Generic placeholder image

Current Reviews in Clinical and Experimental Pharmacology

Editor-in-Chief

ISSN (Print): 2772-4328
ISSN (Online): 2772-4336

Systematic Review Article

Current Trends in the Animal Models for Screening of Nootropic Agents: A Systematic Review

Author(s): Shubhima Grover and Seema Jain*

Volume 18, Issue 3, 2023

Published on: 18 July, 2022

Page: [255 - 269] Pages: 15

DOI: 10.2174/2772432817666220425121323

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Deficits in cognitive functions are observed in various diseases. The term “nootropics” refers to the compounds that increase mental functions, including memory, motivation, concentration and attention. Given the complexity and vastness of the processes involved in cognition, developing an appropriate animal model for the screening of nootropic agents still remains a daunting task.

Objectives: This review attempts to elicit the current trends in the animal models being used for screening of nootropic agents and effectively use this knowledge to improve prospects embarking on this area of research.

Methods: Electronic searches were carried out on PubMed using the keywords “nootropic agents”[MeSH Term] OR “nootropic drugs” [MeSH Term] AND “animal model” [MeSH Term] OR “animal model, experimental” [MeSH Term]. All relevant studies from 2016 to 31st August, 2021, were then reviewed to meet the stated objective.

Results: The most commonly used disease model for screening of nootropic agents was found to be the animal model of Alzheimer’s disease. Disease models of vascular dementia or stroke, depression or anxiety, schizophrenia, epilepsy or seizure, diabetes and traumatic brain injury, among others, have also been used. There exists a wide variety of behavioral tests to assess cognition.

Conclusion: Since a variety of etiologies can affect cognitive processes. Hence, a nootropic agent may be screened in a variety of disease models. The most widely used and appropriate method to assess cognition would be by combining the behavioral and biochemical assays so that a more comprehensive profile of the nootropic effects of a drug can be elicited.

Keywords: Nootropic agents, animal models, cognition, etiology, vascular dementia, Alzheimer's disease.

Graphical Abstract
[1]
Nehlig A. Is caffeine a cognitive enhancer? J Alzheimers Dis 2010; 20 (Suppl. 1): S85-94.
[http://dx.doi.org/10.3233/JAD-2010-091315] [PMID: 20182035]
[2]
Dhakal A, Bobrin BD. Cognitive Deficits. StatPearls 2020: Treasure Island, Available from: https://www.ncbi.nlm.nih.gov/books/NBK559052/
[3]
Suliman NA, Mat Taib CN, Mohd Moklas MA, et al. Establishing natural nootropics: Recent molecular enhancement influenced by natural nootropic. Evid Based Complement Alternat Med 2016; 2016: 4391375.
[http://dx.doi.org/10.1155/2016/4391375] [PMID: 27656235]
[4]
Froestl W, Muhs A, Pfeifer A. Cognitive enhancers (nootropics). Part 1: Drugs interacting with receptors. J Alzheimers Dis 2012; 32(4): 793-887.
[http://dx.doi.org/10.3233/JAD-2012-121186] [PMID: 22886028]
[5]
Froestl W, Muhs A, Pfeifer A. Cognitive enhancers (nootropics). Part 2: Drugs interacting with enzymes. J Alzheimers Dis 2013; 33(3): 547-658.
[http://dx.doi.org/10.3233/JAD-2012-121537] [PMID: 23042218]
[6]
Froestl W, Pfeifer A, Muhs A. Cognitive enhancers (nootropics). Part 3: Drugs interacting with targets other than receptors or enzymes. disease-modifying drugs. J Alzheimers Dis 2013; 34(1): 1-114.
[http://dx.doi.org/10.3233/JAD-121729] [PMID: 23186990]
[7]
Lane CA, Hardy J, Schott JM. Alzheimer’s disease. Eur J Neurol 2018; 25(1): 59-70.
[http://dx.doi.org/10.1111/ene.13439] [PMID: 28872215]
[8]
Spires TL, Hyman BT. Transgenic models of Alzheimer’s disease: Learning from animals. NeuroRx 2005; 2(3): 423-37.
[http://dx.doi.org/10.1602/neurorx.2.3.423] [PMID: 16389306]
[9]
Wang X, Yin Z, Cao P, et al. NaoXinTong Capsule ameliorates memory deficit in APP/PS1 mice by regulating inflammatory cytokines. Biomed Pharmacother 2021; 133: 110964.
[http://dx.doi.org/10.1016/j.biopha.2020.110964] [PMID: 33197761]
[10]
Wang ZJ, Zhao F, Wang CF, et al. Xestospongin C, a reversible IP3 receptor antagonist, alleviates the cognitive and pathological impairments in APP/PS1 mice of Alzheimer’s disease. J Alzheimers Dis 2019; 72(4): 1217-31.
[http://dx.doi.org/10.3233/JAD-190796] [PMID: 31683484]
[11]
Feng H, Wang C, He W, et al. Roflumilast ameliorates cognitive impairment in APP/PS1 mice via cAMP/CREB/BDNF signaling and anti-neuroinflammatory effects. Metab Brain Dis 2019; 34(2): 583-91.
[http://dx.doi.org/10.1007/s11011-018-0374-4] [PMID: 30610438]
[12]
Guo C, Yang ZH, Zhang S, et al. Intranasal lactoferrin enhances α-secretase-dependent amyloid precursor protein processing via the ERK1/2-CREB and HIF-1α pathways in an Alzheimer’s Disease Mouse Model. Neuropsychopharmacology 2017; 42(13): 2504-15.
[http://dx.doi.org/10.1038/npp.2017.8] [PMID: 28079060]
[13]
Zhao C, Zhang H, Li H, et al. Geniposide ameliorates cognitive deficits by attenuating the cholinergic defect and amyloidosis in middle-aged Alzheimer model mice. Neuropharmacology 2017; 116: 18-29.
[http://dx.doi.org/10.1016/j.neuropharm.2016.12.002] [PMID: 27940040]
[14]
Li X, Cui J, Yu Y, et al. Traditional chinese nootropic medicine radix polygalae and its active constituent onjisaponin B reduce β-amyloid production and improve cognitive impairments. PLoS One 2016; 11(3): e0151147.
[http://dx.doi.org/10.1371/journal.pone.0151147] [PMID: 26954017]
[15]
Wang T, Xie XX, Ji M, et al. Naturally occurring autoantibodies against Aβ oligomers exhibited more beneficial effects in the treatment of mouse model of Alzheimer’s disease than intravenous immunoglobulin. Neuropharmacology 2016; 105: 561-76.
[http://dx.doi.org/10.1016/j.neuropharm.2016.02.015] [PMID: 26907803]
[16]
Corpas R, Griñán-Ferré C, Rodríguez-Farré E, Pallàs M, Sanfeliu C. Resveratrol induces brain resilience against Alzheimer neurodegeneration through proteostasis enhancement. Mol Neurobiol 2019; 56(2): 1502-16.
[http://dx.doi.org/10.1007/s12035-018-1157-y] [PMID: 29948950]
[17]
Zang G, Fang L, Chen L, Wang C. Ameliorative effect of nicergoline on cognitive function through the PI3K/AKT signaling pathway in mouse models of Alzheimer’s disease. Mol Med Rep 2018; 17(5): 7293-300.
[http://dx.doi.org/10.3892/mmr.2018.8786] [PMID: 29568940]
[18]
Li T, Jiao JJ, Hölscher C, et al. A novel GLP-1/GIP/Gcg triagonist reduces cognitive deficits and pathology in the 3xTg mouse model of Alzheimer’s disease. Hippocampus 2018; 28(5): 358-72.
[http://dx.doi.org/10.1002/hipo.22837] [PMID: 29473979]
[19]
Li Z, Jia K, Duan Y, Wang D, Zhou Z, Dong S. Xanomeline derivative EUK1001 attenuates Alzheimer’s disease pathology in a triple transgenic mouse model. Mol Med Rep 2017; 16(5): 7835-40.
[http://dx.doi.org/10.3892/mmr.2017.7502] [PMID: 28944835]
[20]
Dal-Pan A, Dudonné S, Bourassa P, et al. Neurophenols consortium. Cognitive-enhancing effects of a polyphenols-rich extract from fruits without changes in neuropathology in an animal model of Alzheimer’s disease. J Alzheimers Dis 2017; 55(1): 115-35.
[http://dx.doi.org/10.3233/JAD-160281] [PMID: 27662290]
[21]
Corpas R, Revilla S, Ursulet S, et al. SIRT1 overexpression in mouse hippocampus induces cognitive enhancement through proteostatic and neurotrophic mechanisms. Mol Neurobiol 2017; 54(7): 5604-19.
[http://dx.doi.org/10.1007/s12035-016-0087-9] [PMID: 27614878]
[22]
Roy DS, Arons A, Mitchell TI, Pignatelli M, Ryan TJ, Tonegawa S. Memory retrieval by activating engram cells in mouse models of early Alzheimer’s disease. Nature 2016; 531(7595): 508-12.
[http://dx.doi.org/10.1038/nature17172] [PMID: 26982728]
[23]
Oddo S, Caccamo A, Shepherd JD, et al. Triple-transgenic model of Alzheimer’s disease with plaques and tangles: Intracellular Abeta and synaptic dysfunction. Neuron 2003; 39(3): 409-21.
[http://dx.doi.org/10.1016/S0896-6273(03)00434-3] [PMID: 12895417]
[24]
Petrov AM, Lam M, Mast N, et al. CYP46A1 activation by efavirenz leads to behavioral improvement without significant changes in amyloid plaque load in the brain of 5XFAD mice. Neurotherapeutics 2019; 16(3): 710-24.
[http://dx.doi.org/10.1007/s13311-019-00737-0] [PMID: 31062296]
[25]
Gourmaud S, Thomas P, Thomasseau S, et al. Brimapitide reduced neuronal stress markers and cognitive deficits in 5XFAD transgenic mice. J Alzheimers Dis 2018; 63(2): 665-74.
[http://dx.doi.org/10.3233/JAD-171099] [PMID: 29660941]
[26]
Pagnier GJ, Kastanenka KV, Sohn M, et al. Novel botanical drug DA-9803 prevents deficits in Alzheimer’s mouse models. Alzheimers Res Ther 2018; 10(1): 11.
[http://dx.doi.org/10.1186/s13195-018-0338-2] [PMID: 29378621]
[27]
Facchinetti R, Bronzuoli MR, Scuderi C. An animal model of Alzheimer disease based on the intrahippocampal injection of amyloid β-peptide (1–42). Methods Mol Biol 2018; 1727: 343-52.
[http://dx.doi.org/10.1007/978-1-4939-7571-6_25] [PMID: 29222793]
[28]
Zhang M, Chen W, Zong Y, et al. Cognitive-enhancing effects of fibrauretine on Aβ1-42-induced Alzheimer’s disease by compatibilization with ginsenosides. Neuropeptides 2020; 82: 102020.
[http://dx.doi.org/10.1016/j.npep.2020.102020] [PMID: 31982159]
[29]
Zheng H, Niu S, Zhao H, Li S, Jiao J. Donepezil improves the cognitive impairment in a tree shrew model of Alzheimer’s disease induced by amyloid-β1-40 via activating the BDNF/TrkB signal pathway. Metab Brain Dis 2018; 33(6): 1961-74.
[http://dx.doi.org/10.1007/s11011-018-0303-6] [PMID: 30105614]
[30]
Naldi M, Fiori J, Pistolozzi M, et al. Amyloid β-peptide 25-35 self-assembly and its inhibition: A model undecapeptide system to gain atomistic and secondary structure details of the Alzheimer’s disease process and treatment. ACS Chem Neurosci 2012; 3(11): 952-62.
[http://dx.doi.org/10.1021/cn3000982] [PMID: 23173074]
[31]
Hooshmandi E, Motamedi F, Moosavi M, et al. CEPO-Fc (an EPO derivative) protects hippocampus against Aβ-induced memory deterioration: A behavioral and molecular study in a rat model of Aβ toxicity. Neuroscience 2018; 388: 405-17.
[http://dx.doi.org/10.1016/j.neuroscience.2018.08.001] [PMID: 30102955]
[32]
Rhea EM, Nirkhe S, Nguyen S, et al. Molecular mechanisms of intranasal insulin in SAMP8 mice. J Alzheimers Dis 2019; 71(4): 1361-73.
[http://dx.doi.org/10.3233/JAD-190707] [PMID: 31561374]
[33]
Du Z, Fanshi F, Lai YH, et al. Mechanism of anti-dementia effects of mangiferin in a senescence accelerated mouse (SAMP8) model. Biosci Rep 2019; 39(9): BSR20190488.
[http://dx.doi.org/10.1042/BSR20190488] [PMID: 31484797]
[34]
Gao L, Li J, Zhou Y, Huang X, Qin X, Du G. Effects of baicalein on cortical proinflammatory cytokines and the intestinal microbiome in senescence accelerated mouse prone 8. ACS Chem Neurosci 2018; 9(7): 1714-24.
[http://dx.doi.org/10.1021/acschemneuro.8b00074] [PMID: 29668250]
[35]
Guo Y, Zhao Y, Nan Y, Wang X, Chen Y, Wang S. (-)-Epigallocatechin-3-gallate ameliorates memory impairment and rescues the abnormal synaptic protein levels in the frontal cortex and hippocampus in a mouse model of Alzheimer’s disease. Neuroreport 2017; 28(10): 590-7.
[http://dx.doi.org/10.1097/WNR.0000000000000803] [PMID: 28520620]
[36]
Wang J, Liu Y, Cheng X, et al. The effects of LW-AFC on the hippocampal transcriptome in senescence-accelerated mouse prone 8 strain, a mouse model of Alzheimer’s disease. J Alzheimers Dis 2017; 57(1): 227-40.
[http://dx.doi.org/10.3233/JAD-161079] [PMID: 28222521]
[37]
Yanai S, Toyohara J, Ishiwata K, Ito H, Endo S. Long-term cilostazol administration ameliorates memory decline in Senescence-Accelerated Mouse Prone 8 (SAMP8) through a dual effect on cAMP and blood-brain barrier. Neuropharmacology 2017; 116: 247-59.
[http://dx.doi.org/10.1016/j.neuropharm.2016.12.006] [PMID: 27979612]
[38]
Liu B, Liu J, Shi JS. SAMP8 mice as a model of age-related cognition decline with underlying mechanisms in Alzheimer’s disease. J Alzheimers Dis 2020; 75(2): 385-95.
[http://dx.doi.org/10.3233/JAD-200063] [PMID: 32310176]
[39]
Mahdi O, Baharuldin MTH, Nor NHM, Chiroma SM, Jagadeesan S, Moklas MAM. Chemicals used for the induction of Alzheimer’s disease-like cognitive dysfunctions in rodents 2019; 6(11): 3460-84. Available from: http://www.bmrat.org/index.php/BMRAT/article/view/575
[http://dx.doi.org/10.15419/bmrat.v6i11.575]
[40]
Malekzadeh S, Edalatmanesh MA, Mehrabani D, Shariati M. Drugs induced Alzheimer’s disease in animal model. Galen Med J 2017; 6(3): 185-96.
[41]
Flood JF, Cherkin A. Scopolamine effects on memory retention in mice: A model of dementia? Behav Neural Biol 1986; 45(2): 169-84.
[http://dx.doi.org/10.1016/S0163-1047(86)90750-8] [PMID: 3964171]
[42]
Weon JB, Lee J, Eom MR, Jung YS, Ma CJ. Cognitive enhancing effect of the fermented Gumiganghwal-tang on scopolamine-induced memory impairment in mice. Nutr Neurosci 2016; 19(3): 125-30.
[http://dx.doi.org/10.1179/1476830514Y.0000000152] [PMID: 25216329]
[43]
Wong-Guerra M, Jiménez-Martin J, Fonseca-Fonseca LA, et al. JM-20 protects memory acquisition and consolidation on scopolamine model of cognitive impairment. Neurol Res 2019; 41(5): 385-98.
[http://dx.doi.org/10.1080/01616412.2019.1573285] [PMID: 30821663]
[44]
Pattanashetti LA, Taranalli AD, Parvatrao V, Malabade RH, Kumar D. Evaluation of neuroprotective effect of quercetin with donepezil in scopolamine-induced amnesia in rats. Indian J Pharmacol 2017; 49(1): 60-4.
[PMID: 28458424]
[45]
Lange-Asschenfeldt C, Schäble S, Suvorava T, et al. Effects of varenicline on alpha4-containing nicotinic acetylcholine receptor expression and cognitive performance in mice. Neuropharmacology 2016; 107: 100-10.
[http://dx.doi.org/10.1016/j.neuropharm.2016.03.025] [PMID: 27012889]
[46]
Nazifi M, Oryan S, Esfahani DE, Ashrafpoor M. The functional effects of piperine and piperine plus donepezil on hippocampal synaptic plasticity impairment in rat model of Alzheimer’s disease. Life Sci 2021; 265: 118802.
[http://dx.doi.org/10.1016/j.lfs.2020.118802] [PMID: 33242524]
[47]
Kumar M, Bansal N. Fasudil hydrochloride ameliorates memory deficits in rat model of streptozotocin-induced Alzheimer’s disease: Involvement of PI3-kinase, eNOS and NFκB. Behav Brain Res 2018; 351: 4-16.
[http://dx.doi.org/10.1016/j.bbr.2018.05.024] [PMID: 29807069]
[48]
Guo XD, Sun GL, Zhou TT, et al. LX2343 alleviates cognitive impairments in AD model rats by inhibiting oxidative stress-induced neuronal apoptosis and tauopathy. Acta Pharmacol Sin 2017; 38(8): 1104-19.
[http://dx.doi.org/10.1038/aps.2016.128] [PMID: 28649128]
[49]
Li L, Qin L, Lu HL, Li PJ, Song YJ, Yang RL. Methylene blue improves streptozotocin-induced memory deficit by restoring mitochondrial function in rats. Brain Res 2017; 1657: 208-14.
[http://dx.doi.org/10.1016/j.brainres.2016.12.024] [PMID: 28034723]
[50]
Xu W, Liu X, He X, et al. Bajitianwan attenuates D-galactose-induced memory impairment and bone loss through suppression of oxidative stress in aging rat model. J Ethnopharmacol 2020; 261: 112992.
[http://dx.doi.org/10.1016/j.jep.2020.112992] [PMID: 32590113]
[51]
Mohamed EA, Ahmed HI, Zaky HS, Badr AM. Sesame oil mitigates memory impairment, oxidative stress, and neurodegeneration in a rat model of Alzheimer’s disease. A pivotal role of NF-κB/p38MAPK/BDNF/PPAR-γ pathways. J Ethnopharmacol 2021; 267: 113468.
[http://dx.doi.org/10.1016/j.jep.2020.113468] [PMID: 33049345]
[52]
Wang Y, Wang M, Fan K, et al. Protective effects of Alpinae Oxyphyllae Fructus extracts on lipopolysaccharide-induced animal model of Alzheimer’s disease. J Ethnopharmacol 2018; 217: 98-106.
[http://dx.doi.org/10.1016/j.jep.2018.02.015] [PMID: 29447949]
[53]
Yuliani S, Mustofa , Partadiredja G. Turmeric (Curcuma longa L.) extract may prevent the deterioration of spatial memory and the deficit of estimated total number of hippocampal pyramidal cells of trimethyltin-exposed rats. Drug Chem Toxicol 2018; 41(1): 62-71.
[http://dx.doi.org/10.1080/01480545.2017.1293087] [PMID: 28440093]
[54]
Ghasemi S, Hosseini M, Feizpour A, et al. Beneficial effects of garlic on learning and memory deficits and brain tissue damages induced by lead exposure during juvenile rat growth is comparable to the effect of ascorbic acid. Drug Chem Toxicol 2017; 40(2): 206-14.
[http://dx.doi.org/10.1080/01480545.2016.1197238] [PMID: 27387089]
[55]
Pak ME, Kim YR, Kim HN, et al. Studies on medicinal herbs for cognitive enhancement based on the text mining of Dongeuibogam and preliminary evaluation of its effects. J Ethnopharmacol 2016; 179: 383-90.
[http://dx.doi.org/10.1016/j.jep.2016.01.006] [PMID: 26773844]
[56]
Khan N, Saad A, Nurulain SM, Darras FH, Decker M, Sadek B. The dual-acting H3 receptor antagonist and AChE inhibitor UW-MD-71 dose-dependently enhances memory retrieval and reverses dizocilpine-induced memory impairment in rats. Behav Brain Res 2016; 297: 155-64.
[http://dx.doi.org/10.1016/j.bbr.2015.10.022] [PMID: 26467607]
[57]
Smith EE. Clinical presentations and epidemiology of vascular dementia. Clin Sci (Lond) 2017; 131(11): 1059-68.
[http://dx.doi.org/10.1042/CS20160607] [PMID: 28515342]
[58]
Zaghi GG, Godinho J, Ferreira ED, et al. Robust and enduring atorvastatin-mediated memory recovery following the 4-vessel occlusion/internal carotid artery model of chronic cerebral hypoperfusion in middle-aged rats. Prog Neuropsychopharmacol Biol Psychiatry 2016; 65: 179-87.
[http://dx.doi.org/10.1016/j.pnpbp.2015.10.004] [PMID: 26485403]
[59]
Xing M, Sun Q, Wang Y, Cheng Y, Zhang N. Hydroxysafflor yellow A increases BDNF and NMDARs in the hippocampus in a vascular dementia rat model. Brain Res 2016; 1642: 419-25.
[http://dx.doi.org/10.1016/j.brainres.2016.04.030] [PMID: 27086971]
[60]
Luo C, Fan LH, Zhang H, et al. Effects of Ginkgo biloba extract on the cognitive function and expression profile of inflammatory factors in a rat model of hemorrhagic stroke. Neuroreport 2018; 29(15): 1239-43.
[http://dx.doi.org/10.1097/WNR.0000000000001072] [PMID: 30096131]
[61]
Millan MJ, Agid Y, Brüne M, et al. Cognitive dysfunction in psychiatric disorders: Characteristics, causes and the quest for improved therapy. Nat Rev Drug Discov 2012; 11(2): 141-68.
[http://dx.doi.org/10.1038/nrd3628] [PMID: 22293568]
[62]
Willner P. The Chronic Mild Stress (CMS) model of depression: History, evaluation and usage. Neurobiol Stress 2016; 6: 78-93.
[http://dx.doi.org/10.1016/j.ynstr.2016.08.002] [PMID: 28229111]
[63]
Papp M, Gruca P, Lason-Tyburkiewicz M, Willner P. Antidepressant, anxiolytic and procognitive effects of rivastigmine and donepezil in the chronic mild stress model in rats. Psychopharmacology (Berl) 2016; 233(7): 1235-43.
[http://dx.doi.org/10.1007/s00213-016-4206-0] [PMID: 26769042]
[64]
Papp M, Gruca P, Lason-Tyburkiewicz M, Willner P. Antidepressant, anxiolytic and procognitive effects of subacute and chronic ketamine in the chronic mild stress model of depression. Behav Pharmacol 2017; 28(1): 1-8.
[http://dx.doi.org/10.1097/FBP.0000000000000259] [PMID: 27759570]
[65]
Yan T, He B, Wan S, et al. Antidepressant-like effects and cognitive enhancement of Schisandra chinensis in chronic unpredictable mild stress mice and its related mechanism. Sci Rep 2017; 7(1): 6903.
[http://dx.doi.org/10.1038/s41598-017-07407-1] [PMID: 28761074]
[66]
Shen J, Xu L, Qu C, Sun H, Zhang J. Resveratrol prevents cognitive deficits induced by chronic unpredictable mild stress: Sirt1/miR-134 signalling pathway regulates CREB/BDNF expression in hippocampus in vivo and in vitro. Behav Brain Res 2018; 349: 1-7.
[http://dx.doi.org/10.1016/j.bbr.2018.04.050] [PMID: 29715537]
[67]
Yan L, Xu X, He Z, et al. Antidepressant-like effects and cognitive enhancement of coadministration of chaihu shugan san and fluoxetine: Dependent on the BDNF-ERK-CREB signaling pathway in the hippocampus and frontal cortex. BioMed Res Int 2020; 2020: 2794263.
[http://dx.doi.org/10.1155/2020/2794263] [PMID: 32185198]
[68]
Eom TM, Kwon HH, Shin N, et al. Traditional Korean herbal formulae, Yuk-Mi-Ji-Hwang-Tang, ameliorates impairment of hippocampal memory ability by chronic restraint stress of mouse model. J Ethnopharmacol 2020; 260: 113102.
[http://dx.doi.org/10.1016/j.jep.2020.113102] [PMID: 32544420]
[69]
Miyauchi M, Neugebauer NM, Oyamada Y, Meltzer HY. Nicotinic receptors and lurasidone-mediated reversal of phencyclidine-induced deficit in novel object recognition. Behav Brain Res 2016; 301: 204-12.
[http://dx.doi.org/10.1016/j.bbr.2015.10.044] [PMID: 26519556]
[70]
Neill JC, Grayson B, Kiss B, Gyertyán I, Ferguson P, Adham N. Effects of cariprazine, a novel antipsychotic, on cognitive deficit and negative symptoms in a rodent model of schizophrenia symptomatology. Eur Neuropsychopharmacol 2016; 26(1): 3-14.
[http://dx.doi.org/10.1016/j.euroneuro.2015.11.016] [PMID: 26655189]
[71]
Piyabhan P, Wetchateng T. Bacopa monnieri (Brahmi) enhanced cognitive function and prevented cognitive impairment by increasing VGLUT2 immunodensity in prefrontal cortex of sub-chronic phencyclidine rat model of schizophrenia. J Med Assoc Thai 2015; 98 (Suppl. 3): S7-S15.
[PMID: 26387382]
[72]
Li YX, Ye ZH, Chen T, Jia XF, He L. The effects of donepezil on phencyclidine-induced cognitive deficits in a mouse model of schizophrenia. Pharmacol Biochem Behav 2018; 175: 69-76.
[http://dx.doi.org/10.1016/j.pbb.2018.09.006] [PMID: 30218672]
[73]
Holmes GL. Cognitive impairment in epilepsy: The role of network abnormalities. Epileptic Disord 2015; 17(2): 101-16.
[http://dx.doi.org/10.1684/epd.2015.0739] [PMID: 25905906]
[74]
Hashemian M, Anissian D, Ghasemi-Kasman M, et al. Curcumin-loaded chitosan-alginate-STPP nanoparticles ameliorate memory deficits and reduce glial activation in pentylenetetrazol-induced kindling model of epilepsy. Prog Neuropsychopharmacol Biol Psychiatry 2017; 79(Pt B): 462-71.
[http://dx.doi.org/10.1016/j.pnpbp.2017.07.025] [PMID: 28778407]
[75]
Abdel-Wahab AF, Afify MA, Mahfouz AM, Shahzad N, Bamagous GA, Al Ghamdi SS. Vitamin D enhances antiepileptic and cognitive effects of lamotrigine in pentylenetetrazole-kindled rats. Brain Res 2017; 1673: 78-85.
[http://dx.doi.org/10.1016/j.brainres.2017.08.011] [PMID: 28818511]
[76]
Mishra P, Mittal AK, Rajput SK, Sinha JK. Cognition and memory impairment attenuation via reduction of oxidative stress in acute and chronic mice models of epilepsy using antiepileptogenic Nux vomica. J Ethnopharmacol 2021; 267: 113509.
[http://dx.doi.org/10.1016/j.jep.2020.113509] [PMID: 33141053]
[77]
Shimada T, Yamagata K. Pentylenetetrazole-induced kindling mouse model. J Vis Exp 2018; (136): e56573.
[PMID: 29985308]
[78]
Li T, Zhai X, Jiang J, et al. Intraperitoneal injection of IL-4/IFN-γ modulates the proportions of microglial phenotypes and improves epilepsy outcomes in a pilocarpine model of acquired epilepsy. Brain Res 2017; 1657: 120-9.
[http://dx.doi.org/10.1016/j.brainres.2016.12.006] [PMID: 27956120]
[79]
Jeong JH, Choi BY, Kho AR, et al. Diverse effects of an Acetylcholinesterase inhibitor, donepezil, on hippocampal neuronal death after Pilocarpine-induced seizure. Int J Mol Sci 2017; 18(11): 2311.
[http://dx.doi.org/10.3390/ijms18112311] [PMID: 29099058]
[80]
Zilliox LA, Chadrasekaran K, Kwan JY, Russell JW. Diabetes and cognitive impairment. Curr Diab Rep 2016; 16(9): 87.
[http://dx.doi.org/10.1007/s11892-016-0775-x] [PMID: 27491830]
[81]
Thakur AK, Rai G, Chatterjee SS, Kumar V. Beneficial effects of an Andrographis paniculata extract and andrographolide on cognitive functions in streptozotocin-induced diabetic rats. Pharm Biol 2016; 54(9): 1528-38.
[http://dx.doi.org/10.3109/13880209.2015.1107107] [PMID: 26810454]
[82]
Li PC, Liu LF, Jou MJ, Wang HK. The GLP-1 receptor agonists exendin-4 and liraglutide alleviate oxidative stress and cognitive and micturition deficits induced by middle cerebral artery occlusion in diabetic mice. BMC Neurosci 2016; 17(1): 37.
[http://dx.doi.org/10.1186/s12868-016-0272-9] [PMID: 27296974]
[83]
Zhang S, Li H, Zhang L, Li J, Wang R, Wang M. Effects of troxerutin on cognitive deficits and glutamate cysteine ligase subunits in the hippocampus of streptozotocin-induced type 1 diabetes mellitus rats. Brain Res 2017; 1657: 355-60.
[http://dx.doi.org/10.1016/j.brainres.2016.12.009] [PMID: 27998794]
[84]
Kong FJ, Wu JH, Sun SY, Ma LL, Zhou JQ. Liraglutide ameliorates cognitive decline by promoting autophagy via the AMP-activated protein kinase/mammalian target of rapamycin pathway in a streptozotocin-induced mouse model of diabetes. Neuropharmacology 2018; 131: 316-25.
[http://dx.doi.org/10.1016/j.neuropharm.2018.01.001] [PMID: 29305122]
[85]
Can ÖD, Üçel UI, Demir Özkay Ü, Ulupınar E. The effect of agomelatine treatment on diabetes-induced cognitive impairments in rats: Concomitant alterations in the hippocampal neuron numbers. Int J Mol Sci 2018; 19(8): 2461.
[http://dx.doi.org/10.3390/ijms19082461] [PMID: 30127276]
[86]
Furman BL. Streptozotocin‐induced diabetic models in mice and rats. Curr Protocols Pharmacol 2015; 70(1): 47.1-47.20.
[http://dx.doi.org/10.1002/0471141755.ph0547s70] [PMID: 26331889]
[87]
Menon DK, Schwab K, Wright DW, Maas AI. Position statement: Definition of traumatic brain injury. Arch Phys Med Rehabil 2010; 91(11): 1637-40.
[http://dx.doi.org/10.1016/j.apmr.2010.05.017] [PMID: 21044706]
[88]
Xiong Y, Mahmood A, Chopp M. Animal models of traumatic brain injury. Nat Rev Neurosci 2013; 14(2): 128-42.
[http://dx.doi.org/10.1038/nrn3407] [PMID: 23329160]
[89]
Cristofori I, Levin HS. Traumatic brain injury and cognition. Handb Clin Neurol 2015; 128: 579-611.
[http://dx.doi.org/10.1016/B978-0-444-63521-1.00037-6] [PMID: 25701909]
[90]
Bondi CO, Yelleswarapu NK, Day-Cooney J, et al. Systemic administration of donepezil attenuates the efficacy of environmental enrichment on neurobehavioral outcome after experimental traumatic brain injury. Restor Neurol Neurosci 2018; 36(1): 45-57.
[http://dx.doi.org/10.3233/RNN-170781] [PMID: 29439368]
[91]
de la Tremblaye PB, Wellcome JL, de Witt BW, et al. Rehabilitative success after brain trauma by augmenting a subtherapeutic dose of environmental enrichment with galantamine. Neurorehabil Neural Repair 2017; 31(10-11): 977-85.
[http://dx.doi.org/10.1177/1545968317739999] [PMID: 29130805]
[92]
Karimi SA, Hosseinmardi N, Janahmadi M, Sayyah M, Hajisoltani R. The protective effect of Hydrogen Sulfide (H2S) on Traumatic Brain Injury (TBI) induced memory deficits in rats. Brain Res Bull 2017; 134: 177-82.
[http://dx.doi.org/10.1016/j.brainresbull.2017.07.014] [PMID: 28739248]
[93]
Sen T, Sen N. Treatment with an activator of hypoxia-inducible factor 1, DMOG provides neuroprotection after traumatic brain injury. Neuropharmacology 2016; 107: 79-88.
[http://dx.doi.org/10.1016/j.neuropharm.2016.03.009] [PMID: 26970014]
[94]
Hao J, Chen Y, Yao E, Liu X. Soluble epoxide hydrolase inhibition alleviated cognitive impairments via NRG1/ErbB4 signaling after chronic cerebral hypoperfusion induced by bilateral carotid artery stenosis in mice. Brain Res 2018; 1699: 89-99.
[http://dx.doi.org/10.1016/j.brainres.2018.07.002] [PMID: 30343686]
[95]
Zhu G, Yang S, Xie Z, Wan X. Synaptic modification by L-theanine, a natural constituent in green tea, rescues the impairment of hippocampal long-term potentiation and memory in AD mice. Neuropharmacology 2018; 138: 331-40.
[http://dx.doi.org/10.1016/j.neuropharm.2018.06.030] [PMID: 29944861]
[96]
Morris R. Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 1984; 11(1): 47-60.
[http://dx.doi.org/10.1016/0165-0270(84)90007-4] [PMID: 6471907]
[97]
Vorhees CV, Williams MT. Morris water maze: Procedures for assessing spatial and related forms of learning and memory. Nat Protoc 2006; 1(2): 848-58.
[http://dx.doi.org/10.1038/nprot.2006.116] [PMID: 17406317]
[98]
Kraeuter AK, Guest PC, Sarnyai Z. The Y-maze for assessment of spatial working and reference memory in mice. Methods Mol Biol 2019; 1916: 105-11.
[http://dx.doi.org/10.1007/978-1-4939-8994-2_10] [PMID: 30535688]
[99]
Vorhees CV, Williams MT. Assessing spatial learning and memory in rodents. ILAR J 2014; 55(2): 310-32.
[http://dx.doi.org/10.1093/ilar/ilu013] [PMID: 25225309]
[100]
Jürgenson M, Aonurm-Helm A, Zharkovsky A. Behavioral profile of mice with impaired cognition in the elevated plus-maze due to a deficiency in neural cell adhesion molecule. Pharmacol Biochem Behav 2010; 96(4): 461-8.
[http://dx.doi.org/10.1016/j.pbb.2010.07.006] [PMID: 20624419]
[101]
Olton DS. Shock-motivated avoidance and the analysis of behavior. Psychol Bull 1973; 79(4): 243-51.
[http://dx.doi.org/10.1037/h0033902] [PMID: 4633560]
[102]
Eagle AL, Wang H, Robison AJ. Sensitive assessment of hippocampal learning using temporally dissociated passive avoidance task. Bio Protoc 2016; 6(11): e1821.
[http://dx.doi.org/10.21769/BioProtoc.1821] [PMID: 29119127]
[103]
Kameyama T, Nabeshima T, Kozawa T. Step-down-type passive avoidance- and escape-learning method. Suitability for experimental amnesia models. J Pharmacol Methods 1986; 16(1): 39-52.
[http://dx.doi.org/10.1016/0160-5402(86)90027-6] [PMID: 3747545]
[104]
Diehl MM, Bravo-Rivera C, Quirk GJ. The study of active avoidance: A platform for discussion. Neurosci Biobehav Rev 2019; 107: 229-37.
[http://dx.doi.org/10.1016/j.neubiorev.2019.09.010] [PMID: 31509767]
[105]
Denninger JK, Smith BM, Kirby ED. Novel object recognition and object location behavioral testing in mice on a budget. J Vis Exp 2018; (141):
[106]
Curzon P, Rustay NR, Browman KE. Cued and Contextual Fear Conditioning for Rodents Methods of Behavior Analysis in Neuroscience. (2nd ed.), Boca Raton, FL: CRC Press/Taylor & Francis 2009.
[107]
LeDoux JE, Cicchetti P, Xagoraris A, Romanski LM. The lateral amygdaloid nucleus: Sensory interface of the amygdala in fear conditioning. J Neurosci 1990; 10(4): 1062-9.
[http://dx.doi.org/10.1523/JNEUROSCI.10-04-01062.1990] [PMID: 2329367]
[108]
Lee Y, Walker D, Davis M. Lack of a temporal gradient of retrograde amnesia following NMDA-induced lesions of the basolateral amygdala assessed with the fear-potentiated startle paradigm. Behav Neurosci 1996; 110(4): 836-9.
[http://dx.doi.org/10.1037/0735-7044.110.4.836] [PMID: 8864274]
[109]
Maren S, Aharonov G, Fanselow MS. Retrograde abolition of conditional fear after excitotoxic lesions in the basolateral amygdala of rats: Absence of a temporal gradient. Behav Neurosci 1996; 110(4): 718-26.
[http://dx.doi.org/10.1037/0735-7044.110.4.718] [PMID: 8864263]
[110]
Kim JJ, Clark RE, Thompson RF. Hippocampectomy impairs the memory of recently, but not remotely, acquired trace eyeblink conditioned responses. Behav Neurosci 1995; 109(2): 195-203.
[http://dx.doi.org/10.1037/0735-7044.109.2.195] [PMID: 7619310]
[111]
McGlinchey-Berroth R, Carrillo MC, Gabrieli JD, Brawn CM, Disterhoft JF. Impaired trace eyeblink conditioning in bilateral, medial-temporal lobe amnesia. Behav Neurosci 1997; 111(5): 873-82.
[http://dx.doi.org/10.1037/0735-7044.111.5.873] [PMID: 9383510]
[112]
Pezze MA, Feldon J. Mesolimbic dopaminergic pathways in fear conditioning. Prog Neurobiol 2004; 74(5): 301-20.
[http://dx.doi.org/10.1016/j.pneurobio.2004.09.004] [PMID: 15582224]
[113]
Fisher A, Bezprozvanny I, Wu L, et al. AF710B, a novel M1/σ1 agonist with therapeutic efficacy in animal models of Alzheimer’s disease. Neurodegener Dis 2016; 16(1-2): 95-110.
[http://dx.doi.org/10.1159/000440864] [PMID: 26606130]
[114]
Rajesh V, Ilanthalir S. Cognition enhancing activity of sulforaphane against scopolamine induced cognitive impairment in zebra fish (Danio rerio). Neurochem Res 2016; 41(10): 2538-48.
[http://dx.doi.org/10.1007/s11064-016-1965-2] [PMID: 27255600]
[115]
Bryda EC. The mighty mouse: The impact of rodents on advances in biomedical research. Mo Med 2013; 110(3): 207-11.
[PMID: 23829104]
[116]
Zucker I, Beery AK. Males still dominate animal studies. Nature 2010; 465(7299): 690.
[http://dx.doi.org/10.1038/465690a] [PMID: 20535186]
[117]
Prendergast BJ, Onishi KG, Zucker I. Female mice liberated for inclusion in neuroscience and biomedical research. Neurosci Biobehav Rev 2014; 40: 1-5.
[http://dx.doi.org/10.1016/j.neubiorev.2014.01.001] [PMID: 24456941]
[118]
Fritz AK, Amrein I, Wolfer DP. Similar reliability and equivalent performance of female and male mice in the open field and water-maze place navigation task. Am J Med Genet C Semin Med Genet 2017; 175(3): 380-91.
[http://dx.doi.org/10.1002/ajmg.c.31565] [PMID: 28654717]
[119]
Kokras N, Dalla C. Sex differences in animal models of psychiatric disorders. Br J Pharmacol 2014; 171(20): 4595-619.
[http://dx.doi.org/10.1111/bph.12710] [PMID: 24697577]
[120]
Zeng K, Li M, Hu J, et al. Ginkgo biloba extract EGb761 attenuates Hyperhomocysteinemia induced AD like tau hyperphosphorylation and cognitive impairment in rats. Curr Alzheimer Res 2018; 15(1): 89-99.
[http://dx.doi.org/10.2174/1567205014666170829102135] [PMID: 28847282]
[121]
Liu H, Zhang Z, Zang C, et al. GJ-4 ameliorates memory impairment in focal cerebral ischemia/reperfusion of rats via inhibiting JAK2/STAT1-mediated neuroinflammation. J Ethnopharmacol 2021; 267: 113491.
[http://dx.doi.org/10.1016/j.jep.2020.113491] [PMID: 33091490]
[122]
Gao Y, Li W, Liu Y, et al. Effect of telmisartan on preventing learning and memory deficits via peroxisome proliferator-activated receptor-γ in vascular dementia spontaneously hypertensive rats. J Stroke Cerebrovasc Dis 2018; 27(2): 277-85.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2017.01.025] [PMID: 29241675]
[123]
Wang R, Yin YX, Mahmood Q, et al. Calmodulin inhibitor ameliorates cognitive dysfunction via inhibiting nitrosative stress and NLRP3 signaling in mice with bilateral carotid artery stenosis. CNS Neurosci Ther 2017; 23(10): 818-26.
[http://dx.doi.org/10.1111/cns.12726] [PMID: 28851042]
[124]
Wang D, Lin Q, Su S, Liu K, Wu Y, Hai J. URB597 improves cognitive impairment induced by chronic cerebral hypoperfusion by inhibiting mTOR-dependent autophagy. Neuroscience 2017; 344: 293-304.
[http://dx.doi.org/10.1016/j.neuroscience.2016.12.034] [PMID: 28042028]
[125]
Li C, Li M, Yu H, et al. Neuropeptide VGF C-terminal peptide TLQP-62 alleviates lipopolysaccharide-induced memory deficits and anxiety-like and depression-like behaviors in mice: The role of BDNF/TrkB signaling. ACS Chem Neurosci 2017; 8(9): 2005-18.
[http://dx.doi.org/10.1021/acschemneuro.7b00154] [PMID: 28594546]
[126]
Pekala K, Michalak A, Kruk-Slomka M, Budzynska B, Biala G. Impacts of cannabinoid receptor ligands on nicotine- and chronic mild stress-induced cognitive and depression-like effects in mice. Behav Brain Res 2018; 347: 167-74.
[http://dx.doi.org/10.1016/j.bbr.2018.03.019] [PMID: 29551733]
[127]
Xu P, Wang KZ, Lu C, et al. Antidepressant-like effects and cognitive enhancement of the total phenols extract of Hemerocallis citrina Baroni in chronic unpredictable mild stress rats and its related mechanism. J Ethnopharmacol 2016; 194: 819-26.
[http://dx.doi.org/10.1016/j.jep.2016.09.023] [PMID: 27623554]
[128]
Grannan MD, Mielnik CA, Moran SP, et al. Prefrontal cortex-mediated impairments in a genetic model of NMDA receptor hypofunction are reversed by the novel M1 PAM VU6004256. ACS Chem Neurosci 2016; 7(12): 1706-16.
[http://dx.doi.org/10.1021/acschemneuro.6b00230] [PMID: 27617634]
[129]
Nishiyama K, Suzuki H, Harasawa T, et al. FTBMT, a novel and selective GPR52 agonist, demonstrates antipsychotic-like and procognitive effects in rodents, revealing a potential therapeutic agent for schizophrenia. J Pharmacol Exp Ther 2017; 363(2): 253-64.
[http://dx.doi.org/10.1124/jpet.117.242925] [PMID: 28851764]
[130]
Zhou X, Wang S, Ding X, et al. Zeaxanthin improves diabetes-induced cognitive deficit in rats through activiting PI3K/AKT signaling pathway. Brain Res Bull 2017; 132: 190-8.
[http://dx.doi.org/10.1016/j.brainresbull.2017.06.001] [PMID: 28599877]
[131]
Ji X, Peng D, Zhang Y, et al. Astaxanthin improves cognitive performance in mice following mild traumatic brain injury. Brain Res 2017; 1659: 88-95.
[http://dx.doi.org/10.1016/j.brainres.2016.12.031] [PMID: 28048972]
[132]
Browning M, Shear DA, Bramlett HM, et al. Levetiracetam treatment in traumatic brain injury: Operation brain trauma therapy. J Neurotrauma 2016; 33(6): 581-94.
[http://dx.doi.org/10.1089/neu.2015.4131] [PMID: 26671550]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy