Generic placeholder image

Current Reviews in Clinical and Experimental Pharmacology

Editor-in-Chief

ISSN (Print): 2772-4328
ISSN (Online): 2772-4336

Review Article

Roles of GR Isoforms and Hsp90-binding Immunophilins in the Modulation of Glucocorticoid Biological Responses

Author(s): Sol M. Ciucci, Gisela I. Mazaira and Mario D. Galigniana*

Volume 18, Issue 3, 2023

Published on: 17 August, 2022

Page: [242 - 254] Pages: 13

DOI: 10.2174/2772432817666220428135138

Price: $65

Open Access Journals Promotions 2
Abstract

Glucocorticoid steroids play cardinal roles during the life span of an individual, modulating almost all aspects of the physiology, including the metabolism of carbohydrates, lipids and amino acids, as well as the immune response, neurological biology, stress adaptation, apoptosis, cell division, cell fate, inflammatory responses, etc. Glucocorticoids exert their biological effects by activation of the glucocorticoid receptor (GR), a bona fide ligand-activated transcription factor belonging to the nuclear receptor superfamily. The GR is expressed in virtually all cells of the human body showing isoformic versions and also transcription variants. GR forms oligomeric heterocomplexes that include the 90-kDa heat-shock protein (Hsp90) as an essential hub of the chaperone oligomer. The nature of chaperones associated with this heterocomplex is responsible for the modulation of the subcellular localization of the GR and its biological actions in a given tissue or cell type. In this sense, the discovery that immunophilins containing tetratricopeptide repeats (TPR) domains are responsible for the GR cytoplasmic transport mechanism and the nuclear retention half-time of the receptor opened new trends in our understanding of its complex mechanism of action. Because the properties of GR ligands influence these protein-protein interactions, specific steroid•receptor complexes may confer the GR different features providing new therapeutic opportunities to manage the disease. In this article, we analyze multiple aspects of the GR mechanism of action, some properties of the GR isoforms, and the latest findings revealing the roles of Hsp90-binding immunophilins to manage the glucocorticoid biological response.

Keywords: Glucocorticoid receptor, heat-shock proteins, immunophilins, dynein, tetratricopeptide repeats, nuclear matrix, protein shuttling, transportosome.

Graphical Abstract
[1]
Mangelsdorf DJ, Thummel C, Beato M, et al. The nuclear receptor superfamily: The second decade. Cell 1995; 83(6): 835-9.
[http://dx.doi.org/10.1016/0092-8674(95)90199-X] [PMID: 8521507]
[2]
Weikum ER, Liu X, Ortlund EA. The nuclear receptor superfamily: A structural perspective. Protein science: A publication of the protein society 201827(11): 1876-92.
[http://dx.doi.org/10.1002/pro.3496]
[3]
Evans RM. The steroid and thyroid hormone receptor superfamily. Science 1988; 240(4854): 889-95.
[http://dx.doi.org/10.1126/science.3283939] [PMID: 3283939]
[4]
Tao LJ, Seo DE, Jackson B, Ivanova NB, Santori FR. Nuclear hormone receptors and their ligands: Metabolites in control of transcription. Cells 2020; 9(12): E2606.
[http://dx.doi.org/10.3390/cells9122606] [PMID: 33291787]
[5]
Sladek FM. What are nuclear receptor ligands? Mol Cell Endocrinol 2011; 334(1-2): 3-13.
[http://dx.doi.org/10.1016/j.mce.2010.06.018] [PMID: 20615454]
[6]
Galigniana MD, Echeverría PC, Erlejman AG, Piwien-Pilipuk G. Role of molecular chaperones and TPR-domain proteins in the cytoplasmic transport of steroid receptors and their passage through the nuclear pore. Nucleus 2010; 1(4): 299-308.
[http://dx.doi.org/10.4161/nucl.1.4.11743] [PMID: 21113270]
[7]
Burris TP, Solt LA, Wang Y, et al. Nuclear receptors and their selective pharmacologic modulators. Pharmacol Rev 2013; 65(2): 710-78.
[http://dx.doi.org/10.1124/pr.112.006833] [PMID: 23457206]
[8]
Pratt WB, Toft DO. Steroid receptor interactions with heat shock protein and immunophilin chaperones. Endocr Rev 1997; 18(3): 306-60.
[PMID: 9183567]
[9]
Cadepond F, Schweizer-Groyer G, Segard-Maurel I, et al. Heat shock protein 90 as a critical factor in maintaining glucocorticosteroid receptor in a nonfunctional state. J Biol Chem 1991; 266(9): 5834-41.
[http://dx.doi.org/10.1016/S0021-9258(19)67673-8] [PMID: 2005120]
[10]
Mackeh R, Marr AK, Dargham SR, Syed N, Fakhro KA, Kino T. Single-nucleotide variations of the human nuclear hormone receptor genes in 60,000 individuals. J Endocr Soc 2017; 2(1): 77-90.
[http://dx.doi.org/10.1210/js.2017-00406] [PMID: 29379896]
[11]
Weinberger C, Giguere V, Hollenberg S, Rosenfeld MG, Evans RM. Human steroid receptors and erbA proto-oncogene products: Members of a new superfamily of enhancer binding proteins. Cold Spring Harb Symp Quant Biol 1986; 51(Pt 2): 759-72.
[http://dx.doi.org/10.1101/SQB.1986.051.01.089] [PMID: 3034496]
[12]
Weinberger C, Giguère V, Hollenberg SM, Thompson C, Arriza J, Evans RM. Human steroid receptors and erb-A gene products form a superfamily of enhancer-binding proteins. Clin Physiol Biochem 1987; 5(3-4): 179-89.
[PMID: 3304776]
[13]
Hollenberg SM, Weinberger C, Ong ES, et al. Primary structure and expression of a functional human glucocorticoid receptor cDNA. Nature 1985; 318(6047): 635-41.
[http://dx.doi.org/10.1038/318635a0] [PMID: 2867473]
[14]
Lu NZ, Cidlowski JA. Glucocorticoid receptor isoforms generate transcription specificity. Trends Cell Biol 2006; 16(6): 301-7.
[http://dx.doi.org/10.1016/j.tcb.2006.04.005] [PMID: 16697199]
[15]
Vandevyver S, Dejager L, Libert C. Comprehensive overview of the structure and regulation of the glucocorticoid receptor. Endocr Rev 2014; 35(4): 671-93.
[http://dx.doi.org/10.1210/er.2014-1010] [PMID: 24937701]
[16]
Kino T, Su YA, Chrousos GP. Human glucocorticoid receptor isoform beta: Recent understanding of its potential implications in physiology and pathophysiology. Cell Mol Life Sci 2009; 66(21): 3435-48.
[http://dx.doi.org/10.1007/s00018-009-0098-z] [PMID: 19633971]
[17]
Ramos-Ramírez P, Tliba O. Glucocorticoid receptor β (GRβ): Beyond its dominant-negative function. Int J Mol Sci 2021; 22(7): 3649.
[http://dx.doi.org/10.3390/ijms22073649] [PMID: 33807481]
[18]
Lewis-Tuffin LJ, Cidlowski JA. The physiology of human glucocorticoid receptor beta (hGRbeta) and glucocorticoid resistance. Ann N Y Acad Sci 2006; 1069(1): 1-9.
[http://dx.doi.org/10.1196/annals.1351.001] [PMID: 16855130]
[19]
Ramamoorthy S, Cidlowski JA. Corticosteroids: Mechanisms of action in health and disease. Rheum Dis Clin North Am 2016; 42(1): 15-31. , vii.
[http://dx.doi.org/10.1016/j.rdc.2015.08.002] [PMID: 26611548]
[20]
Ledderose C, Möhnle P, Limbeck E, et al. Corticosteroid resistance in sepsis is influenced by microRNA-124--induced downregulation of glucocorticoid receptor-α. Crit Care Med 2012; 40(10): 2745-53.
[http://dx.doi.org/10.1097/CCM.0b013e31825b8ebc] [PMID: 22846781]
[21]
Gao L, Mo S, Xie J, et al. Respiratory syncytial virus nonstructural protein 1 downregulates glucocorticoid receptor expression through miR-29a. J Allergy Clin Immunol 2019; 144(3): 854-857.e6.
[http://dx.doi.org/10.1016/j.jaci.2019.05.014] [PMID: 31128120]
[22]
McBeth L, Nwaneri AC, Grabnar M, Demeter J, Nestor-Kalinoski A, Hinds TD Jr. Glucocorticoid receptor beta increases migration of human bladder cancer cells. Oncotarget 2016; 7(19): 27313-24.
[http://dx.doi.org/10.18632/oncotarget.8430] [PMID: 27036026]
[23]
Ray DW, Davis JR, White A, Clark AJ. Glucocorticoid receptor structure and function in glucocorticoid-resistant small cell lung carcinoma cells. Cancer Res 1996; 56(14): 3276-80.
[PMID: 8764121]
[24]
Beger C, Gerdes K, Lauten M, et al. Expression and structural analysis of glucocorticoid receptor isoform gamma in human leukaemia cells using an isoform-specific real-time polymerase chain reaction approach. Br J Haematol 2003; 122(2): 245-52.
[http://dx.doi.org/10.1046/j.1365-2141.2003.04426.x] [PMID: 12846893]
[25]
Lu NZ, Cidlowski JA. Translational regulatory mechanisms generate N-terminal glucocorticoid receptor isoforms with unique transcriptional target genes. Mol Cell 2005; 18(3): 331-42.
[http://dx.doi.org/10.1016/j.molcel.2005.03.025] [PMID: 15866175]
[26]
Gross KL, Oakley RH, Scoltock AB, Jewell CM, Cidlowski JA. Glucocorticoid receptor alpha isoform-selective regulation of antiapoptotic genes in osteosarcoma cells: A new mechanism for glucocorticoid resistance. Mol Endocrinol 2011; 25(7): 1087-99.
[http://dx.doi.org/10.1210/me.2010-0051] [PMID: 21527497]
[27]
Vitellius G, Trabado S, Bouligand J, Delemer B, Lombès M. Pathophysiology of Glucocorticoid Signaling. Ann Endocrinol (Paris) 2018; 79(3): 98-106.
[http://dx.doi.org/10.1016/j.ando.2018.03.001] [PMID: 29685454]
[28]
Russcher H, Smit P, van den Akker EL, et al. Two polymorphisms in the glucocorticoid receptor gene directly affect glucocorticoid-regulated gene expression. J Clin Endocrinol Metab 2005; 90(10): 5804-10.
[http://dx.doi.org/10.1210/jc.2005-0646] [PMID: 16030164]
[29]
Scheschowitsch K, Leite JA, Assreuy J. New insights in glucocorticoid receptor signaling-more than just a ligand-binding receptor. Front Endocrinol 2017; 8: 16.
[http://dx.doi.org/10.3389/fendo.2017.00016] [PMID: 28220107]
[30]
Schoneveld OJ, Gaemers IC, Lamers WH. Mechanisms of glucocorticoid signalling. Biochim Biophys Acta 2004; 1680(2): 114-28.
[http://dx.doi.org/10.1016/j.bbaexp.2004.09.004] [PMID: 15488991]
[31]
Muller M, Renkawitz R. The glucocorticoid receptor. Biochim Biophys Acta 1991; 1088(2): 171-82.
[http://dx.doi.org/10.1016/0167-4781(91)90052-N] [PMID: 2001394]
[32]
Panettieri RA, Schaafsma D, Amrani Y, Koziol-White C, Ostrom R, Tliba O. Non-genomic effects of glucocorticoids: An updated view. Trends Pharmacol Sci 2019; 40(1): 38-49.
[http://dx.doi.org/10.1016/j.tips.2018.11.002] [PMID: 30497693]
[33]
Weikum ER, Knuesel MT, Ortlund EA, Yamamoto KR. Glucocorticoid receptor control of transcription: Precision and plasticity via allostery. Nat Rev Mol Cell Biol 2017; 18(3): 159-74.
[http://dx.doi.org/10.1038/nrm.2016.152] [PMID: 28053348]
[34]
Strehl C, Buttgereit F. Unraveling the functions of the membrane-bound glucocorticoid receptors: First clues on origin and functional activity. Ann N Y Acad Sci 2014; 1318(1): 1-6.
[http://dx.doi.org/10.1111/nyas.12364] [PMID: 24611742]
[35]
Deng Q, Riquelme D, Trinh L, et al. Rapid Glucocorticoid feedback inhibition of ACTH secretion involves ligand-dependent membrane association of glucocorticoid receptors. Endocrinology 2015; 156(9): 3215-27.
[http://dx.doi.org/10.1210/EN.2015-1265] [PMID: 26121342]
[36]
Sanchez ER. Heat shock induces translocation to the nucleus of the unliganded glucocorticoid receptor. J Biol Chem 1992; 267(1): 17-20.
[http://dx.doi.org/10.1016/S0021-9258(18)48448-7] [PMID: 1730584]
[37]
Ji JY, Jing H, Diamond SL. Shear stress causes nuclear localization of endothelial glucocorticoid receptor and expression from the GRE promoter. Circ Res 2003; 92(3): 279-85.
[http://dx.doi.org/10.1161/01.RES.0000057753.57106.0B] [PMID: 12595339]
[38]
Robertson S, Rohwer JM, Hapgood JP, Louw A. Impact of glucocorticoid receptor density on ligand-independent dimerization, cooperative ligand-binding and basal priming of transactivation: A cell culture model. PLoS One 2013; 8(5): e64831.
[http://dx.doi.org/10.1371/journal.pone.0064831] [PMID: 23717665]
[39]
Presman DM, Hoijman E, Ceballos NR, Galigniana MD, Pecci A. Melatonin inhibits glucocorticoid receptor nuclear translocation in mouse thymocytes. Endocrinology 2006; 147(11): 5452-9.
[http://dx.doi.org/10.1210/en.2006-0252] [PMID: 16916958]
[40]
Nicolaides NC, Charmandari E. Novel insights into the molecular mechanisms underlying generalized glucocorticoid resistance and hypersensitivity syndromes. Hormones 2017; 16(2): 124-38.
[PMID: 28742501]
[41]
Vettorazzi S, Nalbantoglu D, Gebhardt JCM, Tuckermann J. A guide to changing paradigms of glucocorticoid receptor function-a model system for genome regulation and physiology. FEBS J 2021; febs.16100.
[http://dx.doi.org/10.1111/febs.16100] [PMID: 34213830]
[42]
Mayayo-Peralta I, Zwart W, Prekovic S. Duality of glucocorticoid action in cancer: Tumor-suppressor or oncogene? Endocr Relat Cancer 2021; 28(6): R157-71.
[http://dx.doi.org/10.1530/ERC-20-0489] [PMID: 33852423]
[43]
Quatrini L, Ugolini S. New insights into the cell- and tissue-specificity of glucocorticoid actions. Cell Mol Immunol 2021; 18(2): 269-78.
[http://dx.doi.org/10.1038/s41423-020-00526-2] [PMID: 32868909]
[44]
Heitzer MD, Wolf IM, Sanchez ER, Witchel SF, DeFranco DB. Glucocorticoid receptor physiology. Rev Endocr Metab Disord 2007; 8(4): 321-30.
[http://dx.doi.org/10.1007/s11154-007-9059-8] [PMID: 18049904]
[45]
Gong S, Miao YL, Jiao GZ, et al. Dynamics and correlation of serum cortisol and corticosterone under different physiological or stressful conditions in mice. PLoS One 2015; 10(2): e0117503.
[http://dx.doi.org/10.1371/journal.pone.0117503] [PMID: 25699675]
[46]
Gallo-Payet N, Battista MC. Steroidogenesis-adrenal cell signal transduction. Compr Physiol 2014; 4(3): 889-964.
[http://dx.doi.org/10.1002/cphy.c130050] [PMID: 24944026]
[47]
Talabér G, Jondal M, Okret S. Extra-adrenal glucocorticoid synthesis: Immune regulation and aspects on local organ homeostasis. Mol Cell Endocrinol 2013; 380(1-2): 89-98.
[http://dx.doi.org/10.1016/j.mce.2013.05.007] [PMID: 23707789]
[48]
Scheff JD, Calvano SE, Lowry SF, Androulakis IP. Transcriptional implications of ultradian glucocorticoid secretion in homeostasis and in the acute stress response. Physiol Genomics 2012; 44(2): 121-9.
[http://dx.doi.org/10.1152/physiolgenomics.00128.2011] [PMID: 22128089]
[49]
Cain DW, Cidlowski JA. Immune regulation by glucocorticoids. Nat Rev Immunol 2017; 17(4): 233-47.
[http://dx.doi.org/10.1038/nri.2017.1] [PMID: 28192415]
[50]
Waite EJ, McKenna M, Kershaw Y, et al. Ultradian corticosterone secretion is maintained in the absence of circadian cues. Eur J Neurosci 2012; 36(8): 3142-50.
[http://dx.doi.org/10.1111/j.1460-9568.2012.08213.x] [PMID: 22823558]
[51]
Chrousos GP, Kino T. Glucocorticoid action networks and complex psychiatric and/or somatic disorders. Stress 2007; 10(2): 213-9.
[http://dx.doi.org/10.1080/10253890701292119] [PMID: 17514590]
[52]
Nicolaides NC, Charmandari E, Kino T, Chrousos GP. Stress-related and circadian secretion and target tissue actions of glucocorticoids: Impact on health. Front Endocrinol (Lausanne) 2017; 8: 70.
[http://dx.doi.org/10.3389/fendo.2017.00070] [PMID: 28503165]
[53]
Leistner C, Menke A. How to measure glucocorticoid receptor’s sensitivity in patients with stress-related psychiatric disorders. Psychoneuroendocrinology 2018; 91: 235-60.
[http://dx.doi.org/10.1016/j.psyneuen.2018.01.023] [PMID: 29449045]
[54]
Frau R, Bortolato M. Repurposing steroidogenesis inhibitors for the therapy of neuropsychiatric disorders: Promises and caveats. Neuropharmacology 2019; 147: 55-65.
[http://dx.doi.org/10.1016/j.neuropharm.2018.05.013] [PMID: 29907425]
[55]
Ratner MH, Kumaresan V, Farb DH. Neurosteroid actions in memory and neurologic/neuropsychiatric disorders. Front Endocrinol 2019; 10: 169.
[http://dx.doi.org/10.3389/fendo.2019.00169] [PMID: 31024441]
[56]
Nürnberg E, Horschitz S, Schloss P, Meyer-Lindenberg A. Basal glucocorticoid receptor activation induces proliferation and inhibits neuronal differentiation of human induced pluripotent stem cell-derived neuronal precursor cells. J Steroid Biochem Mol Biol 2018; 182: 119-26.
[http://dx.doi.org/10.1016/j.jsbmb.2018.04.017] [PMID: 29751108]
[57]
Reul JM, Collins A, Saliba RS, et al. Glucocorticoids, epigenetic control and stress resilience. Neurobiol Stress 2014; 1: 44-59.
[http://dx.doi.org/10.1016/j.ynstr.2014.10.001] [PMID: 27589660]
[58]
Li H, Su P, Lai TK, et al. The glucocorticoid receptor-FKBP51 complex contributes to fear conditioning and posttraumatic stress disorder. J Clin Invest 2020; 130(2): 877-89.
[http://dx.doi.org/10.1172/JCI130363] [PMID: 31929189]
[59]
Zannas AS, Wiechmann T, Gassen NC, Binder EB. Gene-stress-epigenetic regulation of FKBP5: Clinical and translational implications. Neuropsychopharmacology 2016; 41(1): 261-74.
[60]
Gassen NC, Hartmann J, Zannas AS, et al. FKBP51 inhibits GSK3β and augments the effects of distinct psychotropic medications. Mol Psychiatry 2016; 21(2): 277-89.
[http://dx.doi.org/10.1038/mp.2015.38] [PMID: 25849320]
[61]
Perez-Riba A, Itzhaki LS. The tetratricopeptide-repeat motif is a versatile platform that enables diverse modes of molecular recognition. Curr Opin Struct Biol 2019; 54: 43-9.
[http://dx.doi.org/10.1016/j.sbi.2018.12.004] [PMID: 30708253]
[62]
Allan RK, Ratajczak T. Versatile TPR domains accommodate different modes of target protein recognition and function. Cell Stress Chaperones 2011; 16(4): 353-67.
[http://dx.doi.org/10.1007/s12192-010-0248-0] [PMID: 21153002]
[63]
Carrello A, Ingley E, Minchin RF, Tsai S, Ratajczak T. The common tetratricopeptide repeat acceptor site for steroid receptor-associated immunophilins and hop is located in the dimerization domain of Hsp90. J Biol Chem 1999; 274(5): 2682-9.
[http://dx.doi.org/10.1074/jbc.274.5.2682] [PMID: 9915798]
[64]
Silverstein AM, Galigniana MD, Kanelakis KC, Radanyi C, Renoir JM, Pratt WB. Different regions of the immunophilin FKBP52 determine its association with the glucocorticoid receptor, hsp90, and cytoplasmic dynein. J Biol Chem 1999; 274(52): 36980-6.
[http://dx.doi.org/10.1074/jbc.274.52.36980] [PMID: 10601253]
[65]
Mazaira GI, Echeverría PC, Ciucci SM, et al. Differential regulation of the glucocorticoid receptor nucleocytoplasmic shuttling by TPR-domain proteins. Biochim Biophys Acta Mol Cell Res 2021; 1868(6): 119000.
[http://dx.doi.org/10.1016/j.bbamcr.2021.119000] [PMID: 33675851]
[66]
D’Andrea LD, Regan L. TPR proteins: The versatile helix. Trends Biochem Sci 2003; 28(12): 655-62.
[http://dx.doi.org/10.1016/j.tibs.2003.10.007] [PMID: 14659697]
[67]
Pratt WB, Gestwicki JE, Osawa Y, Lieberman AP. Targeting Hsp90/Hsp70-based protein quality control for treatment of adult onset neurodegenerative diseases. Annu Rev Pharmacol Toxicol 2015; 55(1): 353-71.
[http://dx.doi.org/10.1146/annurev-pharmtox-010814-124332] [PMID: 25292434]
[68]
Biebl MM, Buchner J. Structure, function, and regulation of the Hsp90 machinery. Cold Spring Harb Perspect Biol 2019; 11(9): a034017.
[http://dx.doi.org/10.1101/cshperspect.a034017] [PMID: 30745292]
[69]
Pratt WB, Galigniana MD, Morishima Y, Murphy PJ. Role of molecular chaperones in steroid receptor action. Essays Biochem 2004; 40: 41-58.
[http://dx.doi.org/10.1042/bse0400041] [PMID: 15242338]
[70]
Lott A, Oroz J, Zweckstetter M. Molecular basis of the interaction of Hsp90 with its co-chaperone Hop. Protein science 2020; 29(12): 2422: 32.
[http://dx.doi.org/10.1002/pro.3969]
[71]
Rehn AB, Buchner J. p23 and Aha1. Subcell Biochem 2015; 78: 113-31.
[http://dx.doi.org/10.1007/978-3-319-11731-7_6] [PMID: 25487019]
[72]
Quintá HR, Galigniana NM, Erlejman AG, Lagadari M, Piwien-Pilipuk G, Galigniana MD. Management of cytoskeleton architecture by molecular chaperones and immunophilins. Cell Signal 2011; 23(12): 1907-20.
[http://dx.doi.org/10.1016/j.cellsig.2011.07.023] [PMID: 21864675]
[73]
Zgajnar NR, De Leo SA, Lotufo CM, Erlejman AG, Piwien-Pilipuk G, Galigniana MD. Biological actions of the Hsp90-binding immunophilins FKBP51 and FKBP52. Biomolecules 2019; 9(2): E52.
[http://dx.doi.org/10.3390/biom9020052] [PMID: 30717249]
[74]
Kang CB, Hong Y, Dhe-Paganon S, Yoon HS. FKBP family proteins: Immunophilins with versatile biological functions. Neurosignals 2008; 16(4): 318-25.
[http://dx.doi.org/10.1159/000123041] [PMID: 18635947]
[75]
Matena A, Rehic E, Hönig D, Kamba B, Bayer P. Structure and function of the human parvulins Pin1 and Par14/17. Biol Chem 2018; 399(2): 101-25.
[http://dx.doi.org/10.1515/hsz-2017-0137] [PMID: 29040060]
[76]
Barik S. Immunophilins: For the love of proteins. Cell Mol Life Sci 2006; 63(24): 2889-900.
[http://dx.doi.org/10.1007/s00018-006-6215-3] [PMID: 17075696]
[77]
Li H, Rao A, Hogan PG. Interaction of calcineurin with substrates and targeting proteins. Trends Cell Biol 2011; 21(2): 91-103.
[http://dx.doi.org/10.1016/j.tcb.2010.09.011] [PMID: 21115349]
[78]
Guy NC, Garcia YA, Sivils JC, Galigniana MD, Cox MB. Functions of the Hsp90-binding FKBP immunophilins. Subcell Biochem 2015; 78: 35-68.
[http://dx.doi.org/10.1007/978-3-319-11731-7_2] [PMID: 25487015]
[79]
Davies TH, Ning YM, Sánchez ER. A new first step in activation of steroid receptors: Hormone-induced switching of FKBP51 and FKBP52 immunophilins. J Biol Chem 2002; 277(7): 4597-600.
[http://dx.doi.org/10.1074/jbc.C100531200] [PMID: 11751894]
[80]
Gallo LI, Ghini AA, Piwien Pilipuk G, Galigniana MD. Differential recruitment of tetratricorpeptide repeat domain immunophilins to the mineralocorticoid receptor influences both heat-shock protein 90-dependent retrotransport and hormone-dependent transcriptional activity. Biochemistry 2007; 46(49): 14044-57.
[http://dx.doi.org/10.1021/bi701372c] [PMID: 18001136]
[81]
Storer CL, Dickey CA, Galigniana MD, Rein T, Cox MB. FKBP51 and FKBP52 in signaling and disease. Trends Endocrinol Metab 2011; 22(12): 481-90.
[http://dx.doi.org/10.1016/j.tem.2011.08.001] [PMID: 21889356]
[82]
Galigniana MD, Harrell JM, Murphy PJ, et al. Binding of hsp90-associated immunophilins to cytoplasmic dynein: Direct binding and in vivo evidence that the peptidylprolyl isomerase domain is a dynein interaction domain. Biochemistry 2002; 41(46): 13602-10.
[http://dx.doi.org/10.1021/bi020399z] [PMID: 12427021]
[83]
McKeen HD, McAlpine K, Valentine A, et al. A novel FK506-like binding protein interacts with the glucocorticoid receptor and regulates steroid receptor signaling. Endocrinology 2008; 149(11): 5724-34.
[http://dx.doi.org/10.1210/en.2008-0168] [PMID: 18669603]
[84]
Wochnik GM, Rüegg J, Abel GA, Schmidt U, Holsboer F, Rein T. FK506-binding proteins 51 and 52 differentially regulate dynein interaction and nuclear translocation of the glucocorticoid receptor in mammalian cells. J Biol Chem 2005; 280(6): 4609-16.
[http://dx.doi.org/10.1074/jbc.M407498200] [PMID: 15591061]
[85]
Wu B, Li P, Liu Y, et al. 3D structure of human FK506-binding protein 52: Implications for the assembly of the glucocorticoid receptor/Hsp90/immunophilin heterocomplex. Proc Natl Acad Sci USA 2004; 101(22): 8348-53.
[http://dx.doi.org/10.1073/pnas.0305969101] [PMID: 15159550]
[86]
Mazaira GI, Echeverria PC, Galigniana MD. Nucleocytoplasmic shuttling of the glucocorticoid receptor is influenced by tetratricopeptide repeat-containing proteins. J Cell Sci 2020; 133(12): jcs238873.
[http://dx.doi.org/10.1242/jcs.238873] [PMID: 32467326]
[87]
Riggs DL, Roberts PJ, Chirillo SC, et al. The Hsp90-binding peptidylprolyl isomerase FKBP52 potentiates glucocorticoid signaling in vivo. EMBO J 2003; 22(5): 1158-67.
[http://dx.doi.org/10.1093/emboj/cdg108] [PMID: 12606580]
[88]
Cox MB, Smith DF. Functions of the Hsp90-Bindign FKBP Immunophilins. In Networking of Chaperones by Co-chaperones. Springer, New York, NY. 2007; pp. 13-25.
[89]
Erlejman AG, De Leo SA, Mazaira GI, et al. NF-κB transcriptional activity is modulated by FK506-binding proteins FKBP51 and FKBP52: A role for peptidyl-prolyl isomerase activity. J Biol Chem 2014; 289(38): 26263-76.
[http://dx.doi.org/10.1074/jbc.M114.582882] [PMID: 25104352]
[90]
Tranguch S, Smith DF, Dey SK. Progesterone receptor requires a co-chaperone for signalling in uterine biology and implantation. Reprod Biomed Online 2006; 13(5): 651-60.
[http://dx.doi.org/10.1016/S1472-6483(10)60655-4] [PMID: 17169175]
[91]
Cheung-Flynn J, Prapapanich V, Cox MB, Riggs DL, Suarez-Quian C, Smith DF. Physiological role for the cochaperone FKBP52 in androgen receptor signaling. Mol Endocrinol 2005; 19(6): 1654-66.
[http://dx.doi.org/10.1210/me.2005-0071] [PMID: 15831525]
[92]
Ott M, Litzenburger UM, Rauschenbach KJ, et al. Suppression of TDO-mediated tryptophan catabolism in glioblastoma cells by a steroid-responsive FKBP52-dependent pathway. Glia 2015; 63(1): 78-90.
[http://dx.doi.org/10.1002/glia.22734] [PMID: 25132599]
[93]
Mazaira GI, Camisay MF, De Leo S, Erlejman AG, Galigniana MD. Biological relevance of Hsp90-binding immunophilins in cancer development and treatment. Int J Cancer 2016; 138(4): 797-808.
[http://dx.doi.org/10.1002/ijc.29509] [PMID: 25754838]
[94]
Martinez NJ, Chang HM, Borrajo JR, Gregory RI. The co-chaperones FKBP4/5 control Argonaute2 expression and facilitate RISC assembly. RNA 2013; 19(11): 1583-93.
[http://dx.doi.org/10.1261/rna.040790.113] [PMID: 24049110]
[95]
Mall DP, Basu S, Ghosh K, et al. Human FKBP5 negatively regulates transcription through inhibition of P-TEFb complex formation. Mol Cell Biol 2022; 42(1): e0034421.
[PMID: 34780285]
[96]
Quintá HR, Maschi D, Gomez-Sanchez C, Piwien-Pilipuk G, Galigniana MD. Subcellular rearrangement of Hsp90-binding immunophilins accompanies neuronal differentiation and neurite outgrowth. J Neurochem 2010; 115(3): 716-34.
[http://dx.doi.org/10.1111/j.1471-4159.2010.06970.x] [PMID: 20796173]
[97]
Quintá HR, Galigniana MD. The neuroregenerative mechanism mediated by the Hsp90-binding immunophilin FKBP52 resembles the early steps of neuronal differentiation. Br J Pharmacol 2012; 166(2): 637-49.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01783.x] [PMID: 22091865]
[98]
Toneatto J, Guber S, Charó NL, et al. Dynamic mitochondrial-nuclear redistribution of the immunophilin FKBP51 is regulated by the PKA signaling pathway to control gene expression during adipocyte differentiation. J Cell Sci 2013; 126(Pt 23): 5357-68.
[PMID: 24101724]
[99]
Ruiz-Estevez M, Staats J, Paatela E, et al. Promotion of myoblast differentiation by FKBP5 via Cdk4 isomerization. Cell Rep 2018; 25(9): 2537-2551.e8.
[http://dx.doi.org/10.1016/j.celrep.2018.11.006] [PMID: 30485818]
[100]
Lu B, Jiao Y, Wang Y, et al. A FKBP5 mutation is associated with Paget’s disease of bone and enhances osteoclastogenesis. Exp Mol Med 2017; 49(5): e336.
[http://dx.doi.org/10.1038/emm.2017.64] [PMID: 28524179]
[101]
Shimoide T, Kawao N, Tamura Y, Morita H, Kaji H. Novel roles of FKBP5 in muscle alteration induced by gravity change in mice. Biochem Biophys Res Commun 2016; 479(3): 602-6.
[http://dx.doi.org/10.1016/j.bbrc.2016.09.126] [PMID: 27680313]
[102]
Mazaira GI, Piwien PG, Galigniana MD. Corticosteroid receptors as a model for the Hsp90•immunophilin-based transport machinery. Trends Endocrinol Metab 2021; 32(10): 827-38.
[http://dx.doi.org/10.1016/j.tem.2021.07.005] [PMID: 34420854]
[103]
Tripathi T, Kalita J. Abnormal microtubule dynamics impair the nuclear-cytoplasmic transport in dementia. ACS Chem Neurosci 2019; 10(3): 1133-4.
[http://dx.doi.org/10.1021/acschemneuro.9b00079] [PMID: 30785261]
[104]
Witchel SF, DeFranco DB. Mechanisms of disease: Regulation of glucocorticoid and receptor levels--impact on the metabolic syndrome. Nat Clin Pract Endocrinol Metab 2006; 2(11): 621-31.
[http://dx.doi.org/10.1038/ncpendmet0323] [PMID: 17082809]
[105]
Kalita J, Kapinos LE, Lim RYH. On the asymmetric partitioning of nucleocytoplasmic transport - recent insights and open questions. J Cell Sci 2021; 134(7): jcs240382.
[http://dx.doi.org/10.1242/jcs.240382] [PMID: 33912945]
[106]
Matsuura Y. Mechanistic insights from structural analyses of ran-GTPase-driven nuclear export of proteins and RNAs. J Mol Biol 2016; 428(10) (10 Pt A): 2025-39.
[http://dx.doi.org/10.1016/j.jmb.2015.09.025] [PMID: 26519791]
[107]
Lu J, Wu T, Zhang B, et al. Types of nuclear localization signals and mechanisms of protein import into the nucleus. Cell Commun Signal 2021; 19(1): 60.
[http://dx.doi.org/10.1186/s12964-021-00741-y] [PMID: 34022911]
[108]
Galigniana MD, Erlejman AG, Monte M, Gomez-Sanchez C, Piwien-Pilipuk G. The Hsp90-FKBP52 complex links the mineralocorticoid receptor to motor proteins and persists bound to the receptor in early nuclear events. Mol Cell Biol 2010; 30(5): 1285-98.
[http://dx.doi.org/10.1128/MCB.01190-09] [PMID: 20038533]
[109]
Piwien Pilipuk G, Vinson GP, Sanchez CG, Galigniana MD. Evidence for NL1-independent nuclear translocation of the mineralocorticoid receptor. Biochemistry 2007; 46(5): 1389-97.
[http://dx.doi.org/10.1021/bi0621819] [PMID: 17260968]
[110]
Echeverría PC, Mazaira G, Erlejman A, Gomez-Sanchez C, Piwien PG, Galigniana MD. Nuclear import of the glucocorticoid receptor-hsp90 complex through the nuclear pore complex is mediated by its interaction with Nup62 and importin beta. Mol Cell Biol 2009; 29(17): 4788-97.
[http://dx.doi.org/10.1128/MCB.00649-09] [PMID: 19581287]
[111]
Mazaira GI, Galigniana MD. Reconstitution of the steroid receptor heterocomplex. Methods Mol Biol 2019; 1966: 125-35.
[http://dx.doi.org/10.1007/978-1-4939-9195-2_10] [PMID: 31041743]
[112]
Allan AM, Goggin SL, Caldwell KK. Prenatal alcohol exposure modifies glucocorticoid receptor subcellular distribution in the medial prefrontal cortex and impairs frontal cortex-dependent learning. PLoS One 2014; 9(4): e96200.
[http://dx.doi.org/10.1371/journal.pone.0096200] [PMID: 24755652]
[113]
Iwata T, Sadahira T, Ochiai K, et al. Tumor suppressor REIC/Dkk-3 and its interacting protein SGTA inhibit glucocorticoid receptor to nuclear transport. Exp Ther Med 2020; 20(2): 1739-45.
[http://dx.doi.org/10.3892/etm.2020.8819] [PMID: 32765682]
[114]
Daghestani HN, Zhu G, Johnston PA, Shinde SN, Brodsky JL, Day BW. Characterization of inhibitors of glucocorticoid receptor nuclear translocation: A model of cytoplasmic dynein-mediated cargo transport. Assay Drug Dev Technol 2012; 10(1): 46-60.
[http://dx.doi.org/10.1089/adt.2010.0367] [PMID: 21919741]
[115]
Thadani-Mulero M, Portella L, Sun S, et al. Androgen receptor splice variants determine taxane sensitivity in prostate cancer. Cancer Res 2014; 74(8): 2270-82.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-2876] [PMID: 24556717]
[116]
Ebong IO, Beilsten-Edmands V, Patel NA, Morgner N, Robinson CV. The interchange of immunophilins leads to parallel pathways and different intermediates in the assembly of Hsp90 glucocorticoid receptor complexes. Cell Discov 2016; 2(1): 16002.
[http://dx.doi.org/10.1038/celldisc.2016.2] [PMID: 27462449]
[117]
Tatro ET, Everall IP, Kaul M, Achim CL. Modulation of glucocorticoid receptor nuclear translocation in neurons by immunophilins FKBP51 and FKBP52: Implications for major depressive disorder. Brain Res 2009; 1286: 1-12.
[http://dx.doi.org/10.1016/j.brainres.2009.06.036] [PMID: 19545546]
[118]
Vandevyver S, Dejager L, Libert C. On the trail of the glucocorticoid receptor: Into the nucleus and back. Traffic 2012; 13(3): 364-74.
[http://dx.doi.org/10.1111/j.1600-0854.2011.01288.x] [PMID: 21951602]
[119]
Annett S, Moore G, Robson T. FK506 binding proteins and inflammation related signalling pathways; basic biology, current status and future prospects for pharmacological intervention. Pharmacol Ther 2020; 215: 107623.
[http://dx.doi.org/10.1016/j.pharmthera.2020.107623] [PMID: 32622856]
[120]
Banerjee A, Periyasamy S, Wolf IM, et al. Control of glucocorticoid and progesterone receptor subcellular localization by the ligand-binding domain is mediated by distinct interactions with tetratricopeptide repeat proteins. Biochemistry 2008; 47(39): 10471-80.
[http://dx.doi.org/10.1021/bi8011862] [PMID: 18771283]
[121]
Galigniana MD, Harrell JM, O’Hagen HM, Ljungman M, Pratt WB. Hsp90-binding immunophilins link p53 to dynein during p53 transport to the nucleus. J Biol Chem 2004; 279(21): 22483-9.
[http://dx.doi.org/10.1074/jbc.M402223200] [PMID: 15004035]
[122]
Jeong YY, Her J, Oh SY, Chung IK. Hsp90-binding immunophilin FKBP52 modulates telomerase activity by promoting the cytoplasmic retrotransport of hTERT. Biochem J 2016; 473(20): 3517-32.
[http://dx.doi.org/10.1042/BCJ20160344] [PMID: 27503910]
[123]
Lagadari M, Zgajnar NR, Gallo LI, Galigniana MD. Hsp90-binding immunophilin FKBP51 forms complexes with hTERT enhancing telomerase activity. Mol Oncol 2016; 10(7): 1086-98.
[http://dx.doi.org/10.1016/j.molonc.2016.05.002] [PMID: 27233944]
[124]
Vafopoulou X, Steel CG. Cytoplasmic travels of the ecdysteroid receptor in target cells: Pathways for both genomic and non-genomic actions. Front Endocrinol 2012; 3: 43.
[http://dx.doi.org/10.3389/fendo.2012.00043] [PMID: 22654867]
[125]
Zhao W, Zhong L, Wu J, et al. Role of cellular FKBP52 protein in intracellular trafficking of recombinant adeno-associated virus 2 vectors. Virology 2006; 353(2): 283-93.
[http://dx.doi.org/10.1016/j.virol.2006.04.042] [PMID: 16828834]
[126]
Schuster M, Schnell L, Feigl P, et al. The Hsp90 machinery facilitates the transport of diphtheria toxin into human cells. Sci Rep 2017; 7(1): 613.
[http://dx.doi.org/10.1038/s41598-017-00780-x] [PMID: 28377614]
[127]
Alleva B, Balukoff N, Peiper A, Smolikove S. Regulating chromosomal movement by the cochaperone FKB-6 ensures timely pairing and synapsis. J Cell Biol 2017; 216(2): 393-408.
[http://dx.doi.org/10.1083/jcb.201606126] [PMID: 28077446]
[128]
Colo GP, Rubio MF, Nojek IM, et al. The p160 nuclear receptor co-activator RAC3 exerts an anti-apoptotic role through a cytoplasmatic action. Oncogene 2008; 27(17): 2430-44.
[http://dx.doi.org/10.1038/sj.onc.1210900] [PMID: 17968310]
[129]
Blair LJ, Criado-Marrero M, Zheng D, et al. The diseaseassociated chaperone FKBP51 impairs cognitive function by accelerating AMPA receptor recycling. eNeuro 2019; 6(1): ENEURO.0242-18.2019.
[http://dx.doi.org/10.1523/ENEURO.0242-18.2019] [PMID: 30963102]
[130]
Aviezer-Hagai K, Skovorodnikova J, Galigniana M, et al. Arabidopsis immunophilins ROF1 (AtFKBP62) and ROF2 (AtFKBP65) exhibit tissue specificity, are heat-stress induced, and bind HSP90. Plant Mol Biol 2007; 63(2): 237-55.
[http://dx.doi.org/10.1007/s11103-006-9085-z] [PMID: 17080288]
[131]
Harrell JM, Kurek I, Breiman A, et al. All of the protein interactions that link steroid receptor.hsp90.immunophilin heterocomplexes to cytoplasmic dynein are common to plant and animal cells. Biochemistry 2002; 41(17): 5581-7.
[http://dx.doi.org/10.1021/bi020073q] [PMID: 11969419]
[132]
Barrack ER. Steroid hormone receptor localization in the nuclear matrix: Interaction with acceptor sites. J Steroid Biochem 1987; 27(1-3): 115-21.
[http://dx.doi.org/10.1016/0022-4731(87)90302-5] [PMID: 3695474]
[133]
Savory JG, Hsu B, Laquian IR, et al. Discrimination between NL1- and NL2-mediated nuclear localization of the glucocorticoid receptor. Mol Cell Biol 1999; 19(2): 1025-37.
[http://dx.doi.org/10.1128/MCB.19.2.1025] [PMID: 9891038]
[134]
Galigniana MD, Housley PR, DeFranco DB, Pratt WB. Inhibition of glucocorticoid receptor nucleocytoplasmic shuttling by okadaic acid requires intact cytoskeleton. J Biol Chem 1999; 274(23): 16222-7.
[http://dx.doi.org/10.1074/jbc.274.23.16222] [PMID: 10347177]
[135]
Yang J, Liu J, DeFranco DB. Subnuclear trafficking of glucocorticoid receptors in vitro: Chromatin recycling and nuclear export. J Cell Biol 1997; 137(3): 523-38.
[http://dx.doi.org/10.1083/jcb.137.3.523] [PMID: 9151662]
[136]
Pratt WB, Galigniana MD, Harrell JM, DeFranco DB. Role of Hsp90 and the Hsp90-binding immunophilins in signalling protein movement. Cell Signal 2004; 16(8): 857-72.
[http://dx.doi.org/10.1016/j.cellsig.2004.02.004] [PMID: 15157665]
[137]
Lagadari M, De Leo SA, Camisay MF, Galigniana MD, Erlejman AG. Regulation of NF-κB signalling cascade by immunophilins. Curr Mol Pharmacol 2016; 9(2): 99-108.
[http://dx.doi.org/10.2174/1874467208666150519113833] [PMID: 25986566]
[138]
Schäcke H, Berger M, Rehwinkel H, Asadullah K. Selective glucocorticoid receptor agonists (SEGRAs): Novel ligands with an improved therapeutic index. Mol Cell Endocrinol 2007; 275(1-2): 109-17.
[http://dx.doi.org/10.1016/j.mce.2007.05.014] [PMID: 17630119]
[139]
Schäcke H, Rehwinkel H, Asadullah K. Dissociated glucocorticoid receptor ligands: Compounds with an improved therapeutic index. Curr Opin Investig Drugs 2005; 6(5): 503-7.
[PMID: 15912964]
[140]
Schäcke H, Rehwinkel H. Dissociated glucocorticoid receptor ligands. Curr Opin Investig Drugs 2004; 5(5): 524-8.
[PMID: 15202726]
[141]
Chow CC, Ong KM, Kagan B, Simons SS Jr. Theory of partial agonist activity of steroid hormones. AIMS Mol Sci 2015; 2(2): 101-23.
[http://dx.doi.org/10.3934/molsci.2015.2.101] [PMID: 25984562]
[142]
Lamontagne N, Mercier L, Pons M, Thompson EB, Jr Simons SS. Glucocorticoid versus antiglucocorticoid activity: Can a single functional group modification of glucocorticoid steroids always convey antiglucocorticoid activity? Endocrinology 1984; 114(6): 2252-63.
[http://dx.doi.org/10.1210/endo-114-6-2252] [PMID: 6547091]
[143]
Sistare FD, Hager GL, Simons SS Jr. Mechanism of dexamethasone 21-mesylate antiglucocorticoid action: I. Receptor-antiglucocorticoid complexes do not competitively inhibit receptor-glucocorticoid complex activation of gene transcription in vivo. Mol Endocrinol 1987; 1(9): 648-58.
[http://dx.doi.org/10.1210/mend-1-9-648] [PMID: 3153481]
[144]
Cole TJ. Glucocorticoid action and the development of selective glucocorticoid receptor ligands. Biotechnol Annu Rev (Amst) 2006; 12: 269-300.
[http://dx.doi.org/10.1016/S1387-2656(06)12008-6] [PMID: 17045197]
[145]
Cho S, Blackford JA Jr, Simons SS Jr. Role of activation function domain-1, DNA binding, and coactivator GRIP1 in the expression of partial agonist activity of glucocorticoid receptor-antagonist complexes. Biochemistry 2005; 44(9): 3547-61.
[http://dx.doi.org/10.1021/bi048777i] [PMID: 15736964]
[146]
Bocquel MT, Ji J, Ylikomi T, et al. Type II antagonists impair the DNA binding of steroid hormone receptors without affecting dimerization. J Steroid Biochem Mol Biol 1993; 45(4): 205-15.
[http://dx.doi.org/10.1016/0960-0760(93)90334-S] [PMID: 8499329]
[147]
Gronemeyer H. Control of transcription activation by steroid hormone receptors. FASEB J 1992; 6(8): 2524-9.
[http://dx.doi.org/10.1096/fasebj.6.8.1592204] [PMID: 1592204]
[148]
Gronemeyer H, Benhamou B, Berry M, et al. Mechanisms of antihormone action. J Steroid Biochem Mol Biol 1992; 41(3-8): 217-21.
[http://dx.doi.org/10.1016/0960-0760(92)90347-L] [PMID: 1562505]
[149]
John S, Sabo PJ, Thurman RE, et al. Chromatin accessibility predetermines glucocorticoid receptor binding patterns. Nat Genet 2011; 43(3): 264-8.
[http://dx.doi.org/10.1038/ng.759] [PMID: 21258342]
[150]
Datson NA, Polman JA, de Jonge RT, et al. Specific regulatory motifs predict glucocorticoid responsiveness of hippocampal gene expression. Endocrinology 2011; 152(10): 3749-57.
[http://dx.doi.org/10.1210/en.2011-0287] [PMID: 21846803]
[151]
Coutinho AE, Chapman KE. The anti-inflammatory and immunosuppressive effects of glucocorticoids, recent developments and mechanistic insights. Mol Cell Endocrinol 2011; 335(1): 2-13.
[http://dx.doi.org/10.1016/j.mce.2010.04.005] [PMID: 20398732]
[152]
King EM, Chivers JE, Rider CF, Minnich A, Giembycz MA, Newton R. Glucocorticoid repression of inflammatory gene expression shows differential responsiveness by transactivation- and transrepression-dependent mechanisms. PLoS One 2013; 8(1): e53936.
[http://dx.doi.org/10.1371/journal.pone.0053936] [PMID: 23349769]
[153]
Zhang T, Liang Y, Zhang J. Natural and synthetic compounds as dissociated agonists of glucocorticoid receptor. Pharmacol Res 2020; 156104802.
[http://dx.doi.org/10.1016/j.phrs.2020.104802] [PMID: 32278042]
[154]
Morsy MA, Patel SS, El-Sheikh AAK, et al. Computational and biological comparisons of plant steroids as modulators of inflammation through interacting with glucocorticoid receptor. Mediators Inflamm 2019; 2019: 3041438.
[http://dx.doi.org/10.1155/2019/3041438] [PMID: 31263381]
[155]
Gerber AN, Masuno K, Diamond MI. Discovery of selective glucocorticoid receptor modulators by multiplexed reporter screening. Proc Natl Acad Sci USA 2009; 106(12): 4929-34.
[http://dx.doi.org/10.1073/pnas.0812308106] [PMID: 19255438]
[156]
Berlin M. Recent advances in the development of novel glucocorticoid receptor modulators. Expert Opin Ther Pat 2010; 20(7): 855-73.
[http://dx.doi.org/10.1517/13543776.2010.493876] [PMID: 20553093]
[157]
Chen SH, Masuno K, Cooper SB, Yamamoto KR. Incoherent feed-forward regulatory logic underpinning glucocorticoid receptor action. Proc Natl Acad Sci USA 2013; 110(5): 1964-9.
[http://dx.doi.org/10.1073/pnas.1216108110] [PMID: 23307810]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy