Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

The Role of VEGF Family in Lipid Metabolism

Author(s): Yan Zhou*, Xueping Zhu*, Huan Wang, Chenglin Duan, Hanming Cui, Jingjing Shi, Shuai Shi, Guozhen Yuan and Yuanhui Hu

Volume 24, Issue 2, 2023

Published on: 18 July, 2022

Page: [253 - 265] Pages: 13

DOI: 10.2174/1389201023666220506105026

Price: $65

Abstract

The vascular endothelial growth factor (VEGF) family plays a major role in tumors and ophthalmic diseases. However, increasingly more data reported its potential in regulating lipids. With its biological functions mainly expressed in lymphatic vessels, some factors in the families, like VEGF-A and VEGF-C, have been proved to regulate intestinal absorption of lipids by affecting chylous ducts. Other effects, including regulating lipoprotein lipase (LPL), endothelial lipase (EL), and recombinant syndecan 1 (SDC1), have also been confirmed. However, given the scant-related studies, further research should be conducted to examine the concrete mechanisms and provide pragmatic ways to apply them in the clinic. The VEGF family may treat dyslipidemia in specific ways that are different from common methods and concurrently contribute to the treatment of other metabolic diseases, like diabetes and obesity.

Keywords: VEGF, lipoprotein lipase, lipid metabolism, atherosclerosis, intestine, adipose tissue.

Graphical Abstract
[1]
Pan, L.; Yang, Z.; Wu, Y.; Yin, R.X.; Liao, Y.; Wang, J.; Gao, B.; Zhang, L. The prevalence, awareness, treatment and control of dyslipidemia among adults in China. Atherosclerosis, 2016, 248, 2-9.
[http://dx.doi.org/10.1016/j.atherosclerosis.2016.02.006] [PMID: 26978581]
[2]
Kopin, L.; Lowenstein, C. Dyslipidemia. Ann. Intern. Med., 2017, 167(11), ITC81-ITC96.
[http://dx.doi.org/10.7326/AITC201712050] [PMID: 29204622]
[3]
Kalish, B.T.; Fell, G.L.; Nandivada, P.; Puder, M. Clinically relevant mechanisms of lipid synthesis, transport, and storage. JPEN J. Parenter. Enteral Nutr., 2015, 39(1)(Suppl.), 8S-17S.
[http://dx.doi.org/10.1177/0148607115595974] [PMID: 26187937]
[4]
Zhou, Y.; Zhu, X.; Cui, H.; Shi, J.; Yuan, G.; Shi, S.; Hu, Y. The role of the VEGF family in coronary heart disease. Front. Cardiovasc. Med., 2021, 8, 738325.
[http://dx.doi.org/10.3389/fcvm.2021.738325] [PMID: 34504884]
[5]
Gunasekaran, B.; Shukor, M.Y. HMG-CoA reductase as target for drug development. Methods Mol. Biol., 2020, 2089, 245-250.
[http://dx.doi.org/10.1007/978-1-0716-0163-1_16] [PMID: 31773659]
[6]
Oesterle, A.; Laufs, U.; Liao, J.K. Pleiotropic effects of statins on the cardiovascular system. Circ. Res., 2017, 120(1), 229-243.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.308537] [PMID: 28057795]
[7]
Ozalp, L.; Danış, Ö.; Yuce-Dursun, B.; Demir, S.; Gündüz, C.; Ogan, A. Investigation of HMG-CoA reductase inhibitory and antioxidant effects of various hydroxycoumarin derivatives. Arch. Pharm. (Weinheim), 2020, 353(10), e1900378.
[http://dx.doi.org/10.1002/ardp.201900378] [PMID: 32648617]
[8]
Suganya, S.; Nandagopal, B.; Anbarasu, A. Natural inhibitors of HMG-CoA reductase-an in silico approach through molecular docking and simulation studies. J. Cell. Biochem., 2017, 118(1), 52-57.
[http://dx.doi.org/10.1002/jcb.25608] [PMID: 27216569]
[9]
Ibrahim, A.; Shafie, N.H.; Mohd Esa, N.; Shafie, S.R.; Bahari, H.; Abdullah, M.A. Mikania micrantha extract inhibits HMG-CoA reductase and ACAT2 and ameliorates hypercholesterolemia and lipid peroxidation in high cholesterol-fed rats. Nutrients, 2020, 12(10), 12.
[http://dx.doi.org/10.3390/nu12103077] [PMID: 33050310]
[10]
Nabi, R.; Alvi, S.S.; Saeed, M.; Ahmad, S.; Khan, M.S. Glycation and HMG-CoA reductase inhibitors: Implication in diabetes and associated complications. Curr. Diabetes Rev., 2019, 15(3), 213-223.
[http://dx.doi.org/10.2174/1573399814666180924113442] [PMID: 30246643]
[11]
Reena, M.B.; Gowda, L.R.; Lokesh, B.R. Enhanced hypocholesterolemic effects of interesterified oils are mediated by upregulating LDL receptor and cholesterol 7-α- hydroxylase gene expression in rats. J. Nutr., 2011, 141(1), 24-30.
[http://dx.doi.org/10.3945/jn.110.127027] [PMID: 21106933]
[12]
Meier, P.J.; Stieger, B. Bile salt transporters. Annu. Rev. Physiol., 2002, 64(1), 635-661.
[http://dx.doi.org/10.1146/annurev.physiol.64.082201.100300] [PMID: 11826283]
[13]
Ueno, T.; Tanaka, N.; Imoto, H.; Maekawa, M.; Kohyama, A.; Watanabe, K.; Motoi, F.; Kamei, T.; Unno, M.; Naitoh, T. Mechanism of bile acid reabsorption in the biliopancreatic limb after duodenal-jejunal bypass in rats. Obes. Surg., 2020, 30(7), 2528-2537.
[http://dx.doi.org/10.1007/s11695-020-04506-3] [PMID: 32291708]
[14]
Cai, J.; Wang, Z.; Chen, G.; Li, D.; Liu, J.; Hu, H.; Qin, J. Reabsorption of bile acids regulated by FXR-OATP1A2 is the main factor for the formation of cholesterol gallstone. Am. J. Physiol. Gastrointest. Liver Physiol., 2020, 319(3), G303-G308.
[http://dx.doi.org/10.1152/ajpgi.00385.2019] [PMID: 32597704]
[15]
Chiang, J.Y. Bile acid metabolism and signaling. Compr. Physiol., 2013, 3(3), 1191-1212.
[http://dx.doi.org/10.1002/cphy.c120023] [PMID: 23897684]
[16]
Takahashi, S.; Luo, Y.; Ranjit, S.; Xie, C.; Libby, A.E.; Orlicky, D.J.; Dvornikov, A.; Wang, X.X.; Myakala, K.; Jones, B.A.; Bhasin, K.; Wang, D.; McManaman, J.L.; Krausz, K.W.; Gratton, E.; Ir, D.; Robertson, C.E.; Frank, D.N.; Gonzalez, F.J.; Levi, M. Bile acid sequestration reverses liver injury and prevents progression of nonalcoholic steatohepatitis in Western diet-fed mice. J. Biol. Chem., 2020, 295(14), 4733-4747.
[http://dx.doi.org/10.1074/jbc.RA119.011913] [PMID: 32075905]
[17]
Huang, J.; Feng, S.; Liu, A.; Dai, Z.; Wang, H.; Reuhl, K.; Lu, W.; Yang, C.S. Green tea polyphenol EGCG alleviates metabolic abnormality and fatty liver by decreasing bile acid and lipid absorption in mice. Mol. Nutr. Food Res., 2018, 62(4), 62.
[http://dx.doi.org/10.1002/mnfr.201700696] [PMID: 29278293]
[18]
Gunness, P.; Michiels, J.; Vanhaecke, L.; De Smet, S.; Kravchuk, O.; Van de Meene, A.; Gidley, M.J. Reduction in circulating bile acid and restricted diffusion across the intestinal epithelium are associated with a decrease in blood cholesterol in the presence of oat β-glucan. FASEB J., 2016, 30(12), 4227-4238.
[http://dx.doi.org/10.1096/fj.201600465R] [PMID: 27630168]
[19]
Dolezelova, E.; Sa, I.C.I.; Prasnicka, A.; Hroch, M.; Hyspler, R.; Ticha, A.; Lastuvkova, H.; Cermanova, J.; Pericacho, M.; Visek, J.; Lasticova, M.; Micuda, S.; Nachtigal, P. High soluble endoglin levels regulate cholesterol homeostasis and bile acids turnover in the liver of transgenic mice. Life Sci., 2019, 232, 116643.
[http://dx.doi.org/10.1016/j.lfs.2019.116643] [PMID: 31299237]
[20]
Li, H.; Liu, Y.; Zhang, X.; Xu, Q.; Zhang, Y.; Xue, C.; Guo, C. Medium-chain fatty acids decrease serum cholesterol via reduction of intestinal bile acid reabsorption in C57BL/6J mice. Nutr. Metab. (Lond.), 2018, 15(1), 37.
[http://dx.doi.org/10.1186/s12986-018-0267-x] [PMID: 29991957]
[21]
Wang, R.; You, Y.M.; Liu, X. Effect of Zanthoxylum alkylamides on lipid metabolism and its mechanism in rats fed with a high-fat diet. J. Food Biochem., 2021, 45(1), e13548.
[http://dx.doi.org/10.1111/jfbc.13548] [PMID: 33270233]
[22]
Liu, J.; Li, Y.; Sun, C.; Liu, S.; Yan, Y.; Pan, H.; Fan, M.; Xue, L.; Nie, C.; Zhang, H.; Qian, H.; Ying, H.; Wang, L. Geniposide reduces cholesterol accumulation and increases its excretion by regulating the FXR-mediated liver-gut crosstalk of bile acids. Pharmacol. Res., 2020, 152, 104631.
[http://dx.doi.org/10.1016/j.phrs.2020.104631] [PMID: 31911244]
[23]
Olivecrona, G. Role of lipoprotein lipase in lipid metabolism. Curr. Opin. Lipidol., 2016, 27(3), 233-241.
[http://dx.doi.org/10.1097/MOL.0000000000000297] [PMID: 27031275]
[24]
Kei, A.A.; Filippatos, T.D.; Tsimihodimos, V.; Elisaf, M.S. A review of the role of apolipoprotein C-II in lipoprotein metabolism and cardiovascular disease. Metabolism, 2012, 61(7), 906-921.
[http://dx.doi.org/10.1016/j.metabol.2011.12.002] [PMID: 22304839]
[25]
Taskinen, M.R.; Packard, C.J.; Borén, J. Emerging evidence that ApoC-III inhibitors provide novel options to reduce the residual CVD. Curr. Atheroscler. Rep., 2019, 21(8), 27.
[http://dx.doi.org/10.1007/s11883-019-0791-9] [PMID: 31111320]
[26]
Reiner, Ž. Triglyceride-rich lipoproteins and novel targets for anti-atherosclerotic therapy. Korean Circ. J., 2018, 48(12), 1097-1119.
[http://dx.doi.org/10.4070/kcj.2018.0343] [PMID: 30403015]
[27]
Esan, O.; Wierzbicki, A.S. Volanesorsen in the treatment of familial chylomicronemia syndrome or hypertriglyceridaemia: Design, development and place in therapy. Drug Des. Devel. Ther., 2020, 14, 2623-2636.
[http://dx.doi.org/10.2147/DDDT.S224771] [PMID: 32753844]
[28]
Staels, B.; Dallongeville, J.; Auwerx, J.; Schoonjans, K.; Leitersdorf, E.; Fruchart, J.C. Mechanism of action of fibrates on lipid and lipoprotein metabolism. Circulation, 1998, 98(19), 2088-2093.
[http://dx.doi.org/10.1161/01.CIR.98.19.2088] [PMID: 9808609]
[29]
Backes, J.; Anzalone, D.; Hilleman, D.; Catini, J. The clinical relevance of omega-3 fatty acids in the management of hypertriglyceridemia. Lipids Health Dis., 2016, 15(1), 118.
[http://dx.doi.org/10.1186/s12944-016-0286-4] [PMID: 27444154]
[30]
Kersten, S. Angiopoietin-like 3 in lipoprotein metabolism. Nat. Rev. Endocrinol., 2017, 13(12), 731-739.
[http://dx.doi.org/10.1038/nrendo.2017.119] [PMID: 28984319]
[31]
Illingworth, D.R. Lipoprotein metabolism. Am. J. Kidney Dis., 1993, 22(1), 90-97.
[http://dx.doi.org/10.1016/S0272-6386(12)70173-7] [PMID: 8322800]
[32]
Ganji, S.H.; Kashyap, M.L.; Kamanna, V.S. Niacin inhibits fat accumulation, oxidative stress, and inflammatory cytokine IL-8 in cultured hepatocytes: Impact on non-alcoholic fatty liver disease. Metabolism, 2015, 64(9), 982-990.
[http://dx.doi.org/10.1016/j.metabol.2015.05.002] [PMID: 26024755]
[33]
Kamanna, V.S.; Ganji, S.H.; Kashyap, M.L. Recent advances in niacin and lipid metabolism. Curr. Opin. Lipidol., 2013, 24(3), 239-245.
[http://dx.doi.org/10.1097/MOL.0b013e3283613a68] [PMID: 23619367]
[34]
Basiak, M.; Kosowski, M.; Cyrnek, M.; Bułdak, Ł.; Maligłówka, M.; Machnik, G.; Okopień, B. Pleiotropic effects of PCSK-9 inhibitors. Int. J. Mol. Sci., 2021, 22(6), 22.
[http://dx.doi.org/10.3390/ijms22063144] [PMID: 33808697]
[35]
Kosmas, C.E.; Muñoz Estrella, A.; Skavdis, A.; Peña Genao, E.; Martinez, I.; Guzman, E. Inclisiran for the treatment of cardiovascular disease: A short review on the emerging data and therapeutic potential. Ther. Clin. Risk Manag., 2020, 16, 1031-1037.
[http://dx.doi.org/10.2147/TCRM.S230592] [PMID: 33149595]
[36]
Hussain, M.M. Intestinal lipid absorption and lipoprotein formation. Curr. Opin. Lipidol., 2014, 25(3), 200-206.
[http://dx.doi.org/10.1097/MOL.0000000000000084] [PMID: 24751933]
[37]
Kosoglou, T.; Statkevich, P.; Johnson-Levonas, A.O.; Paolini, J.F.; Bergman, A.J.; Alton, K.B. Ezetimibe: A review of its metabolism, pharmacokinetics and drug interactions. Clin. Pharmacokinet., 2005, 44(5), 467-494.
[http://dx.doi.org/10.2165/00003088-200544050-00002] [PMID: 15871634]
[38]
Alqahtani, S.; Qosa, H.; Primeaux, B.; Kaddoumi, A. Orlistat limits cholesterol intestinal absorption by Niemann-pick C1-like 1 (NPC1L1) inhibition. Eur. J. Pharmacol., 2015, 762, 263-269.
[http://dx.doi.org/10.1016/j.ejphar.2015.05.060] [PMID: 26048312]
[39]
Kolovou, G.; Diakoumakou, O.; Kolovou, V.; Fountas, E.; Stratakis, S.; Zacharis, E.; Liberopoulos, E.N.; Matsouka, F.; Tsoutsinos, A.; Mastorakou, I.; Katsikas, T.; Mavrogeni, S.; Hatzigeorgiou, G. Microsomal triglyceride transfer protein inhibitor (lomitapide) efficacy in the treatment of patients with homozygous familial hypercholesterolaemia. Eur. J. Prev. Cardiol., 2020, 27(2), 157-165.
[http://dx.doi.org/10.1177/2047487319870007] [PMID: 31403880]
[40]
Graham, M.J.; Lee, R.G.; Brandt, T.A.; Tai, L.J.; Fu, W.; Peralta, R.; Yu, R.; Hurh, E.; Paz, E.; McEvoy, B.W.; Baker, B.F.; Pham, N.C.; Digenio, A.; Hughes, S.G.; Geary, R.S.; Witztum, J.L.; Crooke, R.M.; Tsimikas, S. Cardiovascular and metabolic effects of ANGPTL3 antisense oligonucleotides. N. Engl. J. Med., 2017, 377(3), 222-232.
[http://dx.doi.org/10.1056/NEJMoa1701329] [PMID: 28538111]
[41]
Aslesh, T.; Yokota, T. Development of antisense oligonucleotide gapmers for the treatment of dyslipidemia and lipodystrophy. Methods Mol. Biol., 2020, 2176, 69-85.
[http://dx.doi.org/10.1007/978-1-0716-0771-8_5] [PMID: 32865783]
[42]
De Giorgi, M.; Lagor, W.R. Gene delivery in lipid research and therapies. Methodist DeBakey Cardiovasc. J., 2019, 15(1), 62-69.
[http://dx.doi.org/10.14797/mdcj-15-1-62] [PMID: 31049151]
[43]
Heinonen, S.E.; Kivelä, A.M.; Huusko, J.; Dijkstra, M.H.; Gurzeler, E.; Mäkinen, P.I.; Leppänen, P.; Olkkonen, V.M.; Eriksson, U.; Jauhiainen, M.; Ylä-Herttuala, S. The effects of VEGF-A on atherosclerosis, lipoprotein profile, and lipoprotein lipase in hyperlipidaemic mouse models. Cardiovasc. Res., 2013, 99(4), 716-723.
[http://dx.doi.org/10.1093/cvr/cvt148] [PMID: 23756254]
[44]
Hodson, L.; Humphreys, S.M.; Karpe, F.; Frayn, K.N. Metabolic signatures of human adipose tissue hypoxia in obesity. Diabetes, 2013, 62(5), 1417-1425.
[http://dx.doi.org/10.2337/db12-1032] [PMID: 23274888]
[45]
Wang, L.; Wu, H.; Xiong, L.; Liu, X.; Yang, N.; Luo, L.; Qin, T.; Zhu, X.; Shen, Z.; Jing, H.; Chen, J. Quercetin downregulates cyclooxygenase-2 expression and HIF-1alpha/VEGF signaling-related angiogenesis in a mouse model of abdominal aortic aneurysm. BioMed Res. Int., 2020, 2020, 9485398.
[PMID: 32908926]
[46]
Sung, H.K.; Doh, K.O.; Son, J.E.; Park, J.G.; Bae, Y.; Choi, S.; Nelson, S.M.; Cowling, R.; Nagy, K.; Michael, I.P.; Koh, G.Y.; Adamson, S.L.; Pawson, T.; Nagy, A. Adipose vascular endothelial growth factor regulates metabolic homeostasis through angiogenesis. Cell Metab., 2013, 17(1), 61-72.
[http://dx.doi.org/10.1016/j.cmet.2012.12.010] [PMID: 23312284]
[47]
Gómez-Ambrosi, J.; Catalán, V.; Rodríguez, A.; Ramírez, B.; Silva, C.; Gil, M.J.; Salvador, J.; Frühbeck, G. Involvement of serum vascular endothelial growth factor family members in the development of obesity in mice and humans. J. Nutr. Biochem., 2010, 21(8), 774-780.
[http://dx.doi.org/10.1016/j.jnutbio.2009.05.004] [PMID: 19615882]
[48]
Zeinalian, R.; Farhangi, M.A.; Shariat, A.; Saghafi-Asl, M. The effects of Spirulina Platensis on anthropometric indices, appetite, lipid profile and serum vascular endothelial growth factor (VEGF) in obese individuals: A randomized double blinded placebo controlled trial. BMC Complement. Altern. Med., 2017, 17(1), 225.
[http://dx.doi.org/10.1186/s12906-017-1670-y] [PMID: 28431534]
[49]
Chen, S.; Wang, R.; Cheng, M.; Wei, G.; Du, Y.; Fan, Y.; Li, J.; Li, H.; Deng, Z. Serum cholesterol-lowering activity of β-sitosterol laurate is attributed to the reduction of both cholesterol absorption and bile acids reabsorption in hamsters. J. Agric. Food Chem., 2020, 68(37), 10003-10014.
[http://dx.doi.org/10.1021/acs.jafc.0c04386] [PMID: 32811147]
[50]
Hokkanen, K.; Tirronen, A.; Ylä-Herttuala, S. Intestinal lymphatic vessels and their role in chylomicron absorption and lipid homeostasis. Curr. Opin. Lipidol., 2019, 30(5), 370-376.
[http://dx.doi.org/10.1097/MOL.0000000000000626] [PMID: 31361624]
[51]
Zhang, F.; Zarkada, G.; Han, J.; Li, J.; Dubrac, A.; Ola, R.; Genet, G.; Boyé, K.; Michon, P.; Künzel, S.E.; Camporez, J.P.; Singh, A.K.; Fong, G.H.; Simons, M.; Tso, P.; Fernández-Hernando, C.; Shulman, G.I.; Sessa, W.C.; Eichmann, A. Lacteal junction zippering protects against diet-induced obesity. Science, 2018, 361(6402), 599-603.
[http://dx.doi.org/10.1126/science.aap9331] [PMID: 30093598]
[52]
Kivelä, A.M.; Dijkstra, M.H.; Heinonen, S.E.; Gurzeler, E.; Jauhiainen, S.; Levonen, A.L.; Ylä-Herttuala, S. Regulation of endothelial lipase and systemic HDL cholesterol levels by SREBPs and VEGF-A. Atherosclerosis, 2012, 225(2), 335-340.
[http://dx.doi.org/10.1016/j.atherosclerosis.2012.09.039] [PMID: 23102786]
[53]
Curtarello, M.; Tognon, M.; Venturoli, C.; Silic-Benussi, M.; Grassi, A.; Verza, M.; Minuzzo, S.; Pinazza, M.; Brillo, V.; Tosi, G.; Ferrazza, R.; Guella, G.; Iorio, E.; Godfroid, A.; Sounni, N.E.; Amadori, A.; Indraccolo, S. Rewiring of Lipid Metabolism and Storage in Ovarian Cancer Cells after Anti-VEGF Therapy. Cells, 2019, 8(12), 8.
[http://dx.doi.org/10.3390/cells8121601] [PMID: 31835444]
[54]
Ferrara, N. Vascular endothelial growth factor: Basic science and clinical progress. Endocr. Rev., 2004, 25(4), 581-611.
[http://dx.doi.org/10.1210/er.2003-0027] [PMID: 15294883]
[55]
Jin, F.; Zheng, X.; Yang, Y.; Yao, G.; Ye, L.; Doeppner, T.R.; Hermann, D.M.; Wang, H.; Dai, Y. Impairment of hypoxia-induced angiogenesis by LDL involves a HIF-centered signaling network linking inflammatory TNFα and angiogenic VEGF. Aging (Albany NY), 2019, 11(2), 328-349.
[http://dx.doi.org/10.18632/aging.101726] [PMID: 30659163]
[56]
Schlich, R.; Willems, M.; Greulich, S.; Ruppe, F.; Knoefel, W.T.; Ouwens, D.M.; Maxhera, B.; Lichtenberg, A.; Eckel, J.; Sell, H. VEGF in the crosstalk between human adipocytes and smooth muscle cells: Depot-specific release from visceral and perivascular adipose tissue. Mediators Inflamm., 2013, 2013, 982458.
[http://dx.doi.org/10.1155/2013/982458] [PMID: 23935253]
[57]
Schüler, R.; Seebeck, N.; Osterhoff, M.A.; Witte, V.; Flöel, A.; Busjahn, A.; Jais, A.; Brüning, J.C.; Frahnow, T.; Kabisch, S.; Pivovarova, O.; Hornemann, S.; Kruse, M.; Pfeiffer, A.F.H. VEGF and GLUT1 are highly heritable, inversely correlated and affected by dietary fat intake: Consequences for cognitive function in humans. Mol. Metab., 2018, 11, 129-136.
[http://dx.doi.org/10.1016/j.molmet.2018.02.004] [PMID: 29506909]
[58]
Arany, Z.; Foo, S.Y.; Ma, Y.; Ruas, J.L.; Bommi-Reddy, A.; Girnun, G.; Cooper, M.; Laznik, D.; Chinsomboon, J.; Rangwala, S.M.; Baek, K.H.; Rosenzweig, A.; Spiegelman, B.M. HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1alpha. Nature, 2008, 451(7181), 1008-1012.
[http://dx.doi.org/10.1038/nature06613] [PMID: 18288196]
[59]
Miranda, C.S.; Silva-Veiga, F.; Martins, F.F.; Rachid, T.L.; Mandarim-De-Lacerda, C.A.; Souza-Mello, V. PPAR-α activation counters brown adipose tissue whitening: A comparative study between high-fat- and high-fructose-fed mice. Nutrition, 2020, 78, 110791.
[http://dx.doi.org/10.1016/j.nut.2020.110791] [PMID: 32682271]
[60]
Hasan, A.U.; Ohmori, K.; Konishi, K.; Igarashi, J.; Hashimoto, T.; Kamitori, K.; Yamaguchi, F.; Tsukamoto, I.; Uyama, T.; Ishihara, Y.; Noma, T.; Tokuda, M.; Kohno, M. Eicosapentaenoic acid upregulates VEGF-A through both GPR120 and PPARγ mediated pathways in 3T3-L1 adipocytes. Mol. Cell. Endocrinol., 2015, 406, 10-18.
[http://dx.doi.org/10.1016/j.mce.2015.02.012] [PMID: 25697344]
[61]
Zingg, J.M.; Azzi, A.; Meydani, M. Induction of VEGF expression by alpha-tocopherol and alpha-tocopheryl phosphate via PI3Kγ/PKB and hTAP1/SEC14L2-mediated lipid exchange. J. Cell. Biochem., 2015, 116(3), 398-407.
[http://dx.doi.org/10.1002/jcb.24988] [PMID: 25290554]
[62]
Zabroski, I.O.; Nugent, M.A. Lipid Raft Association Stabilizes VEGF Receptor 2 in Endothelial Cells. Int. J. Mol. Sci., 2021, 22(2), 22.
[http://dx.doi.org/10.3390/ijms22020798] [PMID: 33466887]
[63]
Wei, G.; Yin, Y.; Duan, J.; Guo, C.; Zhu, Y.; Wang, Y.; Xi, M.; Wen, A. Hydroxysafflor yellow A promotes neovascularization and cardiac function recovery through HO-1/VEGF-A/SDF-1α cascade. Biomed. Pharmacother., 2017, 88, 409-420.
[http://dx.doi.org/10.1016/j.biopha.2017.01.074] [PMID: 28122306]
[64]
Zou, J.; Wang, N.; Liu, M.; Bai, Y.; Wang, H.; Liu, K.; Zhang, H.; Xiao, X.; Wang, K. Nucleolin mediated pro-angiogenic role of Hydroxysafflor Yellow A in ischaemic cardiac dysfunction: Post-transcriptional regulation of VEGF-A and MMP-9. J. Cell. Mol. Med., 2018, 22(5), 2692-2705.
[http://dx.doi.org/10.1111/jcmm.13552] [PMID: 29512890]
[65]
Zhai, S.; Zhang, X.F.; Lu, F.; Chen, W.G.; He, X.; Zhang, C.F.; Wang, C.Z.; Yuan, C.S. Chinese medicine GeGen-DanShen extract protects from myocardial ischemic injury through promoting angiogenesis via up-regulation of VEGF/VEGFR2 signaling pathway. J. Ethnopharmacol., 2021, 267, 113475.
[http://dx.doi.org/10.1016/j.jep.2020.113475] [PMID: 33068653]
[66]
Zhang, J.; Liu, A.; Hou, R.; Zhang, J.; Jia, X.; Jiang, W.; Chen, J. Salidroside protects cardiomyocyte against hypoxia-induced death: A HIF-1alpha-activated and VEGF-mediated pathway. Eur. J. Pharmacol., 2009, 607(1-3), 6-14.
[http://dx.doi.org/10.1016/j.ejphar.2009.01.046] [PMID: 19326475]
[67]
Zhu, H.; Gao, M.; Gao, X.; Tong, Y. Vascular endothelial growth factor-B: Impact on physiology and pathology. Cell Adhes. Migr., 2018, 12(3), 215-227.
[http://dx.doi.org/10.1080/19336918.2017.1379634] [PMID: 29095085]
[68]
Sun, C.Y.; Lee, C.C.; Hsieh, M.F.; Chen, C.H.; Chou, K.M. Clinical association of circulating VEGF-B levels with hyperlipidemia and target organ damage in type 2 diabetic patients. J. Biol. Regul. Homeost. Agents, 2014, 28(2), 225-236.
[PMID: 25001655]
[69]
Mancini, G.B.J.; Hegele, R.A.; Leiter, L.A. Dyslipidemia. Can. J. Diabetes, 2018, 42(Suppl. 1), S178-S185.
[http://dx.doi.org/10.1016/j.jcjd.2017.10.019] [PMID: 29650093]
[70]
Lu, X.; Hu, S.; Liao, Y.; Zheng, J.; Zeng, T.; Zhong, X.; Liu, G.; Gou, L.; Chen, L. Vascular endothelial growth factor B promotes transendothelial fatty acid transport into skeletal muscle via histone modifications during catch-up growth. Am. J. Physiol. Endocrinol. Metab., 2020, 319(6), E1031-E1043.
[http://dx.doi.org/10.1152/ajpendo.00090.2020] [PMID: 32954823]
[71]
Hagberg, C.E.; Falkevall, A.; Wang, X.; Larsson, E.; Huusko, J.; Nilsson, I.; van Meeteren, L.A.; Samen, E.; Lu, L.; Vanwildemeersch, M.; Klar, J.; Genove, G.; Pietras, K.; Stone-Elander, S.; Claesson-Welsh, L.; Ylä-Herttuala, S.; Lindahl, P.; Eriksson, U. Vascular endothelial growth factor B controls endothelial fatty acid uptake. Nature, 2010, 464(7290), 917-921.
[http://dx.doi.org/10.1038/nature08945] [PMID: 20228789]
[72]
Hu, L.; Shan, Z.; Wang, F.; Gao, X.; Tong, Y. Vascular endothelial growth factor B exerts lipid-lowering effect by activating AMPK via VEGFR1. Life Sci., 2021, 276, 119401.
[http://dx.doi.org/10.1016/j.lfs.2021.119401] [PMID: 33785341]
[73]
Karpanen, T.; Bry, M.; Ollila, H.M.; Seppänen-Laakso, T.; Liimatta, E.; Leskinen, H.; Kivelä, R.; Helkamaa, T.; Merentie, M.; Jeltsch, M.; Paavonen, K.; Andersson, L.C.; Mervaala, E.; Hassinen, I.E.; Ylä-Herttuala, S.; Oresic, M.; Alitalo, K. Overexpression of vascular endothelial growth factor-B in mouse heart alters cardiac lipid metabolism and induces myocardial hypertrophy. Circ. Res., 2008, 103(9), 1018-1026.
[http://dx.doi.org/10.1161/CIRCRESAHA.108.178459] [PMID: 18757827]
[74]
Li, L.J.; Ma, J.; Li, S.B.; Chen, X.; Zhang, J. Vascular endothelial growth factor B inhibits lipid accumulation in C2C12 myotubes incubated with fatty acids. Growth Factors, 2019, 37(1-2), 76-84.
[http://dx.doi.org/10.1080/08977194.2019.1626851] [PMID: 31215273]
[75]
Ning, F.C.; Jensen, N.; Mi, J.; Lindström, W.; Balan, M.; Muhl, L.; Eriksson, U.; Nilsson, I.; Nyqvist, D. VEGF-B ablation in pancreatic β-cells upregulates insulin expression without affecting glucose homeostasis or islet lipid uptake. Sci. Rep., 2020, 10(1), 923.
[http://dx.doi.org/10.1038/s41598-020-57599-2] [PMID: 31969592]
[76]
Falkevall, A.; Mehlem, A.; Palombo, I.; Heller Sahlgren, B.; Ebarasi, L.; He, L.; Ytterberg, A.J.; Olauson, H.; Axelsson, J.; Sundelin, B.; Patrakka, J.; Scotney, P.; Nash, A.; Eriksson, U. Reducing VEGF-B Signaling Ameliorates Renal Lipotoxicity and Protects against Diabetic Kidney Disease. Cell Metab., 2017, 25(3), 713-726.
[http://dx.doi.org/10.1016/j.cmet.2017.01.004] [PMID: 28190774]
[77]
Shen, Y.; Chen, W.; Han, L.; Bian, Q.; Fan, J.; Cao, Z.; Jin, X.; Ding, T.; Xian, Z.; Guo, Z.; Zhang, W.; Ju, D.; Mei, X. VEGF-B antibody and interleukin-22 fusion protein ameliorates diabetic nephropathy through inhibiting lipid accumulation and inflammatory responses. Acta Pharm. Sin. B, 2021, 11(1), 127-142.
[http://dx.doi.org/10.1016/j.apsb.2020.07.002] [PMID: 33532185]
[78]
Ye, X.; Kong, W.; Zafar, M.I.; Zeng, J.; Yang, R.; Chen, L.L. Plasma vascular endothelial growth factor B is elevated in non-alcoholic fatty liver disease patients and associated with blood pressure and renal dysfunction. EXCLI J., 2020, 19, 1186-1195.
[PMID: 33408593]
[79]
Moessinger, C.; Nilsson, I.; Muhl, L.; Zeitelhofer, M.; Heller Sahlgren, B.; Skogsberg, J.; Eriksson, U. VEGF-B signaling impairs endothelial glucose transcytosis by decreasing membrane cholesterol content. EMBO Rep., 2020, 21(7), e49343.
[http://dx.doi.org/10.15252/embr.201949343] [PMID: 32449307]
[80]
Chen, Y.; Zhao, M.; Wang, C.; Wen, H.; Zhang, Y.; Lu, M.; Adlat, S.; Zheng, T.; Zhang, M.; Li, D.; Lu, X.; Guo, M.; Chen, H.; Zhang, L.; Feng, X.; Zheng, Y. Adipose vascular endothelial growth factor B is a major regulator of energy metabolism. J. Endocrinol., 2020, 244(3), 511-521.
[http://dx.doi.org/10.1530/JOE-19-0341] [PMID: 31910156]
[81]
Liu, X.; He, Y.; Feng, Z.; Sheng, J.; Dong, A.; Zhang, M.; Cao, L. miR-345-5p regulates adipogenesis via targeting VEGF-B. Aging (Albany NY), 2020, 12(17), 17114-17121.
[http://dx.doi.org/10.18632/aging.103649] [PMID: 32927430]
[82]
Mehlem, A.; Palombo, I.; Wang, X.; Hagberg, C.E.; Eriksson, U.; Falkevall, A. PGC-1α Coordinates Mitochondrial Respiratory Capacity and Muscular Fatty Acid Uptake via Regulation of VEGF-B. Diabetes, 2016, 65(4), 861-873.
[http://dx.doi.org/10.2337/db15-1231] [PMID: 26822083]
[83]
Lv, Y.X.; Zhong, S.; Tang, H.; Luo, B.; Chen, S.J.; Chen, L.; Zheng, F.; Zhang, L.; Wang, L.; Li, X.Y.; Yan, Y.W.; Pan, Y.M.; Jiang, M.; Zhang, Y.E.; Wang, L.; Yang, J.Y.; Guo, L.Y.; Chen, S.Y.; Wang, J.N.; Tang, J.M. VEGF-A and VEGF-B Coordinate the Arteriogenesis to Repair the Infarcted Heart with Vagus Nerve Stimulation. Cell. Physiol. Biochem., 2018, 48(2), 433-449.
[http://dx.doi.org/10.1159/000491775] [PMID: 30016789]
[84]
Feng, L.; Ren, J.; Li, Y.; Yang, G.; Kang, L.; Zhang, S.; Ma, C.; Li, J.; Liu, J.; Yang, L.; Qi, Z. Resveratrol protects against isoproterenol induced myocardial infarction in rats through VEGF-B/AMPK/eNOS/NO signalling pathway. Free Radic. Res., 2019, 53(1), 82-93.
[http://dx.doi.org/10.1080/10715762.2018.1554901] [PMID: 30526144]
[85]
Cheng, F.; Zhao, L.; Wu, Y.; Huang, T.; Yang, G.; Zhang, Z.; Wu, Y.; Jia, F.; Wu, J.; Chen, C.; Liu, D. Serum vascular endothelial growth factor B is elevated in women with polycystic ovary syndrome and can be decreased with metformin treatment. Clin. Endocrinol. (Oxf.), 2016, 84(3), 386-393.
[http://dx.doi.org/10.1111/cen.12950] [PMID: 26387747]
[86]
Tian, W.; Yang, L.; Liu, Y.; He, J.; Yang, L.; Zhang, Q.; Liu, F.; Li, J.; Liu, J.; Sumi, S.; Shen, Y.; Qi, Z. Resveratrol attenuates doxorubicin-induced cardiotoxicity in rats by up-regulation of vascular endothelial growth factor B. J. Nutr. Biochem., 2020, 79, 108132.
[http://dx.doi.org/10.1016/j.jnutbio.2019.01.018] [PMID: 30857673]
[87]
Nurmi, H.; Saharinen, P.; Zarkada, G.; Zheng, W.; Robciuc, M.R.; Alitalo, K. VEGF-C is required for intestinal lymphatic vessel maintenance and lipid absorption. EMBO Mol. Med., 2015, 7(11), 1418-1425.
[http://dx.doi.org/10.15252/emmm.201505731] [PMID: 26459520]
[88]
Shew, T.; Wolins, N.E.; Cifarelli, V. VEGFR-3 Signaling Regulates Triglyceride Retention and Absorption in the Intestine. Front. Physiol., 2018, 9, 1783.
[http://dx.doi.org/10.3389/fphys.2018.01783] [PMID: 30618798]
[89]
Karaman, S.; Hollmén, M.; Robciuc, M.R.; Alitalo, A.; Nurmi, H.; Morf, B.; Buschle, D.; Alkan, H.F.; Ochsenbein, A.M.; Alitalo, K.; Wolfrum, C.; Detmar, M. Blockade of VEGF-C and VEGF-D modulates adipose tissue inflammation and improves metabolic parameters under high-fat diet. Mol. Metab., 2014, 4(2), 93-105.
[http://dx.doi.org/10.1016/j.molmet.2014.11.006] [PMID: 25685697]
[90]
Karaman, S.; Hollmén, M.; Yoon, S.Y.; Alkan, H.F.; Alitalo, K.; Wolfrum, C.; Detmar, M. Transgenic overexpression of VEGF-C induces weight gain and insulin resistance in mice. Sci. Rep., 2016, 6(1), 31566.
[http://dx.doi.org/10.1038/srep31566] [PMID: 27511834]
[91]
Vuorio, T.; Nurmi, H.; Moulton, K.; Kurkipuro, J.; Robciuc, M.R.; Ohman, M.; Heinonen, S.E.; Samaranayake, H.; Heikura, T.; Alitalo, K.; Ylä-Herttuala, S. Lymphatic vessel insufficiency in hypercholesterolemic mice alters lipoprotein levels and promotes atherogenesis. Arterioscler. Thromb. Vasc. Biol., 2014, 34(6), 1162-1170.
[http://dx.doi.org/10.1161/ATVBAHA.114.302528] [PMID: 24723556]
[92]
Blum, K.S.; Karaman, S.; Proulx, S.T.; Ochsenbein, A.M.; Luciani, P.; Leroux, J.C.; Wolfrum, C.; Detmar, M. Chronic high-fat diet impairs collecting lymphatic vessel function in mice. PLoS One, 2014, 9(4), e94713.
[http://dx.doi.org/10.1371/journal.pone.0094713] [PMID: 24714646]
[93]
Park, M.; Cho, K.A.; Kim, Y.H.; Lee, K.H.; Woo, S.Y. Lymphatic endothelial cells promote T lymphocyte migration into lymph nodes under hyperlipidemic conditions. Biochem. Biophys. Res. Commun., 2020, 525(3), 786-792.
[http://dx.doi.org/10.1016/j.bbrc.2020.02.154] [PMID: 32147097]
[94]
Rutkowski, J.M.; Moya, M.; Johannes, J.; Goldman, J.; Swartz, M.A. Secondary lymphedema in the mouse tail: Lymphatic hyperplasia, VEGF-C upregulation, and the protective role of MMP-9. Microvasc. Res., 2006, 72(3), 161-171.
[http://dx.doi.org/10.1016/j.mvr.2006.05.009] [PMID: 16876204]
[95]
Taher, M.; Nakao, S.; Zandi, S.; Melhorn, M.I.; Hayes, K.C.; Hafezi-Moghadam, A. Phenotypic transformation of intimal and adventitial lymphatics in atherosclerosis: A regulatory role for soluble VEGF receptor 2. FASEB J., 2016, 30(7), 2490-2499.
[http://dx.doi.org/10.1096/fj.201500112] [PMID: 27006449]
[96]
Huang, Y.L.; Lin, Y.C.; Lin, C.C.; Chen, W.M.; Chen, B.P.C.; Lee, H. High Glucose Induces VEGF-C Expression via the LPA1/3-Akt-ROS-LEDGF Signaling Axis in Human Prostate Cancer PC-3 Cells. Cell. Physiol. Biochem., 2018, 50(2), 597-611.
[http://dx.doi.org/10.1159/000494177] [PMID: 30317243]
[97]
Yang, G.H.; Zhou, X.; Ji, W.J.; Liu, J.X.; Sun, J.; Dong, Y.; Jiang, T.M.; Li, Y.M. VEGF-C-mediated cardiac lymphangiogenesis in high salt intake accelerated progression of left ventricular remodeling in spontaneously hypertensive rats. Clin. Exp. Hypertens., 2017, 39(8), 740-747.
[http://dx.doi.org/10.1080/10641963.2017.1324478] [PMID: 28657345]
[98]
Hosono, K.; Suzuki, T.; Tamaki, H.; Sakagami, H.; Hayashi, I.; Narumiya, S.; Alitalo, K.; Majima, M. Roles of prostaglandin E2-EP3/EP4 receptor signaling in the enhancement of lymphangiogenesis during fibroblast growth factor-2-induced granulation formation. Arterioscler. Thromb. Vasc. Biol., 2011, 31(5), 1049-1058.
[http://dx.doi.org/10.1161/ATVBAHA.110.222356] [PMID: 21311040]
[99]
Tatin, F.; Renaud-Gabardos, E.; Godet, A.C.; Hantelys, F.; Pujol, F.; Morfoisse, F.; Calise, D.; Viars, F.; Valet, P.; Masri, B.; Prats, A.C.; Garmy-Susini, B. Apelin modulates pathological remodeling of lymphatic endothelium after myocardial infarction. JCI Insight, 2017, 2(12), 2.
[http://dx.doi.org/10.1172/jci.insight.93887] [PMID: 28614788]
[100]
Chen, Y.; Wang, D.; Peng, H.; Chen, X.; Han, X.; Yu, J.; Wang, W.; Liang, L.; Liu, Z.; Zheng, Y.; Hu, J.; Yang, L.; Li, J.; Zhou, H.; Cui, X.; Li, F. Epigenetically upregulated oncoprotein PLCE1 drives esophageal carcinoma angiogenesis and proliferation via activating the PI-PLCε-NF-κB signaling pathway and VEGF-C/Bcl-2 expression. Mol. Cancer, 2019, 18(1), 1.
[http://dx.doi.org/10.1186/s12943-018-0930-x] [PMID: 30609930]
[101]
Lin, C.I.; Chen, C.N.; Huang, M.T.; Lee, S.J.; Lin, C.H.; Chang, C.C.; Lee, H. Lysophosphatidic acid upregulates vascular endothelial growth factor-C and tube formation in human endothelial cells through LPA(1/3), COX-2, and NF-kappaB activation- and EGFR transactivation-dependent mechanisms. Cell. Signal., 2008, 20(10), 1804-1814.
[http://dx.doi.org/10.1016/j.cellsig.2008.06.008] [PMID: 18627789]
[102]
Zhu, G.; Huang, Q.; Huang, Y.; Zheng, W.; Hua, J.; Yang, S.; Zhuang, J.; Wang, J.; Ye, J. Lipopolysaccharide increases the release of VEGF-C that enhances cell motility and promotes lymphangiogenesis and lymphatic metastasis through the TLR4- NF-κB/JNK pathways in colorectal cancer. Oncotarget, 2016, 7(45), 73711-73724.
[http://dx.doi.org/10.18632/oncotarget.12449] [PMID: 27713159]
[103]
Ma, C.; Xie, J.; Luo, C.; Yin, H.; Li, R.; Wang, X.; Xiong, W.; Zhang, T.; Jiang, P.; Qi, W.; Zhou, T.; Yang, Z.; Wang, W.; Ma, J.; Gao, G.; Yang, X. OxLDL promotes lymphangiogenesis and lymphatic metastasis in gastric cancer by upregulating VEGF-C expression and secretion. Int. J. Oncol., 2019, 54(2), 572-584.
[PMID: 30483757]
[104]
Hwang, S.D.; Song, J.H.; Kim, Y.; Lim, J.H.; Kim, M.Y.; Kim, E.N.; Hong, Y.A.; Chung, S.; Choi, B.S.; Kim, Y.S.; Park, C.W. Inhibition of lymphatic proliferation by the selective VEGFR-3 inhibitor SAR131675 ameliorates diabetic nephropathy in db/db mice. Cell Death Dis., 2019, 10(3), 219.
[http://dx.doi.org/10.1038/s41419-019-1436-1] [PMID: 30833548]
[105]
Cifarelli, V.; Appak-Baskoy, S.; Peche, V.S.; Kluzak, A.; Shew, T.; Narendran, R.; Pietka, K.M.; Cella, M.; Walls, C.W.; Czepielewski, R.; Ivanov, S.; Randolph, G.J.; Augustin, H.G.; Abumrad, N.A. Visceral obesity and insulin resistance associate with CD36 deletion in lymphatic endothelial cells. Nat. Commun., 2021, 12(1), 3350.
[http://dx.doi.org/10.1038/s41467-021-23808-3] [PMID: 34099721]
[106]
Sun, P.; Gao, J.; Liu, Y.L.; Wei, L.W.; Wu, L.P.; Liu, Z.Y. RNA interference (RNAi)-mediated vascular endothelial growth factor-C (VEGF-C) reduction interferes with lymphangiogenesis and enhances epirubicin sensitivity of breast cancer cells. Mol. Cell. Biochem., 2008, 308(1-2), 161-168.
[http://dx.doi.org/10.1007/s11010-007-9624-1] [PMID: 17938864]
[107]
Yan, S.; Wang, H.; Chen, X.; Liang, C.; Shang, W.; Wang, L.; Li, J.; Xu, D. MiR-182-5p inhibits colon cancer tumorigenesis, angiogenesis, and lymphangiogenesis by directly downregulating VEGF-C. Cancer Lett., 2020, 488, 18-26.
[http://dx.doi.org/10.1016/j.canlet.2020.04.021] [PMID: 32473243]
[108]
Cai, F.; Li, J.; Liu, Y.; Zhang, Z.; Hettiarachchi, D.S.; Li, D. Effect of ximenynic acid on cell cycle arrest and apoptosis and COX-1 in HepG2 cells. Mol. Med. Rep., 2016, 14(6), 5667-5676.
[http://dx.doi.org/10.3892/mmr.2016.5920] [PMID: 27840952]
[109]
Yamamura, T.; Matsumoto, N.; Matsue, Y.; Okudera, M.; Nishikawa, Y.; Abiko, Y.; Komiyama, K. Sodium butyrate, a histone deacetylase inhibitor, regulates Lymphangiogenic factors in oral cancer cell line HSC-3. Anticancer Res., 2014, 34(4), 1701-1708.
[PMID: 24692699]
[110]
Tirronen, A.; Vuorio, T.; Kettunen, S.; Hokkanen, K.; Ramms, B.; Niskanen, H.; Laakso, H.; Kaikkonen, M.U.; Jauhiainen, M.; Gordts, P.L.S.M.; Ylä-Herttuala, S. Deletion of Lymphangiogenic and Angiogenic Growth Factor VEGF-D Leads to Severe Hyperlipidemia and Delayed Clearance of Chylomicron Remnants. Arterioscler. Thromb. Vasc. Biol., 2018, 38(10), 2327-2337.
[http://dx.doi.org/10.1161/ATVBAHA.118.311549] [PMID: 30354205]
[111]
Wong, B.W.; Wong, D.; Luo, H.; McManus, B.M. Vascular endothelial growth factor-D is overexpressed in human cardiac allograft vasculopathy and diabetic atherosclerosis and induces endothelial permeability to low-density lipoproteins in vitro. J. Heart Lung Transplant., 2011, 30(8), 955-962.
[http://dx.doi.org/10.1016/j.healun.2011.04.007] [PMID: 21620738]
[112]
Chakraborty, A.; Barajas, S.; Lammoglia, G.M.; Reyna, A.J.; Morley, T.S.; Johnson, J.A.; Scherer, P.E.; Rutkowski, J.M. Vascular Endothelial Growth Factor-D (VEGF-D) Overexpression and Lymphatic Expansion in Murine Adipose Tissue Improves Metabolism in Obesity. Am. J. Pathol., 2019, 189(4), 924-939.
[http://dx.doi.org/10.1016/j.ajpath.2018.12.008] [PMID: 30878136]
[113]
Lammoglia, G.M.; Van Zandt, C.E.; Galvan, D.X.; Orozco, J.L.; Dellinger, M.T.; Rutkowski, J.M. Hyperplasia, de novo lymphangiogenesis, and lymphatic regression in mice with tissue-specific, inducible overexpression of murine VEGF-D. Am. J. Physiol. Heart Circ. Physiol., 2016, 311(2), H384-H394.
[http://dx.doi.org/10.1152/ajpheart.00208.2016] [PMID: 27342876]
[114]
Roy, H.; Bhardwaj, S.; Babu, M.; Kokina, I.; Uotila, S.; Ahtialansaari, T.; Laitinen, T.; Hakumaki, J.; Laakso, M.; Herzig, K.H.; Ylä-Herttuala, S.; Roy, H.; Bhardwaj, S.; Babu, M.; Kokina, I.; Uotila, S.; Ahtialansaari, T.; Laitinen, T.; Hakumaki, J.; Laakso, M.; Herzig, K-H.; Ylä-Herttuala, S. VEGF-A, VEGF-D, VEGF receptor-1, VEGF receptor-2, NF-kappaB, and RAGE in atherosclerotic lesions of diabetic Watanabe heritable hyperlipidemic rabbits. FASEB J., 2006, 20(12), 2159-2161.
[http://dx.doi.org/10.1096/fj.05-5029fje] [PMID: 16935942]
[115]
Flister, M.J.; Wilber, A.; Hall, K.L.; Iwata, C.; Miyazono, K.; Nisato, R.E.; Pepper, M.S.; Zawieja, D.C.; Ran, S. Inflammation induces lymphangiogenesis through up-regulation of VEGFR-3 mediated by NF-kappaB and Prox1. Blood, 2010, 115(2), 418-429.
[http://dx.doi.org/10.1182/blood-2008-12-196840] [PMID: 19901262]
[116]
Watari, K.; Nakao, S.; Fotovati, A.; Basaki, Y.; Hosoi, F.; Bereczky, B.; Higuchi, R.; Miyamoto, T.; Kuwano, M.; Ono, M. Role of macrophages in inflammatory lymphangiogenesis: Enhanced production of vascular endothelial growth factor C and D through NF-kappaB activation. Biochem. Biophys. Res. Commun., 2008, 377(3), 826-831.
[http://dx.doi.org/10.1016/j.bbrc.2008.10.077] [PMID: 18951870]
[117]
Mountain, D.J.; Singh, M.; Singh, K. Downregulation of VEGF-D expression by interleukin-1beta in cardiac microvascular endothelial cells is mediated by MAPKs and PKCalpha/beta1. J. Cell. Physiol., 2008, 215(2), 337-343.
[http://dx.doi.org/10.1002/jcp.21315] [PMID: 17929249]
[118]
Wang, Q.; Wang, T.; Zhu, L.; He, N.; Duan, C.; Deng, W.; Zhang, H.; Zhang, X. Sophocarpine Inhibits Tumorgenesis of Colorectal Cancer via Downregulation of MEK/ERK/VEGF Pathway. Biol. Pharm. Bull., 2019, 42(11), 1830-1838.
[http://dx.doi.org/10.1248/bpb.b19-00353] [PMID: 31434836]
[119]
Sawa, H.; Murakami, H.; Ohshima, Y.; Murakami, M.; Yamazaki, I.; Tamura, Y.; Mima, T.; Satone, A.; Ide, W.; Hashimoto, I.; Kamada, H. Histone deacetylase inhibitors such as sodium butyrate and trichostatin A inhibit vascular endothelial growth factor (VEGF) secretion from human glioblastoma cells. Brain Tumor Pathol., 2002, 19(2), 77-81.
[http://dx.doi.org/10.1007/BF02478931] [PMID: 12622137]
[120]
Song, H.; Lim, D.Y.; Jung, J.I.; Cho, H.J.; Park, S.Y.; Kwon, G.T.; Kang, Y.H.; Lee, K.W.; Choi, M.S.; Park, J.H.Y. Dietary oleuropein inhibits tumor angiogenesis and lymphangiogenesis in the B16F10 melanoma allograft model: A mechanism for the suppression of high-fat diet-induced solid tumor growth and lymph node metastasis. Oncotarget, 2017, 8(19), 32027-32042.
[http://dx.doi.org/10.18632/oncotarget.16757] [PMID: 28410190]
[121]
Pellizzaro, C.; Speranza, A.; Zorzet, S.; Crucil, I.; Sava, G.; Scarlata, I.; Cantoni, S.; Fedeli, M.; Coradini, D. Inhibition of human pancreatic cell line MIA PaCa2 proliferation by HA-But, a hyaluronic butyric ester: A preliminary report. Pancreas, 2008, 36(4), e15-e23.
[http://dx.doi.org/10.1097/MPA.0b013e31816705bc] [PMID: 18437074]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy