Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

Common microRNAs in Epilepsy and Migraine: Their Possibility as Candidates for Biomarkers and Therapeutic Targets during Comorbid Onset of Both Conditions

Author(s): Abhilash Ludhiadch, Nidhi Bhardwaj, Palvi Gotra, Roshan Kumar and Anjana Munshi*

Volume 22, Issue 5, 2023

Published on: 14 June, 2022

Page: [698 - 710] Pages: 13

DOI: 10.2174/1871527321666220426103253

Price: $65

Abstract

Epilepsy and migraine are chronic neurological disorders with shared clinical as well as pathophysiological mechanisms. Epileptic patients are at a higher risk of developing migraine compared to normal individuals and vice versa. Several genetic and environmental risk factors have been reported to be associated with the development of both diseases. Previous studies have already established standard genetic markers involved in various pathways implicated in the pathogenesis of both these comorbid conditions. In addition to genetic markers, epigenetic markers have also been found to be involved in the pathogenesis of epilepsy and migraine. Among the epigenetic markers, miRNAs have been explored at length and have emerged as significant players in regulating the expression of their target genes. miRNAs like miR-22, miR-34a, miR-155, miR-211, and Let-7b play a significant role in neuronal differentiation and seem to be associated with epilepsy and migraine as comorbid conditions. However, the exact shared mechanisms underlying the role of these miRNAs in these comorbid conditions are still unclear. The current review has been compiled with an aim to explore common microRNAs targeting the genes involved in shared molecular pathways leading to epilepsy and migraine as comorbid conditions. The new class of ncRNAs, i.e., tRNA transfer fragments, are also discussed. In addition, their role as potential biomarkers and therapeutic targets has also been evaluated. However, limitations exist, and based on the current literature available, only a few microRNAs seem to be involved in the pathogenesis of both these disorders.

Keywords: miRNA, migraine, epileptogenesis, neurogenesis, neuronal death, shared mechanisms.

[1]
Ludvigsson P, Hesdorffer D, Olafsson E, Kjartansson O, Hauser WA. Migraine with aura is a risk factor for unprovoked seizures in children. Ann Neurol 2006; 59(1): 210-3.
[http://dx.doi.org/10.1002/ana.20745] [PMID: 16374824]
[2]
Winawer MR, Connors R, Investigators E. Evidence for a shared genetic susceptibility to migraine and epilepsy. Epilepsia 2013; 54(2): 288-95.
[http://dx.doi.org/10.1111/epi.12072] [PMID: 23294289]
[3]
Rogawski MA. Migraine and epilepsy—shared mechanisms within the family of episodic disorders. (4th ed.;.), Jasper's Basic Mechanisms of the Epilepsies: Bethesda, MD, 2012.
[http://dx.doi.org/10.1093/med/9780199746545.003.0073]
[4]
Mantegazza M, Cestèle S. Pathophysiological mechanisms of migraine and epilepsy: Similarities and differences. Neurosci Lett 2018; 667: 92-102.
[http://dx.doi.org/10.1016/j.neulet.2017.11.025] [PMID: 29129678]
[5]
Ito M, Adachi N, Nakamura F, et al. Characteristics of postictal headache in patients with partial epilepsy. Cephalalgia 2004; 24(1): 23-8.
[http://dx.doi.org/10.1111/j.1468-2982.2004.00628.x] [PMID: 14687009]
[6]
Syvertsen M, Helde G, Stovner LJ, Brodtkorb E. Headaches add to the burden of epilepsy. J Headache Pain 2007; 8(4): 224-30.
[http://dx.doi.org/10.1007/s10194-007-0398-3] [PMID: 17901922]
[7]
Mameniškienė R, Karmonaitė I, Zagorskis R. The burden of headache in people with epilepsy. Seizure 2016; 41: 120-6.
[http://dx.doi.org/10.1016/j.seizure.2016.07.018] [PMID: 27543963]
[8]
Ottman R, Lipton RB. Comorbidity of migraine and epilepsy. Neurology 1994; 44(11): 2105-10.
[http://dx.doi.org/10.1212/WNL.44.11.2105] [PMID: 7969967]
[9]
Sutherland HG, Albury CL, Griffiths LR. Advances in genetics of migraine. J Headache Pain 2019; 20(1): 72.
[http://dx.doi.org/10.1186/s10194-019-1017-9] [PMID: 31226929]
[10]
Myers KA, Johnstone DL, Dyment DA. Epilepsy genetics: Current knowledge, applications, and future directions. Clin Genet 2019; 95(1): 95-111.
[http://dx.doi.org/10.1111/cge.13414] [PMID: 29992546]
[11]
Sand T, Omland PM, Wang S-J. Electroencephalography in Migraine. Neurophysiology of the Migraine Brain. Springer 2021; pp. 1-12.
[http://dx.doi.org/10.1007/978-3-030-56538-1_1]
[12]
Sand T. Electroencephalography in migraine: A review with focus on quantitative electroencephalography and the migraine vs. epilepsy relationship. Cephalalgia 2003; 23 (Suppl. 1): 5-11.
[http://dx.doi.org/10.1046/j.1468-2982.2003.00570.x] [PMID: 12699455]
[13]
Ashina M, Terwindt GM, Al-Karagholi MA-M, et al. Migraine: Disease characterisation, biomarkers, and precision medicine. Lancet 2021; 397(10283): 1496-504.
[http://dx.doi.org/10.1016/S0140-6736(20)32162-0] [PMID: 33773610]
[14]
Haut SR, Bigal ME, Lipton RB. Chronic disorders with episodic manifestations: Focus on epilepsy and migraine. Lancet Neurol 2006; 5(2): 148-57.
[http://dx.doi.org/10.1016/S1474-4422(06)70348-9] [PMID: 16426991]
[15]
Bazil CW. Migraine and epilepsy. Neurol Clin 1994; 12(1): 115-28.
[http://dx.doi.org/10.1016/S0733-8619(18)30114-2] [PMID: 8183205]
[16]
Lipton RB, Ottman R, Ehrenberg BL, Hauser WA. Comorbidity of migraine: The connection between migraine and epilepsy. Neurology 1994; 44(10) (Suppl. 7): S28-32.
[PMID: 7969943]
[17]
Calabresi P, Galletti F, Rossi C, Sarchielli P, Cupini LM. Antiepileptic drugs in migraine: From clinical aspects to cellular mechanisms. Trends Pharmacol Sci 2007; 28(4): 188-95.
[http://dx.doi.org/10.1016/j.tips.2007.02.005] [PMID: 17337068]
[18]
Buonvicino D, Urru M, Muzzi M, et al. Trigeminal ganglion transcriptome analysis in 2 rat models of medication-overuse headache reveals coherent and widespread induction of pronociceptive gene expression patterns. Pain 2018; 159(10): 1980-8.
[http://dx.doi.org/10.1097/j.pain.0000000000001291] [PMID: 29794878]
[19]
Venugopal AK, Sameer Kumar GS, Mahadevan A, et al. Transcriptomic profiling of medial temporal lobe epilepsy. J Proteomics Bioinform 2012; 5(2): 1000210.
[http://dx.doi.org/10.4172/jpb.1000210] [PMID: 23483634]
[20]
Condrat CE, Thompson DC, Barbu MG, et al. miRNAs as biomarkers in disease: Latest findings regarding their role in diagnosis and prognosis. Cells 2020; 9(2): 276.
[http://dx.doi.org/10.3390/cells9020276] [PMID: 31979244]
[21]
Mirza N, Appleton R, Burn S, et al. Genetic regulation of gene expression in the epileptic human hippocampus. Hum Mol Genet 2017; 26(9): 1759-69.
[http://dx.doi.org/10.1093/hmg/ddx061] [PMID: 28334860]
[22]
Cao D-D, Li L, Chan W-Y. MicroRNAs: Key regulators in the central nervous system and their implication in neurological diseases. Int J Mol Sci 2016; 17(6): 842.
[http://dx.doi.org/10.3390/ijms17060842] [PMID: 27240359]
[23]
Wang H, Taguchi YH, Liu X. Editorial: MiRNAs and neurological diseases. Front Neurol 2021; 12: 662373.
[http://dx.doi.org/10.3389/fneur.2021.662373] [PMID: 33959091]
[24]
Bian S, Sun T. Functions of noncoding RNAs in neural development and neurological diseases. Mol Neurobiol 2011; 44(3): 359-73.
[http://dx.doi.org/10.1007/s12035-011-8211-3] [PMID: 21969146]
[25]
Kretschmann A, Danis B, Andonovic L, et al. Different microRNA profiles in chronic epilepsy versus acute seizure mouse models. J Mol Neurosci 2015; 55(2): 466-79.
[http://dx.doi.org/10.1007/s12031-014-0368-6] [PMID: 25078263]
[26]
Gallelli L, Cione E, Caroleo MC, et al. microRNAs to monitor pain-migraine and drug treatment. MicroRNA 2017; 6(3): 152-6.
[http://dx.doi.org/10.2174/2211536606666170913152821] [PMID: 28901847]
[27]
Alsharafi WA, Xiao B, Abuhamed MM, Luo Z. miRNAs: Biological and clinical determinants in epilepsy. Front Mol Neurosci 2015; 8: 59.
[http://dx.doi.org/10.3389/fnmol.2015.00059] [PMID: 26528124]
[28]
Qin C, Xu P-P, Zhang X, et al. Pathological significance of tRNA-derived small RNAs in neurological disorders. Neural Regen Res 2020; 15(2): 212-21.
[http://dx.doi.org/10.4103/1673-5374.265560] [PMID: 31552886]
[29]
Li S, Xu Z, Sheng J. tRNA-derived small RNA: A novel regulatory small non-coding RNA. Genes (Basel) 2018; 9(5): 246.
[http://dx.doi.org/10.3390/genes9050246] [PMID: 29748504]
[30]
Ivanov P, Emara MM, Villen J, Gygi SP, Anderson P. Angiogenin-induced tRNA fragments inhibit translation initiation. Mol Cell 2011; 43(4): 613-23.
[http://dx.doi.org/10.1016/j.molcel.2011.06.022] [PMID: 21855800]
[31]
Chen Q, Yan M, Cao Z, et al. Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder. Science 2016; 351(6271): 397-400.
[http://dx.doi.org/10.1126/science.aad7977] [PMID: 26721680]
[32]
Sharma U, Conine CC, Shea JM, et al. Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals. Science 2016; 351(6271): 391-6.
[http://dx.doi.org/10.1126/science.aad6780] [PMID: 26721685]
[33]
Dhahbi JM, Spindler SR, Atamna H, et al. 5′ tRNA halves are present as abundant complexes in serum, concentrated in blood cells, and modulated by aging and calorie restriction. BMC Genomics 2013; 14(1): 298.
[http://dx.doi.org/10.1186/1471-2164-14-298] [PMID: 23638709]
[34]
Hogg MC, Raoof R, El Naggar H, et al. Elevation in plasma tRNA fragments precede seizures in human epilepsy. J Clin Invest 2019; 129(7): 2946-51.
[http://dx.doi.org/10.1172/JCI126346] [PMID: 31039137]
[35]
Korotkov A, Broekaart DWM, Banchaewa L, et al. microRNA-132 is overexpressed in glia in temporal lobe epilepsy and reduces the expression of pro-epileptogenic factors in human cultured astrocytes. Glia 2020; 68(1): 60-75.
[http://dx.doi.org/10.1002/glia.23700] [PMID: 31408236]
[36]
Wang J, Zhao J. MicroRNA dysregulation in epilepsy: From pathogenetic involvement to diagnostic biomarker and therapeutic agent development. Front Mol Neurosci 2021; 14: 650372.
[http://dx.doi.org/10.3389/fnmol.2021.650372] [PMID: 33776649]
[37]
Hu K, Xie Y-Y, Zhang C, et al. MicroRNA expression profile of the hippocampus in a rat model of temporal lobe epilepsy and miR-34a-targeted neuroprotection against hippocampal neurone cell apoptosis post-status epilepticus. BMC Neurosci 2012; 13(1): 115.
[http://dx.doi.org/10.1186/1471-2202-13-115] [PMID: 22998082]
[38]
Nowakowski TJ, Rani N, Golkaram M, et al. Regulation of cell-type-specific transcriptomes by microRNA networks during human brain development. Nat Neurosci 2018; 21(12): 1784-92.
[http://dx.doi.org/10.1038/s41593-018-0265-3] [PMID: 30455455]
[39]
Swann JW, Rho JM. How is homeostatic plasticity important in epilepsy? Issues in Clinical Epileptology: A View from the Benc 2014; 123-31.
[http://dx.doi.org/10.1007/978-94-017-8914-1_10]
[40]
Sakai A, Saitow F, Maruyama M, et al. MicroRNA cluster miR-17-92 regulates multiple functionally related voltage-gated potassium channels in chronic neuropathic pain. Nat Commun 2017; 8(1): 16079.
[http://dx.doi.org/10.1038/ncomms16079] [PMID: 28677679]
[41]
Letellier M, Elramah S, Mondin M, et al. miR-92a regulates expression of synaptic GluA1-containing AMPA receptors during homeostatic scaling. Nat Neurosci 2014; 17(8): 1040-2.
[http://dx.doi.org/10.1038/nn.3762] [PMID: 25017011]
[42]
Rajman M, Metge F, Fiore R, et al. A microRNA-129-5p/Rbfox crosstalk coordinates homeostatic downscaling of excitatory synapses. EMBO J 2017; 36(12): 1770-87.
[http://dx.doi.org/10.15252/embj.201695748] [PMID: 28487411]
[43]
Lippi G, Fernandes CC, Ewell LA, et al. MicroRNA-101 regulates multiple developmental programs to constrain excitation in adult neural networks. Neuron 2016; 92(6): 1337-51.
[http://dx.doi.org/10.1016/j.neuron.2016.11.017] [PMID: 27939580]
[44]
Liu R, Wang J, Liang S, Zhang G, Yang X. Role of NKCC1 and KCC2 in epilepsy: From expression to function. Front Neurol 2020; 10: 1407.
[http://dx.doi.org/10.3389/fneur.2019.01407] [PMID: 32010056]
[45]
Jimenez-Mateos EM, Bray I, Sanz-Rodriguez A, et al. miRNA Expression profile after status epilepticus and hippocampal neuroprotection by targeting miR-132. Am J Pathol 2011; 179(5): 2519-32.
[http://dx.doi.org/10.1016/j.ajpath.2011.07.036] [PMID: 21945804]
[46]
Schratt GM, Tuebing F, Nigh EA, et al. A brain-specific microRNA regulates dendritic spine development. Nature 2006; 439(7074): 283-9.
[http://dx.doi.org/10.1038/nature04367] [PMID: 16421561]
[47]
Bekenstein U, Mishra N, Milikovsky DZ, et al. Dynamic changes in murine forebrain miR-211 expression associate with cholinergic imbalances and epileptiform activity. Proc Natl Acad Sci USA 2017; 114(25): E4996-5005.
[http://dx.doi.org/10.1073/pnas.1701201114] [PMID: 28584127]
[48]
Vangoor VR, Reschke CR, Senthilkumar K, et al. Antagonizing increased miR-135a levels at the chronic stage of experimental TLE reduces spontaneous recurrent seizures. J Neurosci 2019; 39(26): 5064-79.
[http://dx.doi.org/10.1523/JNEUROSCI.3014-18.2019] [PMID: 31015341]
[49]
Gross C, Yao X, Engel T, et al. MicroRNA-mediated downregulation of the potassium channel Kv4. 2 contributes to seizure onset. Cell Rep 2016; 17(1): 37-45.
[http://dx.doi.org/10.1016/j.celrep.2016.08.074] [PMID: 27681419]
[50]
Liu XX, Yang L, Shao LX, et al. Endothelial Cdk5 deficit leads to the development of spontaneous epilepsy through CXCL1/CXCR2-mediated reactive astrogliosis. J Exp Med 2020; 217(1): e20180992.
[http://dx.doi.org/10.1084/jem.20180992] [PMID: 31699822]
[51]
Boison D, Steinhäuser C. Epilepsy and astrocyte energy metabolism. Glia 2018; 66(6): 1235-43.
[http://dx.doi.org/10.1002/glia.23247] [PMID: 29044647]
[52]
Sofroniew MV. Astrogliosis. Cold Spring Harb Perspect Biol 2014; 7(2): a020420.
[http://dx.doi.org/10.1101/cshperspect.a020420] [PMID: 25380660]
[53]
Bhalala OG, Pan L, Sahni V, et al. microRNA-21 regulates astrocytic response following spinal cord injury. J Neurosci 2012; 32(50): 17935-47.
[http://dx.doi.org/10.1523/JNEUROSCI.3860-12.2012] [PMID: 23238710]
[54]
Meares GP, Rajbhandari R, Gerigk M, et al. MicroRNA-31 is required for astrocyte specification. Glia 2018; 66(5): 987-98.
[http://dx.doi.org/10.1002/glia.23296] [PMID: 29380422]
[55]
Gazerani P. Current evidence on potential uses of MicroRNA biomarkers for migraine: From diagnosis to treatment. Mol Diagn Ther 2019; 23(6): 681-94.
[http://dx.doi.org/10.1007/s40291-019-00428-8] [PMID: 31612314]
[56]
Tafuri E, Santovito D, de Nardis V, et al. MicroRNA profiling in migraine without aura: Pilot study. Ann Med 2015; 47(6): 468-73.
[http://dx.doi.org/10.3109/07853890.2015.1071871] [PMID: 26333279]
[57]
Andersen HH, Duroux M, Gazerani P. Serum microRNA signatures in migraineurs during attacks and in pain-free periods. Mol Neurobiol 2016; 53(3): 1494-500.
[http://dx.doi.org/10.1007/s12035-015-9106-5] [PMID: 25636687]
[58]
Cheng C-Y, Chen S-P, Liao Y-C, Fuh J-L, Wang Y-F, Wang S-J. Elevated circulating endothelial-specific microRNAs in migraine patients: A pilot study. Cephalalgia 2018; 38(9): 1585-91.
[http://dx.doi.org/10.1177/0333102417742375] [PMID: 29126355]
[59]
Zhai Y, Zhu YY. MiR-30a relieves migraine by degrading CALCA. Eur Rev Med Pharmacol Sci 2018; 22(7): 2022-8.
[PMID: 29687858]
[60]
Gallelli L, Cione E, Peltrone F, et al. Hsa-miR-34a-5p and hsa-miR-375 as biomarkers for monitoring the effects of drug treatment for migraine pain in children and adolescents: A pilot study. J Clin Med 2019; 8(7): 928.
[http://dx.doi.org/10.3390/jcm8070928] [PMID: 31252698]
[61]
Téllez-Zenteno JF, Matijevic S, Wiebe S. Somatic comorbidity of epilepsy in the general population in Canada. Epilepsia 2005; 46(12): 1955-62.
[http://dx.doi.org/10.1111/j.1528-1167.2005.00344.x] [PMID: 16393162]
[62]
Gotra P, Bhardwaj N, Ludhiadch A, Singh G, Munshi A. Epilepsy and migraine shared genetic and molecular mechanisms: Focus on therapeutic strategies. Mol Neurobiol 2021; 58(8): 3874-83.
[http://dx.doi.org/10.1007/s12035-021-02386-x] [PMID: 33856647]
[63]
Vezzani A, Lang B, Aronica E. Immunity and inflammation in epilepsy. Cold Spring Harb Perspect Med 2015; 6(2): a022699.
[http://dx.doi.org/10.1101/cshperspect.a022699] [PMID: 26684336]
[64]
Malhotra R. Understanding migraine: Potential role of neurogenic inflammation. Ann Indian Acad Neurol 2016; 19(2): 175-82.
[http://dx.doi.org/10.4103/0972-2327.182302] [PMID: 27293326]
[65]
Monif M, Burnstock G, Williams DA. Microglia: Proliferation and activation driven by the P2X7 receptor. Int J Biochem Cell Biol 2010; 42(11): 1753-6.
[http://dx.doi.org/10.1016/j.biocel.2010.06.021] [PMID: 20599520]
[66]
Engel T, Alves M, Sheedy C, Henshall DC. ATPergic signalling during seizures and epilepsy. Neuropharmacology 2016; 104: 140-53.
[http://dx.doi.org/10.1016/j.neuropharm.2015.11.001] [PMID: 26549853]
[67]
Jimenez-Mateos EM, Arribas-Blazquez M, Sanz-Rodriguez A, et al. microRNA targeting of the P2X7 purinoceptor opposes a contralateral epileptogenic focus in the hippocampus. Sci Rep 2015; 5(1): 17486.
[http://dx.doi.org/10.1038/srep17486] [PMID: 26631939]
[68]
Beamer EH, Jurado-Arjona J, Jimenez-Mateos EM, et al. MicroRNA-22 controls aberrant neurogenesis and changes in neuronal morphology after status epilepticus. Front Mol Neurosci 2018; 11: 442.
[http://dx.doi.org/10.3389/fnmol.2018.00442] [PMID: 30618601]
[69]
Modi PK, Jaiswal S, Sharma P. Regulation of neuronal cell cycle and apoptosis by microRNA 34a. Mol Cell Biol 2015; 36(1): 84-94.
[http://dx.doi.org/10.1128/MCB.00589-15] [PMID: 26459758]
[70]
Mollinari C, Racaniello M, Berry A, et al. miR-34a regulates cell proliferation, morphology and function of newborn neurons resulting in improved behavioural outcomes. Cell Death Dis 2015; 6(1): e1622-2.
[http://dx.doi.org/10.1038/cddis.2014.589] [PMID: 25633291]
[71]
Sano T, Reynolds JP, Jimenez-Mateos EM, Matsushima S, Taki W, Henshall DC. MicroRNA-34a upregulation during seizure-induced neuronal death. Cell Death Dis 2012; 3(3): e287-7.
[http://dx.doi.org/10.1038/cddis.2012.23] [PMID: 22436728]
[72]
Hermeking H. The miR-34 family in cancer and apoptosis. Cell Death Differ 2010; 17(2): 193-9.
[http://dx.doi.org/10.1038/cdd.2009.56] [PMID: 19461653]
[73]
Liu L, Liu L, Shi J, et al. MicroRNA-34b mediates hippocampal astrocyte apoptosis in a rat model of recurrent seizures. BMC Neurosci 2016; 17(1): 56.
[http://dx.doi.org/10.1186/s12868-016-0291-6] [PMID: 27514646]
[74]
Zhang H, Zhang XM, Zong DD, et al. miR-34a-5p up-regulates the IL-1β/COX2/PGE2 inflammation pathway and induces the release of CGRP via inhibition of SIRT1 in rat trigeminal ganglion neurons. FEBS Open Bio 2021; 11(1): 300-11.
[http://dx.doi.org/10.1002/2211-5463.13027] [PMID: 33155431]
[75]
Greco R, De Icco R, Demartini C, et al. Plasma levels of CGRP and expression of specific microRNAs in blood cells of episodic and chronic migraine subjects: Towards the identification of a panel of peripheral biomarkers of migraine? J Headache Pain 2020; 21(1): 122.
[http://dx.doi.org/10.1186/s10194-020-01189-0] [PMID: 33066724]
[76]
Gaudet AD, Fonken LK, Watkins LR, Nelson RJ, Popovich PG. MicroRNAs: Roles in regulating neuroinflammation. Neuroscientist 2018; 24(3): 221-45.
[http://dx.doi.org/10.1177/1073858417721150] [PMID: 28737113]
[77]
Maciak K, Dziedzic A, Miller E, Saluk-Bijak J. miR-155 as an important regulator of multiple sclerosis pathogenesis. A review. Int J Mol Sci 2021; 22(9): 4332.
[http://dx.doi.org/10.3390/ijms22094332] [PMID: 33919306]
[78]
Testa U, Pelosi E, Castelli G, Labbaye C. miR-146 and miR-155: Two key modulators of immune response and tumor development. Noncoding RNA 2017; 3(3): 22.
[http://dx.doi.org/10.3390/ncrna3030022] [PMID: 29657293]
[79]
Bhattacharyya S, Balakathiresan NS, Dalgard C, et al. Elevated miR-155 promotes inflammation in cystic fibrosis by driving hyperexpression of interleukin-8. J Biol Chem 2011; 286(13): 11604-15.
[http://dx.doi.org/10.1074/jbc.M110.198390] [PMID: 21282106]
[80]
Lu Q, Wu R, Zhao M, Garcia-Gomez A, Ballestar E. miRNAs as therapeutic targets in inflammatory disease. Trends Pharmacol Sci 2019; 40(11): 853-65.
[http://dx.doi.org/10.1016/j.tips.2019.09.007] [PMID: 31662207]
[81]
Li T-R, Jia Y-J, Wang Q, Shao X-Q, Zhang P, Lv R-J. Correlation between tumor necrosis factor alpha mRNA and microRNA-155 expression in rat models and patients with temporal lobe epilepsy. Brain Res 2018; 1700: 56-65.
[http://dx.doi.org/10.1016/j.brainres.2018.07.013] [PMID: 30006293]
[82]
Tili E, Michaille J-J, Cimino A, et al. Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-α stimulation and their possible roles in regulating the response to endotoxin shock. J Immunol 2007; 179(8): 5082-9.
[http://dx.doi.org/10.4049/jimmunol.179.8.5082] [PMID: 17911593]
[83]
Maroso M, Balosso S, Ravizza T, Liu J, Bianchi ME, Vezzani A. Interleukin-1 type 1 receptor/Toll-like receptor signalling in epilepsy: The importance of IL-1beta and high-mobility group box 1. J Intern Med 2011; 270(4): 319-26.
[http://dx.doi.org/10.1111/j.1365-2796.2011.02431.x] [PMID: 21793950]
[84]
Ashhab MU, Omran A, Kong H, et al. Expressions of tumor necrosis factor alpha and microRNA-155 in immature rat model of status epilepticus and children with mesial temporal lobe epilepsy. J Mol Neurosci 2013; 51(3): 950-8.
[http://dx.doi.org/10.1007/s12031-013-0013-9] [PMID: 23636891]
[85]
Tana C, Giamberardino MA, Cipollone F. microRNA profiling in atherosclerosis, diabetes, and migraine. Ann Med 2017; 49(2): 93-105.
[http://dx.doi.org/10.1080/07853890.2016.1226515] [PMID: 27560467]
[86]
Ivens S, Kaufer D, Flores LP, et al. TGF-β receptor-mediated albumin uptake into astrocytes is involved in neocortical epileptogenesis. Brain 2007; 130(Pt 2): 535-47.
[http://dx.doi.org/10.1093/brain/awl317] [PMID: 17121744]
[87]
Zimmerman G, Njunting M, Ivens S, et al. Acetylcholine-induced seizure-like activity and modified cholinergic gene expression in chronically epileptic rats. Eur J Neurosci 2008; 27(4): 965-75.
[http://dx.doi.org/10.1111/j.1460-9568.2008.06070.x] [PMID: 18333967]
[88]
Cacheaux LP, Ivens S, David Y, et al. Transcriptome profiling reveals TGF-β signaling involvement in epileptogenesis. J Neurosci 2009; 29(28): 8927-35.
[http://dx.doi.org/10.1523/JNEUROSCI.0430-09.2009] [PMID: 19605630]
[89]
Shang J, Sun S, Zhang L, Hao F, Zhang D. miR-211 alleviates ischaemia/reperfusion-induced kidney injury by targeting TGFβR2/TGF-β/SMAD3 pathway. Bioengineered 2020; 11(1): 547-57.
[http://dx.doi.org/10.1080/21655979.2020.1765501] [PMID: 32375588]
[90]
Ishizaki K, Takeshima T, Fukuhara Y, et al. Increased plasma transforming growth factor-β1 in migraine. Headache 2005; 45(9): 1224-8.
[http://dx.doi.org/10.1111/j.1526-4610.2005.00246.x] [PMID: 16178953]
[91]
Zhao C, Sun G, Li S, et al. MicroRNA let-7b regulates neural stem cell proliferation and differentiation by targeting nuclear receptor TLX signaling. Proc Natl Acad Sci USA 2010; 107(5): 1876-81.
[http://dx.doi.org/10.1073/pnas.0908750107] [PMID: 20133835]
[92]
Winkler CW, Taylor KG, Peterson KE. Location is everything: Let-7b microRNA and TLR7 signaling results in a painful TRP. Sci Signal 2014; 7(327): pe14-4.
[http://dx.doi.org/10.1126/scisignal.2005407] [PMID: 24866018]
[93]
Buonfiglioli A, Efe IE, Guneykaya D, et al. let-7 microRNAs regulate microglial function and suppress glioma growth through Toll-like receptor 7. Cell reports 2019; 29(11): 3460-71.
[94]
Lehmann SM, Krüger C, Park B, et al. An unconventional role for miRNA: Let-7 activates Toll-like receptor 7 and causes neurodegeneration. Nat Neurosci 2012; 15(6): 827-35.
[http://dx.doi.org/10.1038/nn.3113] [PMID: 22610069]
[95]
Vickers KC, Palmisano BT, Shoucri BM, Shamburek RD, Remaley AT. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol 2011; 13(4): 423-33.
[http://dx.doi.org/10.1038/ncb2210] [PMID: 21423178]
[96]
Singh R, Ramasubramanian B, Kanji S, Chakraborty AR, Haque SJ, Chakravarti A. Circulating microRNAs in cancer: Hope or hype? Cancer Lett 2016; 381(1): 113-21.
[http://dx.doi.org/10.1016/j.canlet.2016.07.002] [PMID: 27471105]
[97]
Pogribny IP. MicroRNAs as biomarkers for clinical studies. Exp Biol Med (Maywood) 2018; 243(3): 283-90.
[http://dx.doi.org/10.1177/1535370217731291] [PMID: 28914096]
[98]
McArdle H, Hogg MC, Bauer S, et al. Quantification of tRNA fragments by electrochemical direct detection in small volume biofluid samples. Sci Rep 2020; 10(1): 7516.
[http://dx.doi.org/10.1038/s41598-020-64485-4] [PMID: 32371908]
[99]
Prehn JHM, Jirström E. Angiogenin and tRNA fragments in Parkinson’s disease and neurodegeneration. Acta Pharmacol Sin 2020; 41(4): 442-6.
[http://dx.doi.org/10.1038/s41401-020-0375-9] [PMID: 32144338]
[100]
Wu W, Lee I, Spratt H, Fang X, Bao X. tRNA-derived fragments in Alzheimer’s disease: Implications for new disease biomarkers and neuropathological mechanisms. J Alzheimer's Disease 2021; 79(2): 793-806.
[101]
Nguyen TTM, van der Bent ML, Wermer MJH, et al. Circulating tRNA fragments as a novel biomarker class to distinguish acute stroke subtypes. Int J Mol Sci 2020; 22(1): 135.
[http://dx.doi.org/10.3390/ijms22010135] [PMID: 33374482]
[102]
Wang C, Zhao M, Wang J, Zhang D, Wang S, Zhao J. Expression analysis of transfer RNA-derived fragments in the blood of patients with moyamoya disease: A preliminary study. Mol Med Rep 2019; 19(5): 3564-74.
[http://dx.doi.org/10.3892/mmr.2019.10024] [PMID: 30896793]
[103]
Pliatsika V, Loher P, Magee R, et al. MINTbase v2.0: A comprehensive database for tRNA-derived fragments that includes nuclear and mitochondrial fragments from all The Cancer Genome Atlas projects. Nucleic Acids Res 2018; 46(D1): D152-9.
[http://dx.doi.org/10.1093/nar/gkx1075] [PMID: 29186503]
[104]
Feng Y, Yang H, Yue Y, Tian F. MicroRNAs and target genes in epileptogenesis. Epilepsia 2020; 61(10): 2086-96.
[http://dx.doi.org/10.1111/epi.16687] [PMID: 32944964]
[105]
Hanna J, Hossain GS, Kocerha J. The potential for microRNA therapeutics and clinical research. Front Genet 2019; 10: 478.
[http://dx.doi.org/10.3389/fgene.2019.00478] [PMID: 31156715]
[106]
Enright N, Simonato M, Henshall DC. Discovery and validation of blood microRNAs as molecular biomarkers of epilepsy: Ways to close current knowledge gaps. Epilepsia Open 2018; 3(4): 427-36.
[http://dx.doi.org/10.1002/epi4.12275] [PMID: 30525113]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy