Review Article

The Interaction Network of MicroRNAs with Cytokines and Signaling Pathways in Allergic Asthma

Author(s): Ali Farmanzadeh*, Durdi Qujeq and Tooba Yousefi

Volume 11, Issue 2, 2022

Published on: 23 August, 2022

Page: [104 - 117] Pages: 14

DOI: 10.2174/2211536611666220428134324

Price: $65

Open Access Journals Promotions 2
Abstract

Allergic asthma is a complicated disease that is affected by many factors. Numerous cytokines and signaling pathways are attributed to the cause of asthma symptoms. MicroRNAs (miRNAs) are a group of small non-coding single-stranded RNA molecules that are involved in gene silencing and posttranscriptional regulation of gene expression by targeting mRNAs. In pathological conditions, altered expression of microRNAs differentially regulates cytokines and signaling pathways and therefore, can be the underlying reason for the pathogenesis of allergic asthma. Indeed, microRNAs participate in airway inflammation via inducing airway structural cells and activating immune responses by targeting cytokines and signaling pathways. Thus, to make a complete understanding of allergic asthma, it is necessary to investigate the communication network of microRNAs with cytokines and signaling pathways which is contributed to the pathogenesis of allergic asthma. Here, we shed light on this aspect of asthma pathology by Summarizing our current knowledge of this topic.

Keywords: Allergic asthma, microRNAs, cytokines, signaling pathways, inflammation, cytokines.

Next »
Graphical Abstract
[1]
Lemanske, R.F., Jr; Busse, W.W. Asthma: clinical expression and molecular mechanisms. J. Allergy Clin. Immunol., 2010, 125(2)(Suppl. 2), S95-S102.
[http://dx.doi.org/10.1016/j.jaci.2009.10.047] [PMID: 20176271]
[2]
Locksley, R.M. Asthma and allergic inflammation. Cell, 2010, 140(6), 777-783.
[http://dx.doi.org/10.1016/j.cell.2010.03.004] [PMID: 20303868]
[3]
Lambert, R.K.; Wiggs, B.R.; Kuwano, K.; Hogg, J.C.; Paré, P.D. Functional significance of increased airway smooth muscle in asthma and COPD. J. Appl. Physiol., 1993, 74(6), 2771-2781.
[http://dx.doi.org/10.1152/jappl.1993.74.6.2771] [PMID: 8365980]
[4]
Romanet-Manent, S.; Charpin, D.; Magnan, A.; Lanteaume, A.; Vervloet, D.; Group, E.C. Allergic vs. nonallergic asthma: What makes the difference? Allergy, 2002, 57(7), 607-613.
[http://dx.doi.org/10.1034/j.1398-9995.2002.23504.x] [PMID: 12100301]
[5]
Schatz, M.; Rosenwasser, L. The allergic asthma phenotype. J. Allergy Clin. Immunol. Pract., 2014, 2(6), 645-648.
[http://dx.doi.org/10.1016/j.jaip.2014.09.004] [PMID: 25439351]
[6]
Akar-Ghibril, N.; Casale, T.; Custovic, A.; Phipatanakul, W. Allergic endotypes and phenotypes of asthma. J. Allergy Clin. Immunol. Pract., 2020, 8(2), 429-440.
[http://dx.doi.org/10.1016/j.jaip.2019.11.008] [PMID: 32037107]
[7]
Jackson, D.J.; Busse, W.W.; Bacharier, L.B. Association of respiratory allergy, asthma, and expression of the SARS-CoV-2 receptor ACE2. J. Allergy Clin. Immunol., 2020, 146(1), 203-206.
[8]
Mendes, N.F.; Jara, C.P.; Mansour, E.; Araújo, E.P.; Velloso, L.A. Asthma and COVID-19: A systematic review. Allergy Asthma Clin. Immunol., 2021, 17(1), 5.
[http://dx.doi.org/10.1186/s13223-020-00509-y] [PMID: 33407838]
[9]
Sunjaya, A.P.; Allida, S.M.; Di Tanna, G.L.; Jenkins, C. Asthma and risk of infection, hospitalization, ICU admission and mortality from COVID-19: Systematic review and meta-analysis. J. Asthma, 2021, 1-14.
[http://dx.doi.org/10.1080/02770903.2021.1888116] [PMID: 33556287]
[10]
Holgate, S.T. Pathogenesis of asthma. Clin. Exp. Allergy, 2008, 38(6), 872-897.
[http://dx.doi.org/10.1111/j.1365-2222.2008.02971.x] [PMID: 18498538]
[11]
Peebles, R.S., Jr; Aronica, M.A. Proinflammatory pathways in the pathogenesis of asthma. Clin. Chest Med., 2019, 40(1), 29-50.
[http://dx.doi.org/10.1016/j.ccm.2018.10.014] [PMID: 30691715]
[12]
Liu, C.; Zhang, X.; Xiang, Y. Role of epithelial chemokines in the pathogenesis of airway inflammation in asthma (Review). Mol. Med. Rep., 2018, 17(5), 6935-6941.
[http://dx.doi.org/10.3892/mmr.2018.8739] [PMID: 29568899]
[13]
Gon, Y.; Hashimoto, S. Role of airway epithelial barrier dysfunction in pathogenesis of asthma. Allergol. Int., 2018, 67(1), 12-17.
[http://dx.doi.org/10.1016/j.alit.2017.08.011] [PMID: 28941636]
[14]
Potaczek, D.P.; Miethe, S.; Schindler, V.; Alhamdan, F.; Garn, H. Role of airway epithelial cells in the development of different asthma phenotypes. Cell. Signal., 2020, 69, 109523.
[http://dx.doi.org/10.1016/j.cellsig.2019.109523] [PMID: 31904412]
[15]
Zuyderduyn, S.; Sukkar, M.B.; Fust, A.; Dhaliwal, S.; Burgess, J.K. Treating asthma means treating airway smooth muscle cells. Eur. Respir. J., 2008, 32(2), 265-274.
[http://dx.doi.org/10.1183/09031936.00051407] [PMID: 18669785]
[16]
Tliba, O.; Panettieri, R.A., Jr Noncontractile functions of airway smooth muscle cells in asthma. Annu. Rev. Physiol., 2009, 71(1), 509-535.
[http://dx.doi.org/10.1146/annurev.physiol.010908.163227] [PMID: 18851708]
[17]
Salter, B.; Pray, C.; Radford, K.; Martin, J.G.; Nair, P. Regulation of human airway smooth muscle cell migration and relevance to asthma. Respir. Res., 2017, 18(1), 156.
[http://dx.doi.org/10.1186/s12931-017-0640-8] [PMID: 28814293]
[18]
Holgate, S.T. Innate and adaptive immune responses in asthma. Nat. Med., 2012, 18(5), 673-683.
[http://dx.doi.org/10.1038/nm.2731] [PMID: 22561831]
[19]
Deckers, J.; Branco Madeira, F.; Hammad, H. Innate immune cells in asthma. Trends Immunol., 2013, 34(11), 540-547.
[http://dx.doi.org/10.1016/j.it.2013.08.004] [PMID: 24035576]
[20]
Lambrecht, B.N.; Hammad, H. The immunology of asthma. Nat. Immunol., 2015, 16(1), 45-56.
[http://dx.doi.org/10.1038/ni.3049] [PMID: 25521684]
[21]
Gill, M.A. The role of dendritic cells in asthma. J. Allergy Clin. Immunol., 2012, 129(4), 889-901.
[http://dx.doi.org/10.1016/j.jaci.2012.02.028] [PMID: 22464668]
[22]
Lambrecht, B.N.; Hammad, H. The role of dendritic and epithelial cells as master regulators of allergic airway inflammation. Lancet, 2010, 376(9743), 835-843.
[http://dx.doi.org/10.1016/S0140-6736(10)61226-3] [PMID: 20816550]
[23]
Barnes, P.J. Th2 cytokines and asthma: An introduction. Respir. Res., 2001, 2(2), 64-65.
[http://dx.doi.org/10.1186/rr39] [PMID: 11686866]
[24]
Lambrecht, B.N.; Hammad, H.; Fahy, J.V. The cytokines of asthma. Immunity, 2019, 50(4), 975-991.
[http://dx.doi.org/10.1016/j.immuni.2019.03.018] [PMID: 30995510]
[25]
Levine, S.J.; Wenzel, S.E. Narrative review: The role of Th2 immune pathway modulation in the treatment of severe asthma and its phenotypes. Ann. Intern. Med., 2010, 152(4), 232-237.
[http://dx.doi.org/10.7326/0003-4819-152-4-201002160-00008] [PMID: 20157138]
[26]
Bradding, P.; Walls, A.F.; Holgate, S.T. The role of the mast cell in the pathophysiology of asthma. J. Allergy Clin. Immunol., 2006, 117(6), 1277-1284.
[http://dx.doi.org/10.1016/j.jaci.2006.02.039] [PMID: 16750987]
[27]
Newcomb, D.C.; Peebles, R.S., Jr Th17-mediated inflammation in asthma. Curr. Opin. Immunol., 2013, 25(6), 755-760.
[http://dx.doi.org/10.1016/j.coi.2013.08.002] [PMID: 24035139]
[28]
Chung, K.F. Targeting the interleukin pathway in the treatment of asthma. Lancet, 2015, 386(9998), 1086-1096.
[http://dx.doi.org/10.1016/S0140-6736(15)00157-9] [PMID: 26383000]
[29]
Bushati, N.; Cohen, S.M. MicroRNA functions. Annu. Rev. Cell Dev. Biol., 2007, 23(1), 175-205.
[http://dx.doi.org/10.1146/annurev.cellbio.23.090506.123406] [PMID: 17506695]
[30]
Greene, C.M.; Gaughan, K.P. MicroRNAs in asthma: potential therapeutic targets. Curr. Opin. Pulm. Med., 2013, 19(1), 66-72.
[http://dx.doi.org/10.1097/MCP.0b013e32835a5bc8] [PMID: 23095468]
[31]
Pua, H.H.; Ansel, K.M. MicroRNA regulation of allergic inflammation and asthma. Curr. Opin. Immunol., 2015, 36, 101-108.
[http://dx.doi.org/10.1016/j.coi.2015.07.006] [PMID: 26253882]
[32]
Semlali, A.; Jacques, E.; Plante, S. TGF-β suppresses EGF-induced MAPK signaling and proliferation in asthmatic epithelial cells. Am. J. Respir. Cell Mol. Biol., 2008, 38(2), 202-208.
[http://dx.doi.org/10.1165/rcmb.2007-0031OC] [PMID: 17872498]
[33]
Gao, G.X.; Li, Q.M.; Shen, H.H. Effect of Astragali-Cordyceps Mixtura on TGF-β/Smad signal pathway in the lung of asthma airway remodeling. J. Ethnopharmacol., 2009, 125(1), 68-74.
[http://dx.doi.org/10.1016/j.jep.2009.06.012] [PMID: 19549562]
[34]
Chen, M.; Lv, Z.; Jiang, S. The effects of triptolide on airway remodelling and transforming growth factor-β1/Smad signalling pathway in ovalbumin-sensitized mice. Immunology, 2011, 132(3), 376-384.
[http://dx.doi.org/10.1111/j.1365-2567.2010.03392.x] [PMID: 21214541]
[35]
PI3K/Akt/mTOR inhibitors in cancer: At the bench and bedside. Semin. Cancer Biol., 2019, 59, 125-132.
[36]
Duan, W.; Aguinaldo Datiles, A.M.; Leung, B.P.; Vlahos, C.J.; Wong, W.S. An anti-inflammatory role for a phosphoinositide 3-kinase inhibitor LY294002 in a mouse asthma model. Int. Immunopharmacol., 2005, 5(3), 495-502.
[http://dx.doi.org/10.1016/j.intimp.2004.10.015] [PMID: 15683846]
[37]
Li, X.; Zhou, L.; Zhang, Z.; Liu, Y.; Liu, J.; Zhang, C. IL-27 alleviates airway remodeling in a mouse model of asthma via PI3K/Akt pathway. Exp. Lung Res., 2020, 46(3-4), 98-108.
[http://dx.doi.org/10.1080/01902148.2020.1740356] [PMID: 32164467]
[38]
Lu, T.X.; Rothenberg, M.E. Diagnostic, functional, and therapeutic roles of microRNA in allergic diseases. J. Allergy Clin. Immunol., 2013, 132(1), 3-13.
[http://dx.doi.org/10.1016/j.jaci.2013.04.039] [PMID: 23735656]
[39]
Rodrigo-Muñoz, J.M.; Cañas, J.A.; Sastre, B. Asthma diagnosis using integrated analysis of eosinophil microRNAs. Allergy, 2019, 74(3), 507-517.
[http://dx.doi.org/10.1111/all.13570] [PMID: 30040124]
[40]
Specjalski, K.; Niedoszytko, M. MicroRNAs: Future biomarkers and targets of therapy in asthma? Curr. Opin. Pulm. Med., 2020, 26(3), 285-292.
[http://dx.doi.org/10.1097/MCP.0000000000000673] [PMID: 32101904]
[41]
Wills-Karp, M.; Luyimbazi, J.; Xu, X. Interleukin-13: Central mediator of allergic asthma. Science, 1998, 282(5397), 2258-2261.
[http://dx.doi.org/10.1126/science.282.5397.2258] [PMID: 9856949]
[42]
Wills-Karp, M. Interleukin-13 in asthma pathogenesis. Immunol. Rev., 2004, 202(1), 175-190.
[http://dx.doi.org/10.1111/j.0105-2896.2004.00215.x] [PMID: 15546393]
[43]
Yang, G.; Volk, A.; Petley, T. Anti-IL-13 monoclonal antibody inhibits airway hyperresponsiveness, inflammation and airway remodeling. Cytokine, 2004, 28(6), 224-232.
[http://dx.doi.org/10.1016/j.cyto.2004.08.007] [PMID: 15566951]
[44]
Marone, G.; Granata, F.; Pucino, V. The intriguing role of interleukin 13 in the pathophysiology of asthma. Front. Pharmacol., 2019, 10, 1387.
[http://dx.doi.org/10.3389/fphar.2019.01387] [PMID: 31866859]
[45]
Wu, X.B.; Wang, M.Y.; Zhu, H.Y.; Tang, S.Q.; You, Y.D.; Xie, Y.Q. Overexpression of microRNA-21 and microRNA-126 in the patients of bronchial asthma. Int. J. Clin. Exp. Med., 2014, 7(5), 1307-1312.
[PMID: 24995087]
[46]
Elbehidy, R.M.; Youssef, D.M.; El-Shal, A.S. MicroRNA-21 as a novel biomarker in diagnosis and response to therapy in asthmatic children. Mol. Immunol., 2016, 71, 107-114.
[http://dx.doi.org/10.1016/j.molimm.2015.12.015] [PMID: 26874829]
[47]
Nersisyan, S.; Engibaryan, N.; Gorbonos, A.; Kirdey, K.; Makhonin, A.; Tonevitsky, A. Potential role of cellular miRNAs in coronavirus-host interplay. PeerJ, 2020, 8, e9994.
[http://dx.doi.org/10.7717/peerj.9994] [PMID: 32983652]
[48]
Solberg, O.D.; Ostrin, E.J.; Love, M.I. Airway epithelial miRNA expression is altered in asthma. Am. J. Respir. Crit. Care Med., 2012, 186(10), 965-974.
[http://dx.doi.org/10.1164/rccm.201201-0027OC] [PMID: 22955319]
[49]
Doganci, A.; Sauer, K.; Karwot, R.; Finotto, S. Pathological role of IL-6 in the experimental allergic bronchial asthma in mice. Clin. Rev. Allergy Immunol., 2005, 28(3), 257-270.
[http://dx.doi.org/10.1385/CRIAI:28:3:257] [PMID: 16129910]
[50]
Rincon, M.; Irvin, C.G. Role of IL-6 in asthma and other inflammatory pulmonary diseases. Int. J. Biol. Sci., 2012, 8(9), 1281-1290.
[http://dx.doi.org/10.7150/ijbs.4874] [PMID: 23136556]
[51]
Huang, A.X.; Lu, L.W.; Liu, W.J.; Huang, M. Plasma inflammatory cytokine IL-4, IL-8, IL-10, and TNF-α levels correlate with pulmonary function in patients with asthma-Chronic Obstructive Pulmonary Disease (COPD) overlap syndrome. Med. Sci. Monit., 2016, 22, 2800-2808.
[http://dx.doi.org/10.12659/MSM.896458] [PMID: 27501772]
[52]
Martinez-Nunez, R.T.; Bondanese, V.P.; Louafi, F. A microRNA network dysregulated in asthma controls IL-6 production in bronchial epithelial cells. PLoS One, 2014, 9(10), e111659.
[http://dx.doi.org/10.1371/journal.pone.0111659] [PMID: 25360780]
[53]
Miller, M.C.; Mayo, K.H. Chemokines from a structural perspective. Int. J. Mol. Sci., 2017, 18(10), 2088.
[http://dx.doi.org/10.3390/ijms18102088] [PMID: 28974038]
[54]
Hughes, C.E.; Nibbs, R.J.B. A guide to chemokines and their receptors. FEBS J., 2018, 285(16), 2944-2971.
[http://dx.doi.org/10.1111/febs.14466] [PMID: 29637711]
[55]
Zhang, K.; Liang, Y.; Feng, Y. Decreased epithelial and sputum miR-221-3p associates with airway eosinophilic inflammation and CXCL17 expression in asthma. Am. J. Physiol. Lung Cell. Mol. Physiol., 2018, 315(2), L253-L264.
[http://dx.doi.org/10.1152/ajplung.00567.2017] [PMID: 29644894]
[56]
Matsukura, S.; Osakabe, Y.; Sekiguchi, A. Overexpression of microRNA-155 suppresses chemokine expression induced by Interleukin-13 in BEAS-2B human bronchial epithelial cells. Allergol. Int., 2016, 65(Suppl.), S17-S23.
[http://dx.doi.org/10.1016/j.alit.2016.04.018] [PMID: 27497617]
[57]
ElKashef, S.M.M.A.E.; Ahmad, S.E-A.; Soliman, Y.M.A.; Mostafa, M.S. Role of microRNA-21 and microRNA-155 as biomarkers for bronchial asthma. Innate Immun., 2021, 27(1), 61-69.
[http://dx.doi.org/10.1177/1753425920901563] [PMID: 31986951]
[58]
Karam, R.A.; Abd Elrahman, D.M. Differential expression of miR-155 and Let-7a in the plasma of childhood asthma: Potential biomarkers for diagnosis and severity. Clin. Biochem., 2019, 68, 30-36.
[http://dx.doi.org/10.1016/j.clinbiochem.2019.04.007] [PMID: 30981701]
[59]
Johnson, P.R.; Roth, M.; Tamm, M. Airway smooth muscle cell proliferation is increased in asthma. Am. J. Respir. Crit. Care Med., 2001, 164(3), 474-477.
[http://dx.doi.org/10.1164/ajrccm.164.3.2010109] [PMID: 11500353]
[60]
Hershenson, M.B.; Brown, M.; Camoretti-Mercado, B.; Solway, J. Airway smooth muscle in asthma. Annu. Rev. Pathol., 2008, 3(1), 523-555.
[http://dx.doi.org/10.1146/annurev.pathmechdis.1.110304.100213] [PMID: 18039134]
[61]
Chiba, Y.; Tanoue, G.; Suto, R. Interleukin-17A directly acts on bronchial smooth muscle cells and augments the contractility. Pharmacol. Rep., 2017, 69(3), 377-385.
[http://dx.doi.org/10.1016/j.pharep.2016.12.007]
[62]
Perry, M.M.; Baker, J.E.; Gibeon, D.S.; Adcock, I.M.; Chung, K.F. Airway smooth muscle hyperproliferation is regulated by microRNA-221 in severe asthma. Am. J. Respir. Cell Mol. Biol., 2014, 50(1), 7-17.
[PMID: 23944957]
[63]
Comer, B.S.; Camoretti-Mercado, B.; Kogut, P.C.; Halayko, A.J.; Solway, J.; Gerthoffer, W.T. MicroRNA-146a and microRNA-146b expression and anti-inflammatory function in human airway smooth muscle. Am. J. Physiol. Lung Cell. Mol. Physiol., 2014, 307(9), L727-L734.
[http://dx.doi.org/10.1152/ajplung.00174.2014] [PMID: 25217662]
[64]
Comer, B.S.; Camoretti-Mercado, B.; Kogut, P.C.; Halayko, A.J.; Solway, J.; Gerthoffer, W.T. Cyclooxygenase-2 and microRNA-155 expression are elevated in asthmatic airway smooth muscle cells. Am. J. Respir. Cell Mol. Biol., 2015, 52(4), 438-447.
[http://dx.doi.org/10.1165/rcmb.2014-0129OC] [PMID: 25180620]
[65]
Louten, J.; Rankin, A.L.; Li, Y. Endogenous IL-33 enhances Th2 cytokine production and T-cell responses during allergic airway inflammation. Int. Immunol., 2011, 23(5), 307-315.
[http://dx.doi.org/10.1093/intimm/dxr006] [PMID: 21422152]
[66]
Drake, L.Y.; Kita, H. IL-33: Biological properties, functions, and roles in airway disease. Immunol. Rev., 2017, 278(1), 173-184.
[http://dx.doi.org/10.1111/imr.12552] [PMID: 28658560]
[67]
Yamazumi, Y.; Sasaki, O.; Imamura, M. The RNA binding protein Mex-3B is required for IL-33 induction in the development of allergic airway inflammation. Cell Rep., 2016, 16(9), 2456-2471.
[http://dx.doi.org/10.1016/j.celrep.2016.07.062] [PMID: 27545879]
[68]
Tang, X.; Wu, F.; Fan, J.; Jin, Y.; Wang, J.; Yang, G. Posttranscriptional regulation of interleukin-33 expression by microRNA-200 in bronchial asthma. Mol. Ther., 2018, 26(7), 1808-1817.
[http://dx.doi.org/10.1016/j.ymthe.2018.04.016] [PMID: 29778524]
[69]
Bozgeyik, I. Therapeutic potential of miRNAs targeting SARS-CoV-2 host cell receptor ACE2. Meta Gene, 2021, 27, 100831.
[http://dx.doi.org/10.1016/j.mgene.2020.100831] [PMID: 33224734]
[70]
Johansson, K.; Malmhäll, C.; Ramos-Ramírez, P.; Rådinger, M. MicroRNA-155 is a critical regulator of type 2 innate lymphoid cells and IL-33 signaling in experimental models of allergic airway inflammation. J. Allergy Clin. Immunol., 2017, 139(3), 1007-6.
[71]
Lu, T.X.; Munitz, A.; Rothenberg, M.E. MicroRNA-21 is up-regulated in allergic airway inflammation and regulates IL-12p35 expression. J. Immunol., 2009, 182(8), 4994-5002.
[http://dx.doi.org/10.4049/jimmunol.0803560] [PMID: 19342679]
[72]
Lee, H.Y.; Lee, H.Y.; Choi, J.Y. Inhibition of MicroRNA-21 by an antagomir ameliorates allergic inflammation in a mouse model of asthma. Exp. Lung Res., 2017, 43(3), 109-119.
[http://dx.doi.org/10.1080/01902148.2017.1304465] [PMID: 28379062]
[73]
Polikepahad, S.; Knight, J.M.; Naghavi, A.O. Proinflammatory role for let-7 microRNAS in experimental asthma. J. Biol. Chem., 2010, 285(39), 30139-30149.
[http://dx.doi.org/10.1074/jbc.M110.145698] [PMID: 20630862]
[74]
Skevaki, C.; Karsonova, A.; Karaulov, A.; Xie, M.; Renz, H. Asthma-associated risk for COVID-19 development. J. Allergy Clin. Immunol., 2020, 146(6), 1295-1301.
[http://dx.doi.org/10.1016/j.jaci.2020.09.017] [PMID: 33002516]
[75]
Dong, X.; Xu, M.; Ren, Z. Regulation of CBL and ESR1 expression by microRNA-22 3p, 513a-5p and 625-5p may impact the pathogenesis of dust mite-induced pediatric asthma. Int. J. Mol. Med., 2016, 38(2), 446-456.
[http://dx.doi.org/10.3892/ijmm.2016.2634] [PMID: 27277384]
[76]
Wong, C.K.; Ho, C.Y.; Ko, F.W. Proinflammatory cytokines (IL-17, IL-6, IL-18 and IL-12) and Th cytokines (IFN-γ, IL-4, IL-10 and IL-13) in patients with allergic asthma. Clin. Exp. Immunol., 2001, 125(2), 177-183.
[http://dx.doi.org/10.1046/j.1365-2249.2001.01602.x] [PMID: 11529906]
[77]
Chai, R.; Liu, B.; Qi, F. The significance of the levels of IL-4, IL-31 and TLSP in patients with asthma and/or rhinitis. Immunotherapy, 2017, 9(4), 331-337.
[http://dx.doi.org/10.2217/imt-2016-0131] [PMID: 28303765]
[78]
Pua, H.H.; Steiner, D.F.; Patel, S. MicroRNAs 24 and 27 suppress allergic inflammation and target a network of regulators of T helper 2 cell-associated cytokine production. Immunity, 2016, 44(4), 821-832.
[http://dx.doi.org/10.1016/j.immuni.2016.01.003] [PMID: 26850657]
[79]
Kärner, J.; Wawrzyniak, M.; Tankov, S. Increased microRNA-323-3p in IL-22/IL-17-producing T cells and asthma: A role in the regulation of the TGF-β pathway and IL-22 production. Allergy, 2017, 72(1), 55-65.
[http://dx.doi.org/10.1111/all.12907] [PMID: 27059796]
[80]
Levänen, B.; Bhakta, N.R.; Paredes, P.T. Altered microRNA profiles in bronchoalveolar lavage fluid exosomes in asthmatic patients. J. Allergy Clin. Immunol., 2013, 131(3), 894-903.
[http://dx.doi.org/10.1016/j.jaci.2012.11.039]
[81]
Cohen, L; e X; Tarsi, J Epithelial cell proliferation contributes to airway remodeling in severe asthma. Am. J. Respir. Crit. Care Med., 2007, 176(2), 138-145.
[http://dx.doi.org/10.1164/rccm.200607-1062OC] [PMID: 17463414]
[82]
Huang, H.; Lu, H.; Liang, L. MicroRNA-744 inhibits proliferation of bronchial epithelial cells by regulating Smad3 pathway via targeting Transforming Growth Factor-β1 (TGF-β1) in severe asthma. Med. Sci. Monit., 2019, 25, 2159-2168.
[http://dx.doi.org/10.12659/MSM.912412] [PMID: 30903795]
[83]
Qian, F.H.; Deng, X.; Zhuang, Q.X.; Wei, B.; Zheng, D.D. miR 625 5p suppresses inflammatory responses by targeting AKT2 in human bronchial epithelial cells. Mol. Med. Rep., 2019, 19(3), 1951-1957.
[http://dx.doi.org/10.3892/mmr.2014.2951] [PMID: 30628701]
[84]
Ozes, O.N.; Mayo, L.D.; Gustin, J.A.; Pfeffer, S.R.; Pfeffer, L.M.; Donner, D.B. NF-kappaB activation by tumour necrosis factor requires the Akt serine-threonine kinase. Nature, 1999, 401(6748), 82-85.
[http://dx.doi.org/10.1038/43466] [PMID: 10485710]
[85]
Zhou, W.; Pal, A.S.; Hsu, A.Y.H. MicroRNA-223 suppresses the canonical NF-κB pathway in basal keratinocytes to dampen neutrophilic inflammation. Cell Rep., 2018, 22(7), 1810-1823.
[http://dx.doi.org/10.1016/j.celrep.2018.01.058] [PMID: 29444433]
[86]
Xiong, T.; Du, Y.; Fu, Z.; Geng, G. MicroRNA-145-5p promotes asthma pathogenesis by inhibiting kinesin family member 3A expression in mouse airway epithelial cells. J. Int. Med. Res., 2019, 47(7), 3307-3319.
[http://dx.doi.org/10.1177/0300060518789819] [PMID: 31264490]
[87]
Hu, R.; Pan, W.; Fedulov, A.V. MicroRNA-10a controls airway smooth muscle cell proliferation via direct targeting of the PI3 kinase pathway. FASEB J., 2014, 28(5), 2347-2357.
[http://dx.doi.org/10.1096/fj.13-247247] [PMID: 24522205]
[88]
Deshpande, D.A.; Guedes, A.G.P.; Lund, F.E.; Subramanian, S.; Walseth, T.F.; Kannan, M.S. CD38 in the pathogenesis of allergic airway disease: Potential therapeutic targets. Pharmacol. Ther., 2017, 172, 116-126.
[http://dx.doi.org/10.1016/j.pharmthera.2016.12.002] [PMID: 27939939]
[89]
Dileepan, M.; Jude, J.A.; Rao, S.P. MicroRNA-708 regulates CD38 expression through signaling pathways JNK MAP kinase and PTEN/AKT in human airway smooth muscle cells. Respir. Res., 2014, 15(1), 107.
[http://dx.doi.org/10.1186/s12931-014-0107-0] [PMID: 25175907]
[90]
Jude, J.A.; Dileepan, M.; Subramanian, S. miR-140-3p regulation of TNF-α-induced CD38 expression in human airway smooth muscle cells. Am. J. Physiol. Lung Cell. Mol. Physiol., 2012, 303(5), L460-L468.
[http://dx.doi.org/10.1152/ajplung.00041.2012] [PMID: 22773691]
[91]
Zhai, C.; Wang, D. Baicalin regulates the development of pediatric asthma via upregulating microRNA-103 and mediating the TLR4/NF-κB pathway. J. Recept. Signal Transduct. Res., 2021, 1-11.
[http://dx.doi.org/10.1080/10799893.2021.1900865] [PMID: 33730981]
[92]
Chen, G.; Khalil, N. TGF-β1 increases proliferation of airway smooth muscle cells by phosphorylation of map kinases. Respir. Res., 2006, 7(1), 2.
[http://dx.doi.org/10.1186/1465-9921-7-2] [PMID: 16390551]
[93]
Yang, Z.; Qu, Z.; Yi, M. MiR-204-5p inhibits transforming growth factor-β1-induced proliferation and extracellular matrix production of airway smooth muscle cells by regulating six1 in asthma. Int. Arch. Allergy Immunol., 2020, 181(4), 239-248.
[http://dx.doi.org/10.1159/000505064] [PMID: 31955160]
[94]
Chen, H.; Guo, S.X.; Zhang, S.; Li, X.D.; Wang, H.; Li, X.W. MiRNA‐620 promotes TGF‐β1‐induced proliferation of airway smooth muscle cell through controlling PTEN/AKT signaling pathway. Kaohsiung J. Med. Sci., 2020, 36(11), 869-877.
[http://dx.doi.org/10.1002/kjm2.12260]
[95]
Sun, H.; Lesche, R.; Li, D.M. PTEN modulates cell cycle progression and cell survival by regulating phosphatidylinositol 3,4,5,-trisphosphate and Akt/protein kinase B signaling pathway. Proc. Natl. Acad. Sci. USA, 1999, 96(11), 6199-6204.
[http://dx.doi.org/10.1073/pnas.96.11.6199] [PMID: 10339565]
[96]
Yamada, K.M.; Araki, M. Tumor suppressor PTEN: Modulator of cell signaling, growth, migration and apoptosis. J. Cell Sci., 2001, 114(Pt 13), 2375-2382.
[http://dx.doi.org/10.1242/jcs.114.13.2375] [PMID: 11559746]
[97]
Knosp, C.A.; Carroll, H.P.; Elliott, J. SOCS2 regulates T helper type 2 differentiation and the generation of type 2 allergic responses. J. Exp. Med., 2011, 208(7), 1523-1531.
[http://dx.doi.org/10.1084/jem.20101167] [PMID: 21646394]
[98]
McCormick, S.M.; Gowda, N.; Fang, J.X.; Heller, N.M. Suppressor of cytokine signaling (SOCS) 1 regulates interleukin-4 (IL-4)-activated insulin receptor substrate (IRS)-2 tyrosine phosphorylation in monocytes and macrophages via the proteasome. J. Biol. Chem., 2016, 291(39), 20574-20587.
[http://dx.doi.org/10.1074/jbc.M116.746164] [PMID: 27507812]
[99]
Liu, Y.; Zhang, H.; Ni, R.; Jia, W.Q.; Wang, Y.Y. IL-4R suppresses airway inflammation in bronchial asthma by inhibiting the IL-4/STAT6 pathway. Pulm. Pharmacol. Ther., 2017, 43, 32-38.
[http://dx.doi.org/10.1016/j.pupt.2017.01.006] [PMID: 28093225]
[100]
Fukuyama, S.; Nakano, T.; Matsumoto, T. Pulmonary suppressor of cytokine signaling-1 induced by IL-13 regulates allergic asthma phenotype. Am. J. Respir. Crit. Care Med., 2009, 179(11), 992-998.
[http://dx.doi.org/10.1164/rccm.200806-992OC] [PMID: 19299500]
[101]
Murray, P.J. The JAK-STAT signaling pathway: Input and output integration. J. Immunol., 2007, 178(5), 2623-2629.
[http://dx.doi.org/10.4049/jimmunol.178.5.2623] [PMID: 17312100]
[102]
Gao, Y.; Wang, B.; Luo, H.; Zhang, Q.; Xu, M. miR-217 represses TGF-β1-induced airway smooth muscle cell proliferation and migration through targeting ZEB1. Biomed. Pharmacother., 2018, 108, 27-35.
[http://dx.doi.org/10.1016/j.biopha.2018.09.030] [PMID: 30212709]
[103]
Wang, J.; Wang, H-S.; Su, Z-B. MicroRNA-142 inhibits proliferation and promotes apoptosis in airway smooth muscle cells during airway remodeling in asthmatic rats via the inhibition of TGF-β-dependent EGFR signaling pathway. Cell. Physiol. Biochem., 2018, 47(4), 1682-1695.
[http://dx.doi.org/10.1159/000490986] [PMID: 29949788]
[104]
Le Cras, T.D.; Acciani, T.H.; Mushaben, E.M. Epithelial EGF receptor signaling mediates airway hyperreactivity and remodeling in a mouse model of chronic asthma. Am. J. Physiol. Lung Cell. Mol. Physiol., 2011, 300(3), L414-L421.
[http://dx.doi.org/10.1152/ajplung.00346.2010] [PMID: 21224214]
[105]
Chen, M.; Huang, L.; Zhang, W. MiR-23b controls TGF-β1 induced airway smooth muscle cell proliferation via TGFβR2/p-Smad3 signals. Mol. Immunol., 2016, 70, 84-93.
[http://dx.doi.org/10.1016/j.molimm.2015.12.012] [PMID: 26748386]
[106]
Zhang, H.; Yan, H.L.; Li, X.Y.; Guo, Y.N. TNFSF14, a novel target of miR-326, facilitates airway remodeling in airway smooth muscle cells via inducing extracellular matrix protein deposition and proliferation. Kaohsiung J. Med. Sci., 2020, 36(7), 508-514.
[http://dx.doi.org/10.1002/kjm2.12197] [PMID: 32118359]
[107]
Pan, J.; Yang, Q.; Zhou, Y. MicroRNA-221 modulates airway remodeling via the PI3K/AKT pathway in OVA-induced chronic murine asthma. Front. Cell Dev. Biol., 2020, 8, 495.
[http://dx.doi.org/10.3389/fcell.2020.00495] [PMID: 32714925]
[108]
Liu, Y.; Miao, Y.; Gao, X. MicroRNA-200a affects the proliferation of airway smooth muscle cells and airway remodeling by targeting FOXC1 via the PI3K/AKT signaling pathway in ovalbumin-induced asthmatic mice. Cell. Physiol. Biochem., 2018, 50(6), 2365-2389.
[http://dx.doi.org/10.1159/000495097] [PMID: 30423573]
[109]
Wang, J.; Li, H.Y.; Wang, H.S.; Su, Z.B. MicroRNA-485 modulates the TGF-β/Smads signaling pathway in chronic asthmatic mice by targeting Smurf2. Cell. Physiol. Biochem., 2018, 51(2), 692-710.
[http://dx.doi.org/10.1159/000495327] [PMID: 30463065]
[110]
Liu, D.; Pan, J.; Zhao, D.; Liu, F. MicroRNA-223 inhibits deposition of the extracellular matrix by airway smooth muscle cells through targeting IGF-1R in the PI3K/Akt pathway. Am. J. Transl. Res., 2018, 10(3), 744-752.
[PMID: 29636864]
[111]
Li, P.; Lang, X.; Xia, S. Elevated expression of microRNA-378 in children with asthma aggravates airway remodeling by promoting the proliferation and apoptosis resistance of airway smooth muscle cells. Exp. Ther. Med., 2019, 17(3), 1529-1536.
[PMID: 30783418]
[112]
Suzuki, M.; Morita, R.; Hirata, Y.; Shichita, T.; Yoshimura, A. Spred1, a suppressor of the Ras–ERK pathway, negatively regulates expansion and function of group 2 innate lymphoid cells. J. Immunol., 2015, 195(3), 1273-1281.
[http://dx.doi.org/10.4049/jimmunol.1500531] [PMID: 26116510]
[113]
Sun, Q.; Liu, L.; Wang, H. Constitutive high expression of protein arginine methyltransferase 1 in asthmatic airway smooth muscle cells is caused by reduced microRNA-19a expression and leads to enhanced remodeling. J. Allergy Clin. Immunol., 2017, 140(2), 510-524.
[http://dx.doi.org/10.1016/j.jaci.2016.11.013]
[114]
Zhang, H.; Sun, Z.; Yu, L.; Sun, J. MiR-139-5p inhibits proliferation and promoted apoptosis of human airway smooth muscle cells by downregulating the Brg1 gene. Respir. Physiol. Neurobiol., 2017, 246, 9-16.
[http://dx.doi.org/10.1016/j.resp.2017.07.004] [PMID: 28711603]
[115]
Aziz, F. The emerging role of miR-223 as novel potential diagnostic and therapeutic target for inflammatory disorders. Cell. Immunol., 2016, 303, 1-6.
[http://dx.doi.org/10.1016/j.cellimm.2016.04.003] [PMID: 27129807]
[116]
Roffel, M.P.; Bracke, K.R.; Heijink, I.H.; Maes, T. miR-223: A key regulator in the innate immune response in asthma and COPD. Front. Med. (Lausanne), 2020, 7, 196.
[http://dx.doi.org/10.3389/fmed.2020.00196] [PMID: 32509795]
[117]
Xu, W.; Wang, Y.; Ma, Y.; Yang, J. MiR-223 plays a protecting role in neutrophilic asthmatic mice through the inhibition of NLRP3 inflammasome. Respir. Res., 2020, 21(1), 116.
[http://dx.doi.org/10.1186/s12931-020-01374-4] [PMID: 32423405]
[118]
Zhou, Y.; Zhang, T.; Yan, Y. MicroRNA-223-3p regulates allergic inflammation by targeting INPP4A. Rev Bras Otorrinolaringol (Engl Ed) , 2020.
[119]
Zech, A.; Ayata, C.K.; Pankratz, F. MicroRNA-155 modulates P2R signaling and Th2 priming of dendritic cells during allergic airway inflammation in mice. Allergy, 2015, 70(9), 1121-1129.
[http://dx.doi.org/10.1111/all.12643] [PMID: 25944053]
[120]
Müller, T.; Robaye, B.; Vieira, R.P. The purinergic receptor P2Y2 receptor mediates chemotaxis of dendritic cells and eosinophils in allergic lung inflammation. Allergy, 2010, 65(12), 1545-1553.
[http://dx.doi.org/10.1111/j.1398-9995.2010.02426.x] [PMID: 20880147]
[121]
Müller, T.; Vieira, R.P.; Grimm, M. A potential role for P2X7R in allergic airway inflammation in mice and humans. Am. J. Respir. Cell Mol. Biol., 2011, 44(4), 456-464.
[http://dx.doi.org/10.1165/rcmb.2010-0129OC] [PMID: 20508067]
[122]
Ye, L.; Mou, Y.; Wang, J.; Jin, M.L. Effects of microRNA-19b on airway remodeling, airway inflammation and degree of oxidative stress by targeting TSLP through the Stat3 signaling pathway in a mouse model of asthma. Oncotarget, 2017, 8(29), 47533-47546.
[http://dx.doi.org/10.18632/oncotarget.17258] [PMID: 28472780]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy