Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

Critical Strategies for Drug Precipitation Inhibition: A Review with the Focus on Poorly Soluble Drugs

Author(s): Tanvi Parmar, Pramod Kadu* and Pravin Kale

Volume 20, Issue 5, 2023

Published on: 20 August, 2022

Page: [497 - 507] Pages: 11

DOI: 10.2174/1567201819666220427123101

Price: $65

Abstract

An oral route for drug administration is a more suitable route because of its ease of administration, pain avoidance, patient compliance, accommodation of various types of drug molecules, etc. But there are many factors affecting the oral absorption of the drugs. The main factor associated with oral absorption is drug solubility. Many new chemical molecules are poorly soluble in nature and can be included in BCS classes II and IV. For the administration of these drugs through the oral route, it was found that solubility is the rate limiting step. The low solubility of these drugs tends to cause precipitation in the gastrointestinaltract (GIT), affecting their bioavailability. Drug precipitation may be triggered by many factors such as insolubility of the drug in co-solvent, drug-excipient interactions, physiochemical properties of the drug, sudden change in the pH of the environment, incompatibility with the surfactant, etc. Precipitation of a drug may occur in two stages, formation of nucleation and crystal growth. To overcome precipitation, there are many strategies such as the use of polymers, the addition of surfactants, modulating drug loading and solubilizing capacity, change in the pH of the environment, etc. In this review, the causes of precipitation and diverse strategies of precipitation inhibition are critically reviewed.

Keywords: Precipitation inhibition, nucleation, crystal growth, SMEDDS, solubility enhancement, Polymeric precipitation inhibitors, surfactant.

Graphical Abstract
[1]
Sakaeda, T. Molecular and pharmacokinetic properties of 222 commercially available oral drugs in humans. Biol. Pharm. Bull., 2001, 24(8), 935-940.
[http://dx.doi.org/10.1248/bpb.24.935]
[2]
Wenlock, M.C.; Austin, R.P.; Barton, P.; Davis, A.M.; Leeson, P.D. A comparison of physiochemical property profiles of development and marketed oral drugs. J. Med. Chem., 2003, 46(7), 1250-1256.
[http://dx.doi.org/10.1021/jm021053p] [PMID: 12646035]
[3]
Vieth, M.; Siegel, M.G.; Higgs, R.E.; Watson, I.A.; Robertson, D.H.; Savin, K.A.; Durst, G.L.; Hipskind, P.A. Characteristic physical properties and structural fragments of marketed oral drugs. J. Med. Chem., 2004, 47(1), 224-232.
[http://dx.doi.org/10.1021/jm030267j] [PMID: 14695836]
[4]
Vikas Sharma, S.L.H.; Singh, J. SMEDDS: A novel approach for lipophilic drugs. Int. J. Pharm. Sci. Res., 2012, 3(08), 2441-2450.
[5]
Savjani, K.T.; Gajjar, A.K.; Savjani, J.K. Drug solubility: Importance and enhancement techniques. ISRN Pharm., 2012, 2012(100), 1-10.
[http://dx.doi.org/10.5402/2012/195727]
[6]
Kawabata, Y.; Wada, K.; Nakatani, M.; Yamada, S.; Onoue, S. Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: Basic approaches and practical applications. Int. J. Pharm., 2011, 420(1), 1-10.
[http://dx.doi.org/10.1016/j.ijpharm.2011.08.032] [PMID: 21884771]
[7]
de Vargas, M.R.W.; Raffin, F.N.; de Lima, T.F.A. Rev. Cienc. Farm. Basica Apl., 2012, 33(4), 497-507.
[8]
Burda, C.; Chen, X.; Narayanan, R.; El-Sayed, M.A. Chemistry and properties of nanocrystals of different shapes. Chem. Rev., 2005, 105(4), 1025-1102.
[http://dx.doi.org/10.1021/cr030063a] [PMID: 15826010]
[9]
Erdemir, D.; Lee, A.Y.; Myerson, A.S. Nucleation of crystals from solution: Classical and two-step models. Acc. Chem. Res., 2009, 42(5), 621-629.
[http://dx.doi.org/10.1021/ar800217x] [PMID: 19402623]
[10]
Loftsson, T.; Brewster, M.E. Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization. J. Pharm. Sci., 1996, 85(10), 1017-1025.
[http://dx.doi.org/10.1021/js950534b] [PMID: 8897265]
[11]
Usui, F.; Maeda, K.; Kusai, A.; Nishimura, K.; Yamamoto, K. Inhibitory effects of water-soluble polymers on precipitation of RS-8359. Int. J. Pharm., 1997, 154(1), 59-66.
[http://dx.doi.org/10.1016/S0378-5173(97)00129-4]
[12]
Dokania, S.; Joshi, A.K. Self-microemulsifying drug delivery system (SMEDDS)--challenges and road ahead. Drug Deliv., 2015, 22(6), 675-690.
[http://dx.doi.org/10.3109/10717544.2014.896058] [PMID: 24670091]
[13]
Tsume, Y.; Mudie, D.M.; Langguth, P.; Amidon, G.E.; Amidon, G.L. The biopharmaceutics classification system: Subclasses for in vivo predictive dissolution (IPD) methodology and IVIVC. Eur. J. Pharm. Sci., 2014, 57, 152-163.
[http://dx.doi.org/10.1016/j.ejps.2014.01.009] [PMID: 24486482]
[14]
Hoener, L.Z. Factors Influencing Drug Absorption and Drug Availability. In: Modern Pharmaceutics; 4th ed., 2002; pp. 145-186.
[15]
Park, H.; Ha, E.S.; Kim, M.S. Current status of supersaturable self-emulsifying drug delivery systems. Pharmaceutics, 2020, 12(4), 365.
[http://dx.doi.org/10.3390/pharmaceutics12040365] [PMID: 32316199]
[16]
Sou, T.; Bergström, C.A.S. Automated assays for thermodynamic (equilibrium) solubility determination. Drug Discov. Today. Technol., 2018, 27, 11-19.
[http://dx.doi.org/10.1016/j.ddtec.2018.04.004] [PMID: 30103859]
[17]
Gao, P.; Shi, Y. Characterization of supersaturatable formulations for improved absorption of poorly soluble drugs. AAPS J., 2012, 14(4), 703-713.
[http://dx.doi.org/10.1208/s12248-012-9389-7] [PMID: 22798021]
[18]
Mullin, J.W. Crystallization, 4th ed; Elsevier, 2001.
[19]
Jungblut, S.; Dellago, C. Pathways to self-organization: Crystallization via nucleation and growth. Eur. Phys. J. E, 2016, 39(8), 77.
[http://dx.doi.org/10.1140/epje/i2016-16077-6] [PMID: 27498980]
[20]
Bevernage, J.; Brouwers, J.; Brewster, M.E.; Augustijns, P. Evaluation of gastrointestinal drug supersaturation and precipitation: Strategies and issues. Int. J. Pharm., 2013, 453(1), 25-35.
[http://dx.doi.org/10.1016/j.ijpharm.2012.11.026] [PMID: 23194883]
[21]
Anby, M.U.; Williams, H.D.; McIntosh, M.; Benameur, H.; Edwards, G.A.; Pouton, C.W.; Porter, C.J. Lipid digestion as a trigger for supersaturation: Evaluation of the impact of supersaturation stabilization on the in vitro and in vivo performance of self-emulsifying drug delivery systems. Mol. Pharm., 2012, 9(7), 2063-2079.
[http://dx.doi.org/10.1021/mp300164u] [PMID: 22656917]
[22]
Psimadas, D.; Georgoulias, P.; Valotassiou, V.; Loudos, G. Molecular nanomedicine towards cancer: 111In-labeled nanoparticles. J. Pharm. Sci., 2012, 101(7), 2271-2280.
[http://dx.doi.org/10.1002/jps.23146] [PMID: 22488174]
[23]
Raghavan, S.L.; Trividic, A.; Davis, A.F.; Hadgraft, J. Crystallization of hydrocortisone acetate: Influence of polymers. Int. J. Pharm., 2001, 212(2), 213-221.
[http://dx.doi.org/10.1016/S0378-5173(00)00610-4] [PMID: 11165079]
[24]
Ziller, K.H.; Rupprecht, H. Conteol of crystal growth in drug suspensions: 1) Design of a conteol unit and application to acetaminophen suspensions). Drug Dev. Ind. Pharm., 1988, 14(15–17), 2341-2370.
[http://dx.doi.org/10.3109/03639048809152019]
[25]
Simonelli, A.P.; Mehta, S.C.; Higuchi, W.I. Inhibition of sulfathiazole crystal growth by polyvinylpyrrolidone. J. Pharm. Sci., 1970, 59(5), 633-638.
[http://dx.doi.org/10.1002/jps.2600590512] [PMID: 5446418]
[26]
Indulkar, A.S.; Gao, Y.; Raina, S.A.; Zhang, G.G.Z.; Taylor, L.S. Impact of monomeric versus micellar surfactant and surfactant-polymer interactions on nucleation-induction times of atazanavir from supersaturated solutions. Cryst. Growth Des., 2020, 20(1), 62-72.
[http://dx.doi.org/10.1021/acs.cgd.9b00482]
[27]
Lindfors, L.; Forssén, S.; Westergren, J.; Olsson, U. Nucleation and crystal growth in supersaturated solutions of a model drug. J. Colloid Interface Sci., 2008, 325(2), 404-413.
[http://dx.doi.org/10.1016/j.jcis.2008.05.034] [PMID: 18561941]
[28]
Edwards, F.; Tsakmaka, C.; Mohr, S.; Fielden, P.R.; Goddard, N.J.; Booth, J.; Tam, K.Y. The precipitation of a poorly water-soluble weakly basic drug upon a pH-shift., 2013, 138(1), 339-345.
[http://dx.doi.org/10.1039/C2AN36364J]
[29]
Yamashita, K.; Nakate, T.; Okimoto, K.; Ohike, A.; Tokunaga, Y.; Ibuki, R.; Higaki, K.; Kimura, T. Establishment of new preparation method for solid dispersion formulation of tacrolimus. Int. J. Pharm., 2003, 267(1-2), 79-91.
[http://dx.doi.org/10.1016/j.ijpharm.2003.07.010] [PMID: 14602386]
[30]
Lee, J.H.; Kim, H.H.; Cho, Y.H.; Koo, T.S.; Lee, G.W. Development and evaluation of raloxifene-hydrochloride-loaded supersaturatable smedds containing an acidifier. Pharmaceutics, 2018, 10(3), E78.
[http://dx.doi.org/10.3390/pharmaceutics10030078] [PMID: 29966249]
[31]
Gao, P.; Rush, B.D.; Pfund, W.P.; Huang, T.; Bauer, J.M.; Morozowich, W.; Kuo, M.S.; Hageman, M.J. Development of a supersaturable SEDDS (S-SEDDS) formulation of paclitaxel with improved oral bioavailability. J. Pharm. Sci., 2003, 92(12), 2386-2398.
[http://dx.doi.org/10.1002/jps.10511] [PMID: 14603484]
[32]
Gao, P.; Guyton, M.E.; Huang, T.; Bauer, J.M.; Stefanski, K.J.; Lu, Q. Enhanced oral bioavailability of a poorly water soluble drug PNU-91325 by supersaturatable formulations. Drug Dev. Ind. Pharm., 2004, 30(2), 221-229.
[http://dx.doi.org/10.1081/DDC-120028718] [PMID: 15089057]
[33]
Gao, P.; Akrami, A.; Hu, J.; Li, L.; Ma, C.; Surapaneni, S. Characterization and optimization of AMG 517 supersaturatable self-emulsifying drug delivery system (S-SEDDS) for improved oral absorption. In: J. Pharm. Sci; , 2009; 98, pp. (2)516-528.
[http://dx.doi.org/10.1002/jps.21451]
[34]
Miller, D.A.; DiNunzio, J.C.; Yang, W.; McGinity, J.W.; Williams, R.O. III. Enhanced in vivo absorption of itraconazole via stabilization of supersaturation following acidic-to-neutral pH transition. Drug Dev. Ind. Pharm., 2008, 34(8), 890-902.
[http://dx.doi.org/10.1080/03639040801929273] [PMID: 18608468]
[35]
Jo, K.; Kim, H.; Khadka, P.; Jang, T.; Kim, S.J.; Hwang, S.H.; Lee, J. Enhanced intestinal lymphatic absorption of saquinavir through supersaturated self-microemulsifying drug delivery systems. Asian J. Pharm. Sci., 2020, 15(3), 336-346.
[http://dx.doi.org/10.1016/j.ajps.2018.11.009] [PMID: 32636951]
[36]
Van Speybroeck, M.; Mols, R.; Mellaerts, R.; Thi, T.D.; Martens, J.A.; Van Humbeeck, J.; Annaert, P.; Van den Mooter, G.; Augustijns, P. Combined use of ordered mesoporous silica and precipitation inhibitors for improved oral absorption of the poorly soluble weak base itraconazole. Eur. J. Pharm. Biopharm., 2010, 75(3), 354-365.
[http://dx.doi.org/10.1016/j.ejpb.2010.04.009] [PMID: 20420905]
[37]
Wei, Y.; Ye, X.; Shang, X.; Peng, X.; Bao, Q.; Liu, M.; Guo, M.; Li, F. Enhanced oral bioavailability of silybin by a supersaturatable self-emulsifying drug delivery system (S-SEDDS). Colloids Surf. A Physicochem. Eng. Asp., 2012, 396, 22-28.
[http://dx.doi.org/10.1016/j.colsurfa.2011.12.025]
[38]
Wu, Z.; Tucker, I.G.; Razzak, M.; Yang, L.; McSporran, K.; Medlicott, N.J. Absorption and tissue tolerance of ricobendazole in the presence of hydroxypropyl-β-cyclodextrin following subcutaneous injection in sheep. Int. J. Pharm., 2010, 397(1-2), 96-102.
[http://dx.doi.org/10.1016/j.ijpharm.2010.07.002] [PMID: 20621175]
[39]
Zhang, N.; Zhang, W.; Jin, Y.; Quan, D.Q. Studies on preparation of carbamazepine (CBZ) supersaturatable self-microemulsifying (S-SMEDDS) formulation and relative bioavailability in beagle dogs. Pharm. Dev. Technol., 2011, 16(4), 415-421.
[http://dx.doi.org/10.3109/10837451003774419] [PMID: 20433250]
[40]
Chen, Z.Q.; Liu, Y.; Zhao, J.H.; Wang, L.; Feng, N.P. Improved oral bioavailability of poorly water-soluble indirubin by a supersaturatable self-microemulsifying drug delivery system. Int. J. Nanomedicine, 2012, 7, 1115-1125.
[http://dx.doi.org/10.2147/IJN.S28761] [PMID: 22403491]
[41]
Lin, X.; Su, L.; Li, N.; Hu, Y.; Tang, G.; Liu, L.; Li, H.; Yang, Z. Understanding the mechanism of dissolution enhancement for poorly water-soluble drugs by solid dispersions containing Eudragit® E PO. J. Drug Deliv. Sci. Technol., 2018, 48, 328-337.
[http://dx.doi.org/10.1016/j.jddst.2018.10.008]
[42]
Sassene, P. J. In vivo precipitation of poorly soluble drugs from lipid based drug delivery systems in vivo precipitation of poorly soluble drugs from lipid based drug delivery systems., 2016.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00413]
[43]
Thomas, N.; Holm, R.; Müllertz, A.; Rades, T. In vitro and in vivo performance of novel supersaturated self-nanoemulsifying drug delivery systems (super-SNEDDS). J. Control. Release, 2012, 160(1), 25-32.
[http://dx.doi.org/10.1016/j.jconrel.2012.02.027] [PMID: 22405903]
[44]
Bevernage, J.; Hens, B.; Brouwers, J.; Tack, J.; Annaert, P.; Augustijns, P. Supersaturation in human gastric fluids. Eur. J. Pharm. Biopharm., 2012, 81(1), 184-189.
[http://dx.doi.org/10.1016/j.ejpb.2012.01.017] [PMID: 22342777]
[45]
Xie, S.; Poornachary, S.K.; Chow, P.S.; Tan, R.B.H. Direct precipitation of micron-size salbutamol sulfate: New insights into the action of surfactants and polymeric additives. Cryst. Growth Des., 2010, 10(8), 3363-3371.
[http://dx.doi.org/10.1021/cg901270x]
[46]
Yani, Y.; Chow, P.S.; Tan, R.B.H. Molecular simulation study of the effect of various additives on salbutamol sulfate crystal habit. Mol. Pharm., 2011, 8(5), 1910-1918.
[http://dx.doi.org/10.1021/mp200277u] [PMID: 21875119]
[47]
Balani, P.N.; Wong, S.Y.; Ng, W.K.; Widjaja, E.; Tan, R.B.H.; Chan, S.Y. Influence of polymer content on stabilizing milled amorphous salbutamol sulphate. Int. J. Pharm., 2010, 391(1-2), 125-136.
[http://dx.doi.org/10.1016/j.ijpharm.2010.02.029] [PMID: 20211717]
[48]
Bi, M.; Kyad, A.; Kiang, Y.H.; Alvarez-Nunez, F.; Alvarez, F. Enhancing and sustaining AMG 009 dissolution from a matrix tablet via microenvironmental pH modulation and supersaturation. AAPS PharmSciTech, 2011, 12(4), 1157-1162.
[http://dx.doi.org/10.1208/s12249-011-9679-x] [PMID: 21913050]
[49]
Douroumis, D.; Fahr, A. Stable carbamazepine colloidal systems using the cosolvent technique. Eur. J. Pharm. Sci., 2007, 30(5), 367-374.
[http://dx.doi.org/10.1016/j.ejps.2006.12.003] [PMID: 17234395]
[50]
Ilevbare, G.A.; Liu, H.; Edgar, K.J.; Taylor, L.S. Maintaining supersaturation in aqueous drug solutions: Impact of different polymers on induction times. Cryst. Growth Des., 2013, 13(2), 740-751.
[http://dx.doi.org/10.1021/cg301447d]
[51]
Zimmermann, A.; Millqvist-Fureby, A.; Elema, M.R.; Hansen, T.; Müllertz, A.; Hovgaard, L. Adsorption of pharmaceutical excipients onto microcrystals of siramesine hydrochloride: Effects on physicochemical properties. Eur. J. Pharm. Biopharm., 2009, 71(1), 109-116.
[http://dx.doi.org/10.1016/j.ejpb.2008.06.014] [PMID: 18619536]
[52]
Dai, W.G.; Dong, L.C.; Song, Y.Q. Nanosizing of a drug/carrageenan complex to increase solubility and dissolution rate. Int. J. Pharm., 2007, 342(1-2), 201-207.
[http://dx.doi.org/10.1016/j.ijpharm.2007.04.032] [PMID: 17560055]
[53]
Garekani, H.A.; Ford, J.L.; Rubinstein, M.H.; Rajabi-Siahboomi, A.R. Highly compressible paracetamol: I: Crystallization and characterization. Int. J. Pharm., 2000, 208(1-2), 87-99.
[http://dx.doi.org/10.1016/S0378-5173(00)00550-0] [PMID: 11064214]
[54]
Kestur, U.S.; Lee, H.; Santiago, D.; Rinaldi, C.; Won, Y.Y.; Taylor, L.S. Effects of the molecular weight and concentration of polymer additives, and temperature on the melt crystallization kinetics of a small drug molecule. Cryst. Growth Des., 2010, 10(8), 3585-3595.
[http://dx.doi.org/10.1021/cg1004853]
[55]
Lechuga-Ballesteros, D.; Rodríguez-Hornedo, N. The influence of additives on the growth kinetics and mechanism of l-alanine crystals. Int. J. Pharm., 1995, 115(2), 139-149.
[http://dx.doi.org/10.1016/0378-5173(94)00216-R]
[56]
Ma, X.; Taw, J.; Chiang, C.M. Control of drug crystallization in transdermal matrix system. Int. J. Pharm., 1996, 142(1), 115-119.
[http://dx.doi.org/10.1016/0378-5173(96)04647-9]
[57]
DiNunzio, J.C.; Hughey, J.R.; Brough, C.; Miller, D.A.; Williams, R.O., III; McGinity, J.W. Production of advanced solid dispersions for enhanced bioavailability of itraconazole using kinetisol dispersing. Drug Dev. Ind. Pharm., 2010, 36(9), 1064-1078.
[http://dx.doi.org/10.3109/03639041003652973] [PMID: 20334539]
[58]
Ramesh, V. Enhancement of solubility, dissolution rate and bioavailability of BCS class II drugs. Int. J. Pharma Chem. Res., 2016, 2(2), 80-95.
[59]
Urvashi Goyal, G.A.; Gupta, A. Self microemulsifying drug delivery system: A method for enhancement of bioavailability. Int. J. Pharm. Sci. Res., 2012, 3(1), 66-79.
[60]
Maniruzzaman, M.; Rana, M.M.; Boateng, J.S.; Mitchell, J.C.; Douroumis, D. Dissolution enhancement of poorly water-soluble APIs processed by hot-melt extrusion using hydrophilic polymers. Drug Dev. Ind. Pharm., 2013, 39(2), 218-227.
[http://dx.doi.org/10.3109/03639045.2012.670642] [PMID: 22452601]
[61]
Özdemir, N.; Erkin, J. Enhancement of dissolution rate and bioavailability of sulfamethoxazole by complexation with β-cyclodextrin. Drug Dev. Ind. Pharm., 2012, 38(3), 331-340.
[http://dx.doi.org/10.3109/03639045.2011.604327] [PMID: 22059382]
[62]
Zhang, Z.L.; Le, Y.; Wang, J.X.; Chen, J.F. Preparation of stable micron-sized crystalline irbesartan particles for the enhancement of dissolution rate. Drug Dev. Ind. Pharm., 2011, 37(11), 1357-1364.
[http://dx.doi.org/10.3109/03639045.2011.575379] [PMID: 21548718]
[63]
Jagadish, B.; Yelchuri, R.K.B.; Tangi, H.; Maroju, S.; Rao, V.U. Enhanced dissolution and bioavailability of raloxifene hydrochloride by co-grinding with different superdisintegrants. Chem. Pharm. Bull. (Tokyo), 2010, 58(3), 293-300.
[http://dx.doi.org/10.1248/cpb.58.293] [PMID: 20190431]
[64]
Rohini, S.K.; Pilli, M.V.N. Enhancement of the dissolution rate and bioavailability of etodolac in solid dispersions by cyclodextrin complexes. Val. Int. J., 2015, 2(06), 1046-1074.
[65]
Gomez-Orellana, I. Strategies to improve oral drug bioavailability. Expert Opin. Drug Deliv., 2005, 2(3), 419-433.
[http://dx.doi.org/10.1517/17425247.2.3.419] [PMID: 16296764]
[66]
Douroumis, D.; Fahr, A. Drug Delivery Strategies for Poorly Water-Soluble Drugs; John Wiley & Sons Ltd: Oxford, UK, 2013.
[http://dx.doi.org/10.1002/9781118444726]
[67]
Krishnaiah, Y.S.R. Pharmaceutical technologies for enhancing oral bioavailability of poorly soluble drugs. J. Bioequivalence Bioavailab., 2010, 02(02)
[http://dx.doi.org/10.4172/jbb.1000027]
[68]
Londhe, N.; Chede, P.; Nitin, L. Formulation and in vitro Evaluation of Supersaturable Dry Micro-emulsion for the Enhancement of Dissolution. Der Pharm. Lettre, 2018, 10(2), 79-92.
[69]
Lee, D.R.; Ho, M.J.; Choi, Y.W.; Kang, M.J. A polyvinylpyrrolidone-based supersaturable self-emulsifying drug delivery system for enhanced dissolution of cyclosporine A. Polymers (Basel), 2017, 9(4), 124.
[http://dx.doi.org/10.3390/polym9040124]
[70]
Jaisamut, P.; Wiwattanawongsa, K.; Graidist, P.; Sangsen, Y.; Wiwattanapatapee, R. Enhanced oral bioavailability of curcumin using a supersaturatable self-microemulsifying system incorporating a hydrophilic polymer; in vitro and in vivo investigations. AAPS PharmSciTech, 2017, 19(2), 730-740.
[http://dx.doi.org/10.1208/s12249-017-0857-3] [PMID: 28975598]
[71]
Yeom, D.W.; Chae, B.R.; Son, H.Y.; Kim, J.H.; Chae, J.S.; Song, S.H.; Oh, D.; Choi, Y.W. Enhanced oral bioavailability of valsartan using a polymer-based supersaturable self-microemulsifying drug delivery system. Int. J. Nanomedicine, 2017, 12, 3533-3545.
[http://dx.doi.org/10.2147/IJN.S136599] [PMID: 28507434]
[72]
Dias, M.M.R.; Raghavan, S.L.; Pellett, M.A.; Hadgraft, J. The effect of β-cyclodextrins on the permeation of diclofenac from supersaturated solutions. Int. J. Pharm., 2003, 263(1-2), 173-181.
[http://dx.doi.org/10.1016/S0378-5173(03)00366-1] [PMID: 12954192]
[73]
Iervolino, M.; Raghavan, S.L.; Hadgraft, J. Membrane penetration enhancement of ibuprofen using supersaturation. Int. J. Pharm., 2000, 198(2), 229-238.
[http://dx.doi.org/10.1016/S0378-5173(00)00346-X] [PMID: 10767571]
[74]
Brewster, M.E.; Vandecruys, R.; Peeters, J.; Neeskens, P.; Verreck, G.; Loftsson, T. Comparative interaction of 2-hydroxypropyl-β-cyclodextrin and sulfobutylether-β-cyclodextrin with itraconazole: Phase-solubility behavior and stabilization of supersaturated drug solutions. Eur. J. Pharm. Sci., 2008, 34(2-3), 94-103.
[http://dx.doi.org/10.1016/j.ejps.2008.02.007] [PMID: 18420390]
[75]
Overhoff, K.A.; McConville, J.T.; Yang, W.; Johnston, K.P.; Peters, J.I.; Williams, R.O., III Effect of stabilizer on the maximum degree and extent of supersaturation and oral absorption of tacrolimus made by ultra-rapid freezing. Pharm. Res., 2008, 25(1), 167-175.
[http://dx.doi.org/10.1007/s11095-007-9417-y] [PMID: 17968635]
[76]
Guzmán, H.R.; Tawa, M.; Zhang, Z.; Ratanabanangkoon, P.; Shaw, P.; Gardner, C.R.; Chen, H.; Moreau, J.P.; Almarsson, O.; Remenar, J.F. Combined use of crystalline salt forms and precipitation inhibitors to improve oral absorption of celecoxib from solid oral formulations. J. Pharm. Sci., 2007, 96(10), 2686-2702.
[http://dx.doi.org/10.1002/jps.20906] [PMID: 17518357]
[77]
Dai, W.; Dong, L.C.; Li, S.; Deng, Z. Combination of pluronic/vitamin E TPGS as a potential inhibitor of drug precipitation. Int. J. Pharm., 2008, 355(1-2), 31-37.
[http://dx.doi.org/10.1016/j.ijpharm.2007.12.015] [PMID: 18299178]
[78]
Ilevbare, G.A.; Liu, H.; Edgar, K.J.; Taylor, L.S. Effect of binary additive combinations on solution crystal growth of the poorly water-soluble drug, ritonavir. Cryst. Growth Des., 2012, 12(12), 6050-6060.
[http://dx.doi.org/10.1021/cg301169t]
[79]
Rahman, M.; Coelho, A.; Tarabokija, J.; Ahmad, S.; Radgman, K.; Bilgili, E. Synergistic and antagonistic effects of various amphiphilic polymer combinations in enhancing griseofulvin release from ternary amorphous solid dispersions. Eur. J. Pharm. Sci., 2020, 150, 105354.
[http://dx.doi.org/10.1016/j.ejps.2020.105354] [PMID: 32380151]
[80]
Nie, S.; Pan, W.; Li, X.; Wu, X. The effect of citric acid added to hydroxypropyl methylcellulose (HPMC) matrix tablets on the release profile of vinpocetine. Drug Dev. Ind. Pharm., 2004, 30(6), 627-635.
[http://dx.doi.org/10.1081/DDC-120037664] [PMID: 15285336]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy