296.
[http://dx.doi.org/10.1177/1066896907302239] [PMID: 17652540]
[181]
Coulibaly, B.; Zoungrana, A.; Mockenhaupt, F.P.; Schirmer, R.H.; Klose, C.; Mansmann, U.; Meissner, P.E.; Müller, O. Strong gametocytocidal effect of methylene blue-based combination therapy against falciparum malaria: A randomised controlled trial. PLoS One, 2009, 4(5), e5318.
[http://dx.doi.org/10.1371/journal.pone.0005318] [PMID: 19415120]
[182]
Oz, M.; Lorke, D.E.; Hasan, M.; Petroianu, G.A. Cellular and molecular actions of Methylene Blue in the nervous system. Med. Res. Rev., 2011, 31(1), 93-117.
[http://dx.doi.org/10.1002/med.20177] [PMID: 19760660]
[183]
Hosokawa, M.; Arai, T.; Masuda-Suzukake, M.; Nonaka, T.; Yamashita, M.; Akiyama, H.; Hasegawa, M. Methylene blue reduced abnormal tau accumulation in P301L tau transgenic mice. PLoS One, 2012, 7(12), e52389.
[http://dx.doi.org/10.1371/journal.pone.0052389] [PMID: 23285020]
[184]
Congdon, E.E.; Wu, J.W.; Myeku, N.; Figueroa, Y.H.; Herman, M.; Marinec, P.S.; Gestwicki, J.E.; Dickey, C.A.; Yu, W.H.; Duff, K.E. Methylthioninium chloride (methylene blue) induces autophagy and attenuates tauopathy in vitro and in vivo. Autophagy, 2012, 8(4), 609-622.
[http://dx.doi.org/10.4161/auto.19048] [PMID: 22361619]
[185]
Vaccaro, A.; Patten, S.A.; Aggad, D.; Julien, C.; Maios, C.; Kabashi, E.; Drapeau, P.; Parker, J.A. Pharmacological reduction of ER stress protects against TDP-43 neuronal toxicity in vivo. Neurobiol. Dis., 2013, 55, 64-75.
[http://dx.doi.org/10.1016/j.nbd.2013.03.015] [PMID: 23567652]
[186]
Crowe, A.; James, M.J.; Lee, V.M-Y.; Smith, A.B., III; Trojanowski, J.Q.; Ballatore, C.; Brunden, K.R. Aminothienopyridazines and methylene blue affect Tau fibrillization via cysteine oxidation. J. Biol. Chem., 2013, 288(16), 11024-11037.
[http://dx.doi.org/10.1074/jbc.M112.436006] [PMID: 23443659]
[187]
Stack, C.; Jainuddin, S.; Elipenahli, C.; Gerges, M.; Starkova, N.; Starkov, A.A.; Jové, M.; Portero-Otin, M.; Launay, N.; Pujol, A.; Kaidery, N.A.; Thomas, B.; Tampellini, D.; Beal, M.F.; Dumont, M. Methylene blue upregulates Nrf2/ARE genes and prevents tau-related neurotoxicity. Hum. Mol. Genet., 2014, 23(14), 3716-3732.
[http://dx.doi.org/10.1093/hmg/ddu080] [PMID: 24556215]
[188]
O’Leary, J.C., III; Li, Q.; Marinec, P.; Blair, L.J.; Congdon, E.E.; Johnson, A.G.; Jinwal, U.K.; Koren, J., III; Jones, J.R.; Kraft, C.; Peters, M.; Abisambra, J.F.; Duff, K.E.; Weeber, E.J.; Gestwicki, J.E.; Dickey, C.A. Phenothiazine-mediated rescue of cognition in tau transgenic mice requires neuroprotection and reduced soluble tau burden. Mol. Neurodegener., 2010, 5(1), 45.
[http://dx.doi.org/10.1186/1750-1326-5-45] [PMID: 21040568]
[189]
Wischik, C.M.; Staff, R.T.; Wischik, D.J.; Bentham, P.; Murray, A.D.; Storey, J.M.D.; Kook, K.A.; Harrington, C.R. Tau aggregation inhibitor therapy: An exploratory phase 2 study in mild or moderate Alzheimer’s disease. J. Alzheimers Dis., 2015, 44(2), 705-720.
[http://dx.doi.org/10.3233/JAD-142874] [PMID: 25550228]
[190]
Gauthier, S.; Feldman, H.H.; Schneider, L.S.; Wilcock, G.K.; Frisoni, G.B.; Hardlund, J.H.; Moebius, H.J.; Bentham, P.; Kook, K.A.; Wischik, D.J.; Schelter, B.O.; Davis, C.S.; Staff, R.T.; Bracoud, L.; Shamsi, K.; Storey, J.M.; Harrington, C.R.; Wischik, C.M. Efficacy and safety of tau-aggregation inhibitor therapy in patients with mild or moderate Alzheimer’s disease: A randomised, controlled, double-blind, parallel-arm, phase 3 trial. Lancet, 2016, 388(10062), 2873-2884.
[http://dx.doi.org/10.1016/S0140-6736(16)31275-2] [PMID: 27863809]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy