Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

Amalgamation of Nanotechnology for Delivery of Bioactive Constituents in Solid Tumors

Author(s): Rabea Parveen, Sradhanjali Mohapatra, Sayeed Ahmad* and Syed Akhtar Husain*

Volume 20, Issue 5, 2023

Published on: 14 June, 2022

Page: [457 - 482] Pages: 26

DOI: 10.2174/1567201819666220425093102

Price: $65

Abstract

Solid tumor is one of the highly prevalent cancers among humans and the treatment is often restricted by drug resistance to chemotherapeutics. One of the main reasons might be attributed to the limited penetration ability of drugs through tumor tissues due to heterogeneity within the tumor microenvironment. Over the recent years, so much research has been carried out for developing phytochemicals as cancer therapeutic agents. These are well-established as potential candidates for preventing and treating cancer, especially solid tumors, but have limited clinical applications due to their large molecular size, low bioavailability, stability, and target specificity, along with other side effects when used at high concentrations. There has been a widely proposed nano delivery system of bioactive constituents to overcome these obstacles. This nanostructured system might be able to potentiate the action of plant constituents, by reducing the side effects at a lesser dose with improved efficacy. Indeed, nanosystems can deliver the bioactive constituents at a specific site in the desired concentration and avoid undesired drug exposure to normal tissues. Furthermore, these nanoparticles demonstrate high differential absorption efficiency in the target cells over normal cells by preventing them from interacting prematurely with the biological environment, enhancing the cellular uptake and retention effect in disease tissues, while decreasing the toxicity. This review discusses various treatment stratagems used for the management of solid tumors with special emphasis on nanocarrier systems as a potential treatment strategy for herbal drugs. This also covers a wide list of plants that are used for the treatment of solid tumors and cancers along with their mechanisms of action and enlists various nanocarrier systems used for different phytoconstituents. This review gives a brief idea about different plants and their constituents exploited for their anticancer/antitumor potential along with several nanocarrier systems employed for the same and gives future directions to stress the nanotechnology platform as a valuable approach for the prevention and treatment of solid tumors.

Keywords: Solid tumor, cancer, bioactive constituents, nanodelivery, phytomedicine, nanotechnology.

Graphical Abstract
[1]
Dowling, A.; Clift, R.; Grobert, N.; Hutton, D.; Oliver, R.; O’neill, O.; Pethica, J.; Pidgeon, N.; Porritt, J.; Ryan, J. Nanoscience and nanotechnologies: Opportunities and uncertainties. Neuroradiology, 2004, 46, 618.
[http://dx.doi.org/10.1007/s00234-004-1255-6]
[2]
Rajendran, R.; Radhai, R.; Maithili, N.; Balakumar, C. Production of herbal-based nanoparticles for medical textiles. Int. J. Nanosci., 2011, 10(1), 209-212.
[http://dx.doi.org/10.1142/S0219581X11007764]
[3]
Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.D.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; Habtemariam, S.; Shin, H-S. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnology, 2018, 16(1), 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[4]
Mohapatra, S.; Iqbal, Z.; Ahmad, S.; Kohli, K.; Farooq, U.; Padhi, S.; Kabir, M.; Panda, A.K. Menopausal remediation and Quality of Life (QoL) improvement: Insights and perspectives. Endocr. Metab. Immune Disord. Drug Targets, 2020, 20(10), 1624-1636.
[http://dx.doi.org/10.2174/1871530320666200730225830] [PMID: 32744978]
[5]
Apaya, M.K.; Chang, M.T.; Shyur, L.F. Phytomedicine polypharmacology: Cancer therapy through modulating the tumor microenvironment and oxylipin dynamics. Pharmacol. Ther., 2016, 162, 58-68.
[http://dx.doi.org/10.1016/j.pharmthera.2016.03.001] [PMID: 26969215]
[6]
Musthaba, S.M.; Baboota, S.; Ahmed, S.; Ahuja, A.; Ali, J. Status of novel drug delivery technology for phytotherapeutics. Expert Opin. Drug Deliv., 2009, 6(6), 625-637.
[http://dx.doi.org/10.1517/17425240902980154] [PMID: 19505192]
[7]
Mohapatra, S.; Mirza, M.A.; Hilles, A.R.; Zakir, F.; Gomes, A.C.; Ansari, M.J.; Iqbal, Z.; Mahmood, S. Biomedical application, patent repository, clinical trial and regulatory updates on hydrogel: An extensive review. Gels, 2021, 7(4), 207.
[http://dx.doi.org/10.3390/gels7040207] [PMID: 34842705]
[8]
De Jong, W.H.; Borm, P.J.A. Drug delivery and nanoparticles: Applications and hazards. Int. J. Nanomedicine, 2008, 3(2), 133-149.
[http://dx.doi.org/10.2147/IJN.S596] [PMID: 18686775]
[9]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[10]
Goyal, A.; Kumar, S.; Nagpal, M.; Singh, I.; Arora, S. Potential of novel drug delivery systems for herbal drugs. Indian J. Pharm. Educ. Res., 2011, 45(3), 225-235.
[11]
Gavhane, Y.; Shete, A.; Bhagat, A.; Shinde, V.; Bhong, K.; Khairnar, G.; Yadav, A. Solid tumors  Facts, challenges and solutions. Int. J. Pharm. Sci. Res., 2011, 2(1), 1-12.
[12]
Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer, 2015, 136(5), E359-E386.
[http://dx.doi.org/10.1002/ijc.29210] [PMID: 25220842]
[13]
[14]
Brace, C. Thermal tumor ablation in clinical use. IEEE Pulse, 2011, 2(5), 28-38.
[http://dx.doi.org/10.1109/MPUL.2011.942603] [PMID: 25372967]
[15]
Lebedeva, I.V.; Su, Z.Z.; Sarkar, D.; Fisher, P.B. Restoring apoptosis as a strategy for cancer gene therapy: Focus on p53 and mda-7. Semin. Cancer Biol., 2003, 13(2), 169-178.
[http://dx.doi.org/10.1016/S1044-579X(02)00134-7] [PMID: 12654260]
[16]
Vaishnaw, A.K.; Gollob, J.; Gamba-Vitalo, C.; Hutabarat, R.; Sah, D.; Meyers, R.; de Fougerolles, T.; Maraganore, J. A status report on RNAi therapeutics. Silence, 2010, 1(1), 14.
[http://dx.doi.org/10.1186/1758-907X-1-14] [PMID: 20615220]
[17]
Yu, K.H.; Zhang, C.; Berry, G.J.; Altman, R.B.; Ré, C.; Rubin, D.L.; Snyder, M. Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features. Nat. Commun., 2016, 7, 12474.
[http://dx.doi.org/10.1038/ncomms12474] [PMID: 27527408]
[18]
Bazak, R.; Houri, M.; El Achy, S.; Kamel, S.; Refaat, T. Cancer active targeting by nanoparticles: A comprehensive review of literature. J. Cancer Res. Clin. Oncol., 2015, 141(5), 769-784.
[http://dx.doi.org/10.1007/s00432-014-1767-3] [PMID: 25005786]
[19]
Chikara, S.; Nagaprashantha, L.D.; Singhal, J.; Horne, D.; Awasthi, S.; Singhal, S.S. Oxidative stress and dietary phytochemicals: Role in cancer chemoprevention and treatment. Cancer Lett., 2018, 413, 122-134.
[http://dx.doi.org/10.1016/j.canlet.2017.11.002] [PMID: 29113871]
[20]
Martinelli, C.; Pucci, C.; Ciofani, G. Nanostructured carriers as innovative tools for cancer diagnosis and therapy. APL Bioeng., 2019, 3(1), 011502.
[http://dx.doi.org/10.1063/1.5079943] [PMID: 31069332]
[21]
Pucci, C.; Martinelli, C.; Ciofani, G. Innovative approaches for cancer treatment: Current perspectives and new challenges. Ecancer Med. Sci., 2019, 13, 961.
[http://dx.doi.org/10.3332/ecancer.2019.961]
[22]
Complications of solid tumors and treatment Available from: https://www.drugtopics.com/view/solid-tumors-what-pharmacists-need-know
[23]
Jana, N. Břetislav, G.; Pavel, S.; Pavla, U. Potential of the flavonoid quercetin to prevent and treat cancer - current status of research. Klin. Onkol., 2018, 31(3), 184-190.
[http://dx.doi.org/10.14735/amko2018184] [PMID: 30441971]
[24]
Cragg, G.M.; Kingston, D.G.I.; Newman, D.J. Anticancer Agents from Natural Products; CRC Press: Boca Raton, 2005, p. 577.
[http://dx.doi.org/10.1201/9781420039658]
[25]
Jan, B.; Parveen, R.; Zahiruddin, S.; Khan, M.U.; Mohapatra, S.; Ahmad, S. Nutritional constituents of mulberry and their potential applications in food and pharmaceuticals: A review. Saudi J. Biol. Sci., 2021, 28(7), 3909-3921.
[http://dx.doi.org/10.1016/j.sjbs.2021.03.056] [PMID: 34220247]
[26]
Yan, Z.; Guo, G.F.; Zhang, B. Research of Brucea javanica against cancer. Chin. J. Integr. Med., 2017, 23(2), 153-160.
[http://dx.doi.org/10.1007/s11655-016-2501-6] [PMID: 27041332]
[27]
Chumkaew, P.; Srisawat, T. Antimalarial and cytotoxic quassinoids from the roots of Brucea javanica. J. Asian Nat. Prod. Res., 2017, 19(3), 247-253.
[http://dx.doi.org/10.1080/10286020.2016.1205040] [PMID: 27380205]
[28]
Vallianou, N.G.; Evangelopoulos, A.; Schizas, N.; Kazazis, C. Potential anticancer properties and mechanisms of action of curcumin. Anticancer Res., 2015, 35(2), 645-651.
[PMID: 25667441]
[29]
Kis, B.; Ifrim, F.C.; Buda, V.; Avram, S.; Pavel, I.Z.; Antal, D.; Paunescu, V.; Dehelean, C.A.; Ardelean, F.; Diaconeasa, Z.; Soica, C.; Danciu, C. Cannabidiol-from plant to human body: A promising bioactive molecule with multi-target effects in cancer. Int. J. Mol. Sci., 2019, 20(23), E5905.
[http://dx.doi.org/10.3390/ijms20235905] [PMID: 31775230]
[30]
Carracedo, A.; Gironella, M.; Lorente, M.; Garcia, S.; Guzmán, M.; Velasco, G.; Iovanna, J.L. Cannabinoids induce apoptosis of pancreatic tumor cells via endoplasmic reticulum stress-related genes. Cancer Res., 2006, 66(13), 6748-6755.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-0169] [PMID: 16818650]
[31]
Marcu, J.P.; Christian, R.T.; Lau, D.; Zielinski, A.J.; Horowitz, M.P.; Lee, J.; Pakdel, A.; Allison, J.; Limbad, C.; Moore, D.H.; Yount, G.L.; Desprez, P.Y.; McAllister, S.D. Cannabidiol enhances the inhibitory effects of delta9-tetrahydrocannabinol on human glioblastoma cell proliferation and survival. Mol. Cancer Ther., 2010, 9(1), 180-189.
[http://dx.doi.org/10.1158/1535-7163.MCT-09-0407] [PMID: 20053780]
[32]
Ramer, R.; Hinz, B. Cannabinoids as anticancer drugs. Adv. Pharmacol., 2017, 80, 397-436.
[http://dx.doi.org/10.1016/bs.apha.2017.04.002]
[33]
Sreelatha, S.; Jeyachitra, A.; Padma, P.R. Antiproliferation and induction of apoptosis by Moringa oleifera leaf extract on human cancer cells. Food Chem. Toxicol., 2011, 49(6), 1270-1275.
[http://dx.doi.org/10.1016/j.fct.2011.03.006] [PMID: 21385597]
[34]
Karim, N.A.; Ibrahim, M.D.; Kntayya, S.B.; Rukayadi, Y.; Hamid, H.A.; Razis, A.F.A. Moringa oleifera Lam: Targeting chemoprevention. Asian Pac. J. Cancer Prev., 2016, 17(8), 3675-3686.
[http://dx.doi.org/10.14456/apjcp.2016.155/APJCP.2016.17.8.3675] [PMID: 27644601]
[35]
Otsuki, N.; Dang, N.H.; Kumagai, E.; Kondo, A.; Iwata, S.; Morimoto, C. Aqueous extract of Carica papaya leaves exhibits anti-tumor activity and immunomodulatory effects. J. Ethnopharmacol., 2010, 127(3), 760-767.
[http://dx.doi.org/10.1016/j.jep.2009.11.024] [PMID: 19961915]
[36]
Rahmat, A.; Rosli, R. Mohd. Zain, W.N.I.W.; Endrini, S.; Sani, H.A. Antiproliferative activity of pure lycopene compared to both extracted lycopene and juices from watermelon (Citrullus vulgaris) and papaya (caricapapaya) on human breast and liver cancer cell lines. J. Med. Sci., 2002, 2(2), 55-58.
[http://dx.doi.org/10.3923/jms.2002.55.58]
[37]
Imran, M.; Salehi, B.; Sharifi-Rad, J.; Aslam, G.T.; Saeed, F.; Imran, A.; Shahbaz, M.; Tsouh Fokou, P.V.; Umair, A.M.; Khan, H.; Guerreiro, S.G.; Martins, N.; Estevinho, L.M. Kaempferol: A key emphasis to its anticancer potential. Molecules, 2019, 24(12), E2277.
[http://dx.doi.org/10.3390/molecules24122277] [PMID: 31248102]
[38]
Rajendran, P.; Rengarajan, T.; Nandakumar, N.; Palaniswami, R.; Nishigaki, Y.; Nishigaki, I. Kaempferol, a potential cytostatic and cure for inflammatory disorders. Eur. J. Med. Chem., 2014, 86, 103-112.
[http://dx.doi.org/10.1016/j.ejmech.2014.08.011] [PMID: 25147152]
[39]
Abbaoui, B.; Lucas, C.R.; Riedl, K.M.; Clinton, S.K.; Mortazavi, A. Cruciferous vegetables, isothiocyanates, and bladder cancer prevention. Mol. Nutr. Food Res., 2018, 62(18), e1800079.
[http://dx.doi.org/10.1002/mnfr.201800079] [PMID: 30079608]
[40]
Munday, R.; Mhawech-Fauceglia, P.; Munday, C.M.; Paonessa, J.D.; Tang, L.; Munday, J.S.; Lister, C.; Wilson, P.; Fahey, J.W.; Davis, W.; Zhang, Y. Inhibition of urinary bladder carcinogenesis by broccoli sprouts. Cancer Res., 2008, 68(5), 1593-1600.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-5009] [PMID: 18310317]
[41]
Mandrich, L.; Caputo, E. Brassicaceae-derived anticancer agents: Towards a green approach to beat cancer. Nutrients, 2020, 12(3), E868.
[http://dx.doi.org/10.3390/nu12030868] [PMID: 32213900]
[42]
Zhao, Y.Z.; Zhang, Y.Y.; Han, H.; Fan, R.P.; Hu, Y.; Zhong, L.; Kou, J.P.; Yu, B.Y. Advances in the antitumor activities and mechanisms of action of steroidal saponins. Chin. J. Nat. Med., 2018, 16(101), 732-748.
[http://dx.doi.org/10.1016/S1875-5364(18)30113-4]
[43]
Saleem, M.; Asif, J.; Asif, M.; Saleem, U. Amygdalin from apricot kernels induces apoptosis and causes cell cycle arrest in cancer cells: An updated review. Anticancer. Agents Med. Chem., 2018, 18(12), 1650-1655.
[http://dx.doi.org/10.2174/1871520618666180105161136] [PMID: 29308747]
[44]
Sun, R.; Zhang, H.M. CHEN, B.A. Anticancer activity and underlying mechanism of neogambogic acid. Chin. J. Nat. Med., 2018, 16(9), 641-643.
[http://dx.doi.org/10.1016/S1875-5364(18)30103-1]
[45]
Hatami, E.; Jaggi, M.; Chauhan, S.C.; Yallapu, M.M. Gambogic acid: A shining natural compound to nanomedicine for cancer therapeutics. Biochim. Biophys. Acta Rev. Cancer, 2020, 1874(1), 188381.
[http://dx.doi.org/10.1016/j.bbcan.2020.188381] [PMID: 32492470]
[46]
Sapio, L.; Gallo, M.; Illiano, M.; Chiosi, E.; Naviglio, D.; Spina, A.; Naviglio, S. The natural cAMP elevating compound forskolin in cancer therapy: Is it time? J. Cell. Physiol., 2017, 232(5), 922-927.
[http://dx.doi.org/10.1002/jcp.25650] [PMID: 27739063]
[47]
Gupta, A.; Singh, A.K.; Kumar, R.; Ganguly, R.; Rana, H.K.; Pandey, P.K.; Sethi, G.; Bishayee, A.; Pandey, A.K. Corilagin in cancer: A critical evaluation of anticancer activities and molecular mechanisms. Molecules, 2019, 24(18), E3399.
[http://dx.doi.org/10.3390/molecules24183399] [PMID: 31546767]
[48]
Esposito, S.; Bianco, A.; Russo, R.; Di Maro, A.; Isernia, C.; Pedone, P.V. Therapeutic perspectives of molecules from Urtica dioica extracts for cancer treatment. Molecules, 2019, 24(15), E2753.
[http://dx.doi.org/10.3390/molecules24152753] [PMID: 31362429]
[49]
Guo, C.; He, J.; Song, X.; Tan, L.; Wang, M.; Jiang, P.; Li, Y.; Cao, Z.; Peng, C. Pharmacological properties and derivatives of shikonin-A review in recent years. Pharmacol. Res., 2019, 149, 104463.
[http://dx.doi.org/10.1016/j.phrs.2019.104463] [PMID: 31553936]
[50]
Xu, J.; Long, Y.; Ni, L.; Yuan, X.; Yu, N.; Wu, R.; Tao, J.; Zhang, Y. Anticancer effect of berberine based on experimental animal models of various cancers: A systematic review and meta-analysis. BMC Cancer, 2019, 19(1), 589.
[http://dx.doi.org/10.1186/s12885-019-5791-1] [PMID: 31208348]
[51]
Zhang, B.M.; Wang, Z. Bin; Xin, P.; Wang, Q.H.; BU, H.; Kuang, H.X.; Rashid, H.U. Phytochemistry and pharmacology of genus Ephedra. Chin. J. Nat. Med., 2018, 6(11), 811-828.
[http://dx.doi.org/10.1016/S1875-5364(18)30123-7]
[52]
Rashid, H.U.; Xu, Y.; Muhammad, Y.; Wang, L.; Jiang, J. Research advances on anticancer activities of matrine and its derivatives: An updated overview. Eur. J. Med. Chem., 2019, 161, 205-238.
[http://dx.doi.org/10.1016/j.ejmech.2018.10.037] [PMID: 30359819]
[53]
Samanta, S.K.; Kandimalla, R.; Gogoi, B.; Dutta, K.N.; Choudhury, P.; Deb, P.K.; Devi, R.; Pal, B.C.; Talukdar, N.C. Phytochemical portfolio and anticancer activity of Murraya koenigii and its primary active component, mahanine. Pharmacol. Res., 2018, 129, 227-236.
[http://dx.doi.org/10.1016/j.phrs.2017.11.024] [PMID: 29175114]
[54]
Gaziano, R.; Moroni, G.; Buè, C.; Miele, M.T.; Sinibaldi-Vallebona, P.; Pica, F. Antitumor effects of the benzophenanthridine alkaloid sanguinarine: Evidence and perspectives. World J. Gastrointest. Oncol., 2016, 8(1), 30-39.
[http://dx.doi.org/10.4251/wjgo.v8.i1.30] [PMID: 26798435]
[55]
Martino, E.; Della Volpe, S.; Terribile, E.; Benetti, E.; Sakaj, M.; Centamore, A.; Sala, A.; Collina, S. The long story of camptothecin: From traditional medicine to drugs. Bioorg. Med. Chem. Lett., 2017, 27(4), 701-707.
[http://dx.doi.org/10.1016/j.bmcl.2016.12.085] [PMID: 28073672]
[56]
Li, X.; Li, X.; Huang, N.; Liu, R.; Sun, R. A comprehensive review and perspectives on pharmacology and toxicology of saikosaponins. Phytomedicine, 2018, 50, 73-87.
[http://dx.doi.org/10.1016/j.phymed.2018.09.174] [PMID: 30466994]
[57]
Utsugi, T.; Shibata, J.; Sugimoto, Y.; Aoyagi, K.; Wierzba, K.; Kobunai, T.; Terada, T.; Oh-hara, T.; Tsuruo, T.; Yamada, Y. Antitumor activity of a novel podophyllotoxin derivative (TOP-53) against lung cancer and lung metastatic cancer. Cancer Res., 1996, 56(12), 2809-2814.
[http://dx.doi.org/10.1016/S0169-5002(97)89549-9] [PMID: 8665518]
[58]
Sultana, N. Clinically useful anticancer, antitumor, and antiwrinkle agent, ursolic acid and related derivatives as medicinally important natural product. J. Enzyme Inhib. Med. Chem., 2011, 26(5), 616-642.
[http://dx.doi.org/10.3109/14756366.2010.546793] [PMID: 21417964]
[59]
Fu, L.; Han, B.; Zhou, Y.; Ren, J.; Cao, W.; Patel, G.; Kai, G.; Zhang, J. The anticancer properties of tanshinones and the pharmacological effects of their active ingredients. Front. Pharmacol., 2020, 11, 193.
[http://dx.doi.org/10.3389/fphar.2020.00193] [PMID: 32265690]
[60]
Ahuja, A.; Yi, Y.S.; Kim, M.Y.; Cho, J.Y. Ethnopharmacological properties of Artemisia asiatica: A comprehensive review. J. Ethnopharmacol., 2018, 220, 117-128.
[http://dx.doi.org/10.1016/j.jep.2018.03.032] [PMID: 29604379]
[61]
Zhao, T.; Sun, Q.; Marques, M.; Witcher, M. Anticancer properties of Phyllanthus emblica (Indian Gooseberry). Oxid. Med. Cell. Longev., 2015, 2015, 950890.
[http://dx.doi.org/10.1155/2015/950890] [PMID: 26180601]
[62]
Khorasanchi, Z.; Shafiee, M.; Kermanshahi, F.; Khazaei, M.; Ryzhikov, M.; Parizadeh, M.R.; Kermanshahi, B.; Ferns, G.A.; Avan, A.; Hassanian, S.M. Crocus sativus a natural food coloring and flavoring has potent anti-tumor properties. Phytomedicine, 2018, 43, 21-27.
[http://dx.doi.org/10.1016/j.phymed.2018.03.041] [PMID: 29747750]
[63]
Moradzadeh, M.; Sadeghnia, H.R.; Tabarraei, A.; Sahebkar, A. Anti-tumor effects of crocetin and related molecular targets. J. Cell. Physiol., 2018, 233(3), 2170-2182.
[http://dx.doi.org/10.1002/jcp.25953] [PMID: 28407293]
[64]
Islam, M.T.; Biswas, S.; Bagchi, R.; Khan, M.R.; Khalipha, A.B.R.; Rouf, R.; Uddin, S.J.; Shilpi, J.A.; Bardaweel, S.K.; Sabbah, D.A.; Mubarak, M.S. Ponicidin as a promising anticancer agent: Its biological and biopharmaceutical profile along with a molecular docking study. Biotechnol. Appl. Biochem., 2019, 66(3), 434-444.
[http://dx.doi.org/10.1002/bab.1740] [PMID: 30801842]
[65]
Paul, S.; Geng, C.A.; Yang, T.H.; Yang, Y.P.; Chen, J.J. Phytochemical and health-beneficial progress of turnip (Brassica rapa). J. Food Sci., 2019, 84(1), 19-30.
[http://dx.doi.org/10.1111/1750-3841.14417] [PMID: 30561035]
[66]
Bogdanović V.; Mrdjanović J.; Borišev, I. A review of the therapeutic antitumor potential of cannabinoids. J. Altern. Complement. Med., 2017, 23(11), 831-836.
[http://dx.doi.org/10.1089/acm.2017.0016] [PMID: 28799775]
[67]
Koul, B.; Taak, P.; Kumar, A.; Kumar, A.; Sanyal, I. Genus psoralea: A review of the traditional and modern uses, phytochemistry and pharmacology. J. Ethnopharmacol., 2019, 232, 201-226.
[http://dx.doi.org/10.1016/j.jep.2018.11.036] [PMID: 30521980]
[68]
Wang, N.; Tan, H.Y.; Li, L.; Yuen, M.F.; Feng, Y. Berberine and Coptidis rhizoma as potential anticancer agents: Recent updates and future perspectives. J. Ethnopharmacol., 2015, 176, 35-48.
[http://dx.doi.org/10.1016/j.jep.2015.10.028] [PMID: 26494507]
[69]
Tsang, C.M.; Cheung, K.C.P.; Cheung, Y.C.; Man, K.; Lui, V.W.Y.; Tsao, S.W.; Feng, Y. Berberine suppresses Id-1 expression and inhibits the growth and development of lung metastases in hepatocellular carcinoma. Biochim. Biophys. Acta, 2015, 1852(3), 541-551.
[http://dx.doi.org/10.1016/j.bbadis.2014.12.004] [PMID: 25496992]
[70]
Singh, M.; Mohapatra, S. Harnessing the potential of phytochemicals for breast cancer treatment.Dietary Phytochemicals; Egbuna, C.; Hassan, S., Eds.; Springer: Cham, 2021, pp. 221-251.
[http://dx.doi.org/10.1007/978-3-030-72999-8_12]
[71]
Sun, Y.; Lenon, G.B.; Yang, A.W.H.; Amado, J.R.R. Phellodendri cortex: A phytochemical, pharmacological, and pharmacokinetic review. Evid. Based Complement. Alternat. Med., 2019, 2019, 7621929.
[http://dx.doi.org/10.1155/2019/7621929] [PMID: 31057654]
[72]
EghbaliFeriz. S.; Taleghani, A.; Tayarani-Najaran, Z. Scutellaria: Debates on the anticancer property. Biomed. Pharmacother., 2018, 105, 1299-1310.
[http://dx.doi.org/10.1016/j.biopha.2018.06.107] [PMID: 30021367]
[73]
Huynh, D.L.; Sharma, N.; Kumar Singh, A.; Singh Sodhi, S.; Zhang, J.J.; Mongre, R.K.; Ghosh, M.; Kim, N.; Ho Park, Y.; Kee Jeong, D. Anti-tumor activity of wogonin, an extract from Scutellaria baicalensis, through regulating different signaling pathways. Chin. J. Nat. Med., 2017, 15(1), 15-40.
[http://dx.doi.org/10.1016/S1875-5364(17)30005-5]
[74]
Patel, S.; Rauf, A. Adaptogenic herb ginseng (Panax) as medical food: Status quo and future prospects. Biomed. Pharmacother., 2017, 85, 120-127.
[http://dx.doi.org/10.1016/j.biopha.2016.11.112] [PMID: 27930975]
[75]
Gavamukulya, Y.; Wamunyokoli, F.; El-Shemy, H.A. Annona muricata: Is the natural therapy to most disease conditions including cancer growing in our backyard? A systematic review of its research history and future prospects. Asian Pac. J. Trop. Med., 2017, 10(9), 835-848.
[http://dx.doi.org/10.1016/j.apjtm.2017.08.009] [PMID: 29080611]
[76]
Shi, J.F.; Luo, Y.Y.; Li, J.X.; Luo, R.F.; Chen, L.; Li, J.; Zhang, J.M.; Fu, C.M. Research progress on anti-tumor effects and mechanisms of triptolide and its combined application. Zhongguo Zhongyao Zazhi, 2019, 44(16), 3391-3398.
[http://dx.doi.org/10.19540/j.cnki.cjcmm.20190610.402] [PMID: 31602900]
[77]
Faustino, C.; Neto, Í.; Fonte, P.; Macedo, A. Cytotoxicity and chemotherapeutic potential of natural rosin abietane diterpenoids and their synthetic derivatives. Curr. Pharm. Des., 2018, 24(36), 4362.
[http://dx.doi.org/10.2174/1381612825666190112162817] [PMID: 30648502]
[78]
He, X.; Fang, J.; Huang, L.; Wang, J.; Huang, X. Sophora flavescens Ait.: Traditional usage, phytochemistry and pharmacology of an important traditional Chinese medicine. J. Ethnopharmacol., 2015, 172, 10-29.
[http://dx.doi.org/10.1016/j.jep.2015.06.010] [PMID: 26087234]
[79]
Nohara, T.; Fujiwara, Y.; El-Aasr, M.; Ikeda, T.; Ono, M.; Nakano, D.; Kinjo, J. Antitumor allium sulfides. Chem. Pharm. Bull. (Tokyo), 2017, 65(3), 209-217.
[http://dx.doi.org/10.1248/cpb.c16-00844] [PMID: 28250342]
[80]
Jarząb, A.; Grabarska, A.; Skalicka-Woźniak, K.; Stepulak, A. Pharmacological features of osthole. Postepy Hig. Med. Dosw., 2017, 71(0), 411-421.
[http://dx.doi.org/10.5604/01.3001.0010.3824] [PMID: 28513464]
[81]
Jian, B.; Zhang, H.; Han, C.; Liu, J. Anti-cancer activities of diterpenoids derived from Euphorbia fischeriana steud. Molecules, 2018, 23(2), E387.
[http://dx.doi.org/10.3390/molecules23020387] [PMID: 29439483]
[82]
Bailly, C. Anticancer activities and mechanism of action of nagilactones, a group of terpenoid lactones isolated from podocarpus species. Nat. Prod. Bioprospect., 2020, 10(6), 367-375.
[http://dx.doi.org/10.1007/s13659-020-00268-8] [PMID: 33034879]
[83]
Shishodia, S.; Azu, N.; Rosenzweig, J.A.; Jackson, D.A. Guggulsterone for chemoprevention of cancer. Curr. Pharm. Des., 2016, 22(3), 294-306.
[http://dx.doi.org/10.2174/1381612822666151112153117] [PMID: 26561056]
[84]
Li, X.; Yao, Z.; Jiang, X.; Sun, J.; Ran, G.; Yang, X.; Zhao, Y.; Yan, Y.; Chen, Z.; Tian, L.; Bai, W. Bioactive compounds from Cudrania tricuspidata: A natural anticancer source. Crit. Rev. Food Sci. Nutr., 2020, 60(3), 494-514.
[http://dx.doi.org/10.1080/10408398.2018.1541866] [PMID: 30582344]
[85]
Allegra, A.; Tonacci, A.; Pioggia, G.; Musolino, C.; Gangemi, S. Anticancer activity of Rosmarinus officinalis L.: Mechanisms of action and therapeutic potentials. Nutrients, 2020, 12(6), E1739.
[http://dx.doi.org/10.3390/nu12061739] [PMID: 32532056]
[86]
Achkar, I.W.; Mraiche, F.; Mohammad, R.M.; Uddin, S. Anticancer potential of sanguinarine for various human malignancies. Future Med. Chem., 2017, 9(9), 933-950.
[http://dx.doi.org/10.4155/fmc-2017-0041] [PMID: 28636454]
[87]
Wu, C.; Cao, H.; Zhou, H.; Sun, L.; Xue, J.; Li, J.; Bian, Y.; Sun, R.; Dong, S.; Liu, P.; Sun, M. Research progress on the antitumor effects of rhein: Literature review. Anticancer. Agents Med. Chem., 2017, 17(12), 1624-1632.
[http://dx.doi.org/10.2174/1871520615666150930112631] [PMID: 26419468]
[88]
Patel, S.M.; Nagulapalli Venkata, K.C.; Bhattacharyya, P.; Sethi, G.; Bishayee, A. Potential of neem (Azadirachta indica L.) for prevention and treatment of oncologic diseases. Semin. Cancer Biol., 2016, 40-41, 100-115.
[http://dx.doi.org/10.1016/j.semcancer.2016.03.002] [PMID: 27019417]
[89]
Hao, F.; Kumar, S.; Yadav, N.; Chandra, D. Neem components as potential agents for cancer prevention and treatment. Biochim. Biophys. Acta, 2014, 1846(1), 247-257.
[http://dx.doi.org/10.1016/j.bbcan.2014.07.002] [PMID: 25016141]
[90]
Yatoo, M.I.; Dimri, U.; Gopalakrishnan, A.; Karthik, K.; Gopi, M.; Khandia, R.; Saminathan, M.; Saxena, A.; Alagawany, M.; Farag, M.R.; Munjal, A.; Dhama, K. Beneficial health applications and medicinal values of Pedicularis plants: A review. Biomed. Pharmacother., 2017, 95, 1301-1313.
[http://dx.doi.org/10.1016/j.biopha.2017.09.041] [PMID: 28938521]
[91]
Selvendiran, K.; Prince Vijeya Singh, J.; Sakthisekaran, D. In vivo effect of piperine on serum and tissue glycoprotein levels in benzo(a)pyrene induced lung carcinogenesis in Swiss albino mice. Pulm. Pharmacol. Ther., 2006, 19(2), 107-111.
[http://dx.doi.org/10.1016/j.pupt.2005.04.002] [PMID: 15975841]
[92]
Bezerra, D.P.; Pessoa, C.; de Moraes, M.O.; Saker-Neto, N.; Silveira, E.R.; Costa-Lotufo, L.V. Overview of the therapeutic potential of piplartine (piperlongumine). Eur. J. Pharm. Sci., 2013, 48(3), 453-463.
[http://dx.doi.org/10.1016/j.ejps.2012.12.003] [PMID: 23238172]
[93]
Han, F.Y.; Song, X.Y.; Chen, J.J.; Yao, G.D.; Song, S.J. Timosaponin AIII: A novel potential anti-tumor compound from Anemarrhena asphodeloides. Steroids, 2018, 140, 125-130.
[http://dx.doi.org/10.1016/j.steroids.2018.09.014] [PMID: 30296545]
[94]
Zhang, J.; Li, L.; Jiang, C.; Xing, C.; Kim, S.H.; Lü, J. Anti-cancer and other bioactivities of Korean Angelica Gigas Nakai (AGN) and its major pyranocoumarin compounds. Anticancer. Agents Med. Chem., 2012, 12(10), 1239-1254.
[http://dx.doi.org/10.2174/187152012803833071] [PMID: 22583405]
[95]
Min, B.S.; Gao, J.J.; Nakamura, N.; Kim, Y.H.; Hattori, M. Cytotoxic alkaloids and a flavan from the bulbs of Crinum asiaticum var. japonicum. Chem. Pharm. Bull. (Tokyo), 2001, 49(9), 1217-1219.
[http://dx.doi.org/10.1248/cpb.49.1217] [PMID: 11558618]
[96]
Cao, Z.; Yang, P.; Zhou, Q. Multiple biological functions and pharmacological effects of lycorine. Sci. China Chem., 2013, 56(10), 1382-1391.
[http://dx.doi.org/10.1007/s11426-013-4967-9] [PMID: 32215001]
[97]
Núñez Selles, A.J.; Daglia, M.; Rastrelli, L. The potential role of mangiferin in cancer treatment through its immunomodulatory, anti-angiogenic, apoptopic, and gene regulatory effects. Biofactors, 2016, 42(5), 475-491.
[http://dx.doi.org/10.1002/biof.1299] [PMID: 27219221]
[98]
ur Rashid, H.; Rasool, S.; Ali, Y.; Khan, K.; Martines, M.A.U. Anti-Cancer potential of sophoridine and its derivatives: Recent progress and future perspectives. Bioorg. Chem., 2020, 99, 103363.
[http://dx.doi.org/10.1016/j.bioorg.2020.103863]
[99]
Zheng, K.; Li, C.; Shan, X.; Liu, H.; Fan, W.; Wang, Z. A study on isolation of chemical constituents from Sophora flavescens Ait. and their anti-glioma effects. Afr. J. Tradit. Complement. Altern. Med., 2013, 11(1), 156-160.
[http://dx.doi.org/10.4314/ajtcam.v11i1.24]
[100]
Shahzadi, I.; Ali, Z.; Baek, S.H.; Mirza, B.; Ahn, K.S. Assessment of the antitumor potential of umbelliprenin, a naturally occurring sesquiterpene coumarin. Biomedicines, 2020, 8(5), E126.
[http://dx.doi.org/10.3390/biomedicines8050126] [PMID: 32443431]
[101]
Chen, X.; Bao, J.; Guo, J.; Ding, Q.; Lu, J.; Huang, M.; Wang, Y. Biological activities and potential molecular targets of cucurbitacins: A focus on cancer. Anticancer Drugs, 2012, 23(8), 777-787.
[http://dx.doi.org/10.1097/CAD.0b013e3283541384] [PMID: 22561419]
[102]
Roy, P.; Kalra, N.; Prasad, S.; George, J.; Shukla, Y. Chemopreventive potential of resveratrol in mouse skin tumors through regulation of mitochondrial and PI3K/AKT signaling pathways. Pharm. Res., 2009, 26(1), 211-217.
[http://dx.doi.org/10.1007/s11095-008-9723-z] [PMID: 18791811]
[103]
Hakimuddin, F.; Paliyath, G.; Meckling, K. Selective cytotoxicity of a red grape wine flavonoid fraction against MCF-7 cells. Breast Cancer Res. Treat., 2004, 85(1), 65-79.
[http://dx.doi.org/10.1023/B:BREA.0000021048.52430.c0] [PMID: 15039598]
[104]
Kubota, T.; Uemura, Y.; Kobayashi, M.; Taguchi, H. Combined effects of resveratrol and paclitaxel on lung cancer cells. Anticancer Res., 2003, 23(5A), 4039-4046.
[PMID: 14666716]
[105]
Opipari, A.W., Jr; Tan, L.; Boitano, A.E.; Sorenson, D.R.; Aurora, A.; Liu, J.R. Resveratrol-induced autophagocytosis in ovarian cancer cells. Cancer Res., 2004, 64(2), 696-703.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-2404] [PMID: 14744787]
[106]
Sala, G.; Minutolo, F.; Macchia, M.; Sacchi, N.; Ghidoni, R. Resveratrol structure and ceramide-associated growth inhibition in prostate cancer cells. Drugs Exp. Clin. Res., 2003, 29(5-6), 263-269.
[107]
Zhang, Q.; Cheng, G.; Pan, J.; Zielonka, J.; Xiong, D.; Myers, C.R.; Feng, L.; Shin, S.S.; Kim, Y.H.; Bui, D.; Hu, M.; Bennett, B.; Schmainda, K.; Wang, Y.; Kalyanaraman, B.; You, M. Magnolia extract is effective for the chemoprevention of oral cancer through its ability to inhibit mitochondrial respiration at complex I. Cell Commun. Signal., 2020, 18(1), 58.
[http://dx.doi.org/10.1186/s12964-020-0524-2] [PMID: 32264893]
[108]
He, X.; Zhang, P.; Saqib, M.; Hou, X.; Wang, S. Screening active anti-breast cancer compounds from cortex Magnolia officinalis by MCF-7 cell membrane chromatography coupled with UHPLC-ESI-MS/MS. Anal. Methods, 2017, 9, 4828-4836.
[http://dx.doi.org/10.1039/C7AY01213F]
[109]
Rastogi, N.; Gara, R.K.; Trivedi, R.; Singh, A.; Dixit, P.; Maurya, R.; Duggal, S.; Bhatt, M.L.B.; Singh, S.; Mishra, D.P. (6)-Gingerolinduced myeloid leukemia cell death is initiated by reactive oxygen species and activation of miR-27b expression. Free Radic. Biol. Med., 2014, 68, 288-301.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.12.016] [PMID: 24378438]
[110]
Siddiqui, I.A.; Bharali, D.J.; Nihal, M.; Adhami, V.M.; Khan, N.; Chamcheu, J.C.; Khan, M.I.; Shabana, S.; Mousa, S.A.; Mukhtar, H. Excellent anti-proliferative and pro-apoptotic effects of (-)-epigallocatechin-3-gallate encapsulated in chitosan nanoparticles on human melanoma cell growth both in vitro and in vivo. Nanomedicine (Lond.), 2014, 10(8), 1619-1626.
[111]
de Lima, R.M.T.; Dos Reis, A.C.; de Menezes, A.P.M.; Santos, J.V.O.; Filho, J.W.G.O.; Ferreira, J.R.O.; de Alencar, M.V.O.B.; da Mata, A.M.O.F.; Khan, I.N.; Islam, A.; Uddin, S.J.; Ali, E.S.; Islam, M.T.; Tripathi, S.; Mishra, S.K.; Mubarak, M.S.; Melo-Cavalcante, A.A.C. Protective and therapeutic potential of ginger (Zingiber officinale) extract and [6]-gingerol in cancer: A comprehensive review. Phytother. Res., 2018, 32(10), 1885-1907.
[http://dx.doi.org/10.1002/ptr.6134] [PMID: 30009484]
[112]
Akimoto, M.; Iizuka, M.; Kanematsu, R.; Yoshida, M.; Takenaga, K. Anticancer effect of ginger extract against pancreatic cancer cells mainly through reactive oxygen species-mediated autotic cell death. PLoS One, 2015, 10(5), e0126605.
[http://dx.doi.org/10.1371/journal.pone.0126605] [PMID: 25961833]
[113]
Miller, J.A.; Thompson, P.A.; Hakim, I.A.; Chow, H.H.S.; Thomson, C.A. D-Limonene: A bioactive food component from citrus and evidence for a potential role in breast cancer prevention and treatment. Oncol. Rev., 2011, 5(1), 31-42.
[http://dx.doi.org/10.4081/oncol.2011.14]
[114]
Lai, C.S.; Li, S.; Miyauchi, Y.; Suzawa, M.; Ho, C.T.; Pan, M.H. Potent anti-cancer effects of citrus peel flavonoids in human prostate xenograft tumors. Food Funct., 2013, 4(6), 944-949.
[http://dx.doi.org/10.1039/c3fo60037h] [PMID: 23673480]
[115]
Gong, W.Y.; Zhao, Z.X.; Liu, B.J.; Lu, L.W.; Dong, J.C. Exploring the chemopreventive properties and perspectives of baicalin and its aglycone baicalein in solid tumors. Eur. J. Med. Chem., 2017, 126, 844-852.
[http://dx.doi.org/10.1016/j.ejmech.2016.11.058] [PMID: 27960146]
[116]
Ye, F.; Xui, L.; Yi, J.; Zhang, W.; Zhang, D.Y. Anticancer activity of Scutellaria baicalensis and its potential mechanism. J. Altern. Complement. Med., 2002, 8(5), 567-572.
[http://dx.doi.org/10.1089/107555302320825075]
[117]
Tian, F.; McLaughlin, J.L. Bioactive flavonoids from the black locust tree, Robinia pseudoacacia. Pharm. Biol., 2000, 38(3), 229-234.
[http://dx.doi.org/10.1076/1388-0209(200007)38:3;1-S;FT229] [PMID: 21214467]
[118]
Fujiki, H.; Watanabe, T.; Sueoka, E.; Rawangkan, A.; Suganuma, M. Cancer prevention with green tea and its principal constituent, EGCG: From early investigations to current focus on human cancer stem cells. Mol. Cells, 2018, 41(2), 73-82.
[http://dx.doi.org/10.14348/molcells.2018.2227] [PMID: 29429153]
[119]
Subramanian, J.; Govindan, R. Lung cancer in never smokers: A review. J. Clin. Oncol., 2007, 25(5), 561-570.
[http://dx.doi.org/10.1200/JCO.2006.06.8015] [PMID: 17290066]
[120]
Hsu, H.H.; Chen, M.C.; Day, C.H.; Lin, Y.M.; Li, S.Y.; Tu, C.C.; Padma, V.V.; Shih, H.N.; Kuo, W.W.; Huang, C.Y. Thymoquinone suppresses migration of LoVo human Colon cancer cells by reducing prostaglandin E2 induced COX-2 activation. World J. Gastroenterol., 2017, 23(7), 1171-1179.
[http://dx.doi.org/10.3748/wjg.v23.i7.1171] [PMID: 28275297]
[121]
Smith, R.A.; Andrews, K.S.; Brooks, D.; Fedewa, S.A.; Manassaram-Baptiste, D.; Saslow, D.; Brawley, O.W.; Wender, R.C. Cancer screening in the United States, 2018: A review of current American Cancer Society guidelines and current issues in cancer screening. CA Cancer J. Clin., 2018, 68(4), 297-316.
[http://dx.doi.org/10.3322/caac.21446] [PMID: 29846940]
[122]
Banerjee, S.; Padhye, S.; Azmi, A.; Wang, Z.; Philip, P.A.; Kucuk, O.; Sarkar, F.H.; Mohammad, R.M. Review on molecular and therapeutic potential of thymoquinone in cancer. Nutr. Cancer, 2010, 62(7), 938-946.
[http://dx.doi.org/10.1080/01635581.2010.509832] [PMID: 20924969]
[123]
Woo, C.C.; Loo, S.Y.; Gee, V.; Yap, C.W.; Sethi, G.; Kumar, A.P.; Tan, K.H. Anticancer activity of thymoquinone in breast cancer cells: Possible involvement of PPAR-γ pathway. Biochem. Pharmacol., 2011, 82(5), 464-475.
[http://dx.doi.org/10.1016/j.bcp.2011.05.030] [PMID: 21679698]
[124]
Chowdhury, F.A.; Hossain, M.K.; Mostofa, A.G.M.; Akbor, M.M.; Bin Sayeed, M.S. Therapeutic potential of thymoquinone in glioblastoma treatment: Targeting major gliomagenesis signaling pathways. BioMed Res. Int., 2018, 2018, 4010629.
[http://dx.doi.org/10.1155/2018/4010629] [PMID: 29651429]
[125]
Mollazadeh, H.; Afshari, A.R.; Hosseinzadeh, H. Review on the potential therapeutic roles of Nigella sativa in the treatment of patients with cancer: Involvement of apoptosis: - black cumin and cancer. J. Pharmacopuncture, 2017, 20(3), 158-172.
[http://dx.doi.org/10.3831/KPI.2017.20.019] [PMID: 30087792]
[126]
Bailly, C. Anticancer properties of Prunus mume extracts (Chinese plum, Japanese apricot). J. Ethnopharmacol., 2020, 246, 112215.
[http://dx.doi.org/10.1016/j.jep.2019.112215] [PMID: 31491438]
[127]
Inoue, M.; Honma, Y.; Urano, T.; Suzumiya, J. Japanese apricot extract (MK615) potentiates bendamustine-induced apoptosis via impairment of the DNA damage response in lymphoma cells. Oncol. Lett., 2017, 14(1), 792-800.
[http://dx.doi.org/10.3892/ol.2017.6219] [PMID: 28693235]
[128]
Matsushita, S.; Tada, K.I.; Kawahara, K.I.; Kawai, K.; Hashiguchi, T.; Maruyama, I.; Kanekura, T. Advanced malignant melanoma responds to Prunus mume Sieb. Et Zucc (Ume) extract: Case report and in vitro study. Exp. Ther. Med., 2010, 1(4), 569-574.
[http://dx.doi.org/10.3892/etm_00000089] [PMID: 22993577]
[129]
Tada, K.; Kawahara, K.; Matsushita, S.; Hashiguchi, T.; Maruyama, I.; Kanekura, T. MK615, a Prunus mume Steb. Et Zucc (‘Ume’) extract, attenuates the growth of A375 melanoma cells by inhibiting the ERK1/2-Id-1 pathway. Phytother. Res., 2012, 26(6), 833-838.
[http://dx.doi.org/10.1002/ptr.3645] [PMID: 22076920]
[130]
Yanaki, M.; Kobayashi, M.; Aruga, A.; Nomura, M.; Ozaki, M. In vivo antitumor effects of mk615 led by PD-L1 downregulation. Integr. Cancer Ther., 2018, 17(3), 646-653.
[http://dx.doi.org/10.1177/1534735418766403] [PMID: 29665734]
[131]
Sunaga, N.; Hiraishi, K.; Ishizuka, T.; Kaira, K.; Iwasaki, Y.; Jimma, F.; Adachi, M.; Mori, M. MK615, A compound extract from the Japanese apricot “Prunus mume” inhibits in vitro cell growth and interleukin-8 expression in non-small cell lung cancer cells. J. Cancer Sci. Ther., 2012, S11, 1-7.
[http://dx.doi.org/10.4172/1948-5956.S11-002]
[132]
Okada, T.; Sawada, T.; Osawa, T.; Adachi, M.; Kubota, K. MK615 inhibits pancreatic cancer cell growth by dual inhibition of Aurora A and B kinases. World J. Gastroenterol., 2008, 14(9), 1378-1382.
[http://dx.doi.org/10.3748/wjg.14.1378] [PMID: 18322951]
[133]
Okada, T.; Sawada, T.; Osawa, T.; Adachi, M.; Kubota, K. A novel anti-cancer substance, mk615, from ume, a variety of Japanese apricot, inhibits growth of hepatocellular carcinoma cells by suppressing aurora a kinase activity. Hepatogastroenterology, 2007, 54(78), 1770-1774.
[134]
Mori, S.; Sawada, T.; Okada, T.; Ohsawa, T.; Adachi, M.; Keiichi, K. New anti-proliferative agent, MK615, from Japanese apricot “Prunus mume” induces striking autophagy in colon cancer cells in vitro. World J. Gastroenterol., 2007, 13(48), 6512-6517.
[http://dx.doi.org/10.3748/wjg.13.6512] [PMID: 18161921]
[135]
Nakagawa, A.; Sawada, T.; Okada, T.; Ohsawa, T.; Adachi, M.; Kubota, K. New antineoplastic agent, MK615, from UME (a variety of) Japanese apricot inhibits growth of breast cancer cells in vitro. Breast J., 2007, 13(1), 44-49.
[http://dx.doi.org/10.1111/j.1524-4741.2006.00361.x] [PMID: 17214792]
[136]
Yamai, H.; Sawada, N.; Yoshida, T.; Seike, J.; Takizawa, H.; Kenzaki, K.; Miyoshi, T.; Kondo, K.; Bando, Y.; Ohnishi, Y.; Tangoku, A. Triterpenes augment the inhibitory effects of anticancer drugs on growth of human esophageal carcinoma cells in vitro and suppress experimental metastasis in vivo. Int. J. Cancer, 2009, 125(4), 952-960.
[http://dx.doi.org/10.1002/ijc.24433] [PMID: 19462449]
[137]
Tao, K.S.; Wang, W.; Wang, L.; Cao, D.Y.; Li, Y.Q.; Wu, S.X.; Dou, K.F. The multifaceted mechanisms for coffee’s anti-tumorigenic effect on liver. Med. Hypotheses, 2008, 71(5), 730-736.
[http://dx.doi.org/10.1016/j.mehy.2008.06.026] [PMID: 18701223]
[138]
Neuwirthová, J.; Gál, B.; Smilek, P.; Urbánková, P. Coffee in cancer chemoprevention. Klin. Onkol., 2017, 30(2), 106-114.
[http://dx.doi.org/10.14735/amko2017106] [PMID: 28397506]
[139]
Bailly, C. Targets and pathways involved in the antitumor activity of citral and its stereo-isomers. Eur. J. Pharmacol., 2020, 871, 172945.
[http://dx.doi.org/10.1016/j.ejphar.2020.172945] [PMID: 31981590]
[140]
Zeng, S.; Kapur, A.; Patankar, M.S.; Xiong, M.P. Formulation, characterization, and antitumor properties of trans- and cis-citral in the 4T1 breast cancer xenograft mouse model. Pharm. Res., 2015, 32(8), 2548-2558.
[http://dx.doi.org/10.1007/s11095-015-1643-0] [PMID: 25673043]
[141]
Nigjeh, S.E.; Yeap, S.K.; Nordin, N.; Rahman, H.; Rosli, R. In vivo anti-tumor effects of citral on 4T1 breast cancer cells via induction of apoptosis and downregulation of aldehyde dehydrogenase activity. Molecules, 2019, 24(18), E3241.
[http://dx.doi.org/10.3390/molecules24183241] [PMID: 31492037]
[142]
Moore, J.; Yousef, M.; Tsiani, E. Anticancer effects of rosemary (Rosmarinus officinalis l.) extract and rosemary extract polyphenols. Nutrients, 2016, 8(11), E731.
[http://dx.doi.org/10.3390/nu8110731] [PMID: 27869665]
[143]
Manoharan, S.; Vasanthaselvan, M.; Silvan, S.; Baskaran, N.; Kumar Singh, A.; Vinoth Kumar, V. Carnosic acid: A potent chemopreventive agent against oral carcinogenesis. Chem. Biol. Interact., 2010, 188(3), 616-622.
[http://dx.doi.org/10.1016/j.cbi.2010.08.009] [PMID: 20816777]
[144]
Rajasekaran, D.; Manoharan, S.; Silvan, S.; Vasudevan, K.; Baskaran, N.; Palanimuthu, D. Proapoptotic, anti-cell proliferative, anti-inflammatory and anti-angiogenic potential of carnosic acid during 7,12 dimethylbenz[a] anthracene-induced hamster buccal pouch carcinogenesis. Afr. J. Tradit. Complement. Altern. Med., 2012, 10(1), 102-112.
[http://dx.doi.org/10.4314/ajtcam.v10i1.14]
[145]
Petiwala, S.M.; Li, G.; Bosland, M.C.; Lantvit, D.D.; Petukhov, P.A.; Johnson, J.J. Carnosic acid promotes degradation of the androgen receptor and is regulated by the unfolded protein response pathway in vitro and in vivo. Carcinogenesis, 2016, 37(8), 827-838.
[http://dx.doi.org/10.1093/carcin/bgw052] [PMID: 27267997]
[146]
Kim, Y.J.; Kim, J.S.; Seo, Y.R.; Park, J.H.Y.; Choi, M.S.; Sung, M.K. Carnosic acid suppresses colon tumor formation in association with antiadipogenic activity. Mol. Nutr. Food Res., 2014, 58(12), 2274-2285.
[http://dx.doi.org/10.1002/mnfr.201400293] [PMID: 25204550]
[147]
Xu, Y.; Xu, G.; Liu, L.; Xu, D.; Liu, J. Anti-invasion effect of rosmarinic acid via the extracellular signal-regulated kinase and oxidation-reduction pathway in Ls174-T cells. J. Cell. Biochem., 2010, 111(2), 370-379.
[http://dx.doi.org/10.1002/jcb.22708] [PMID: 20506543]
[148]
Sharmila, R.; Manoharan, S. Anti-tumor activity of rosmarinic acid in 7,12-dimethylbenz(a)anthracene (DMBA) induced skin carcinogenesis in Swiss albino mice. Indian J. Exp. Biol., 2012, 50(3), 187-194.
[PMID: 22439433]
[149]
Venkatachalam, K.; Gunasekaran, S.; Jesudoss, V.A.S.; Namasivayam, N. The effect of rosmarinic acid on 1,2-dimethylhydrazine induced colon carcinogenesis. Exp. Toxicol. Pathol., 2013, 65(4), 409-418.
[http://dx.doi.org/10.1016/j.etp.2011.12.005] [PMID: 22236574]
[150]
Anusuya, C.; Manoharan, S. Antitumor initiating potential of rosmarinic acid in 7,12-dimethylbenz(a)anthracene-induced hamster buccal pouch carcinogenesis. J. Environ. Pathol. Toxicol. Oncol., 2011, 30(3), 199-211.
[http://dx.doi.org/10.1615/JEnvironPatholToxicolOncol.v30.i3.30] [PMID: 22126613]
[151]
Long, H.L.; Zhang, F.F.; Wang, H.L.; Yang, W.S.; Hou, H.T.; Yu, J.K.; Liu, B. Mulberry anthocyanins improves thyroid cancer progression mainly by inducing apoptosis and autophagy cell death. Kaohsiung J. Med. Sci., 2018, 34(5), 255-262.
[http://dx.doi.org/10.1016/j.kjms.2017.11.004] [PMID: 29699632]
[152]
Cheng, K.C.; Wang, C.J.; Chang, Y.C.; Hung, T.W.; Lai, C.J.; Kuo, C.W.; Huang, H.P. Mulberry fruits extracts induce apoptosis and autophagy of liver cancer cell and prevent hepatocarcinogenesis in vivo. J. Food Drug Anal., 2020, 28(1), 84-93.
[http://dx.doi.org/10.1016/j.jfda.2019.06.002] [PMID: 31883611]
[153]
Fidyt, K.; Fiedorowicz, A. Strządała, L.; Szumny, A. β-caryophyllene and β-caryophyllene oxide-natural compounds of anticancer and analgesic properties. Cancer Med., 2016, 5(10), 3007-3017.
[http://dx.doi.org/10.1002/cam4.816] [PMID: 27696789]
[154]
Ambrož, M.; Boušová, I.; Skarka, A.; Hanušová, V.; Králová, V.; Matoušková, P.; Szotáková, B.; Skálová, L. The influence of sesquiterpenes from Myrica rubra on the antiproliferative and pro-oxidative effects of doxorubicin and its accumulation in cancer cells. Molecules, 2015, 20(8), 15343-15358.
[http://dx.doi.org/10.3390/molecules200815343] [PMID: 26307963]
[155]
Jung, J.I. Kim, E.J.; Kwon, G.T.; Jung, Y.J.; Park, T.; Kim, Y.; Yu, R.; Choi, M.S.; Chun, H.S.; Kwon, S.H.; Her, S.; Lee, K.W.; Park, J.H.Y. β-Caryophyllene potently inhibits solid tumor growth and lymph node metastasis of B16F10 melanoma cells in high-fat diet-induced obese C57BL/6N mice. Carcinogenesis, 2015, 36(9), 1028-1039.
[http://dx.doi.org/10.1093/carcin/bgv076] [PMID: 26025912]
[156]
Park, K.R. Nam, D.; Yun, H.M.; Lee, S.G.; Jang, H.J.; Sethi, G.; Cho, S.K.; Ahn, K.S. β-Caryophyllene oxide inhibits growth and induces apoptosis through the suppression of PI3K/AKT/mTOR/S6K1 pathways and ROS-mediated MAPKs activation. Cancer Lett., 2011, 312(2), 178-188.
[http://dx.doi.org/10.1016/j.canlet.2011.08.001] [PMID: 21924548]
[157]
LoPiccolo, J.; Blumenthal, G.M.; Bernstein, W.B.; Dennis, P.A. Targeting the PI3K/Akt/mTOR pathway: Effective combinations and clinical considerations. Drug Resist. Updat., 2008, 11(1-2), 32-50.
[http://dx.doi.org/10.1016/j.drup.2007.11.003] [PMID: 18166498]
[158]
Legault, J.; Pichette, A. Potentiating effect of β-caryophyllene on anticancer activity of α-humulene, isocaryophyllene and paclitaxel. J. Pharm. Pharmacol., 2007, 59(12), 1643-1647.
[http://dx.doi.org/10.1211/jpp.59.12.0005] [PMID: 18053325]
[159]
Imran, M.; Nadeem, M.; Gilani, S.A.; Khan, S.; Sajid, M.W.; Amir, R.M. Antitumor perspectives of oleuropein and its metabolite hydroxytyrosol: Recent updates. J. Food Sci., 2018, 83(7), 1781-1791.
[http://dx.doi.org/10.1111/1750-3841.14198] [PMID: 29928786]
[160]
Hassannia, B.; Logie, E.; Vandenabeele, P.; Vanden Berghe, T.; Vanden Berghe, W.; Withaferin, A. From ayurvedic folk medicine to preclinical anti-cancer drug. Biochem. Pharmacol., 2020, 173, 113602.
[http://dx.doi.org/10.1016/j.bcp.2019.08.004] [PMID: 31404528]
[161]
Mayola, E.; Gallerne, C.; Esposti, D.D.; Martel, C.; Pervaiz, S.; Larue, L.; Debuire, B.; Lemoine, A.; Brenner, C.; Lemaire, C. Withaferin A induces apoptosis in human melanoma cells through generation of reactive oxygen species and down-regulation of Bcl-2. Apoptosis, 2011, 16(10), 1014-1027.
[http://dx.doi.org/10.1007/s10495-011-0625-x] [PMID: 21710254]
[162]
Stan, S.D.; Zeng, Y.; Singh, S.V. Ayurvedic medicine constituent withaferin a causes G2 and M phase cell cycle arrest in human breast cancer cells. Nutr. Cancer, 2008, 60(Suppl. 1), 51-60.
[http://dx.doi.org/10.1080/01635580802381477]
[163]
Nagalingam, A.; Kuppusamy, P.; Singh, S.V.; Sharma, D.; Saxena, N.K. Mechanistic elucidation of the antitumor properties of withaferin a in breast cancer. Cancer Res., 2014, 74(9), 2617-2629.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-2081] [PMID: 24732433]
[164]
Dar, N.J.; Hamid, A.; Ahmad, M. Pharmacologic overview of Withania somnifera, the Indian Ginseng. Cell. Mol. Life Sci., 2015, 72(23), 4445-4460.
[http://dx.doi.org/10.1007/s00018-015-2012-1] [PMID: 26306935]
[165]
Choi, M.J.; Park, E.J.; Min, K.J.; Park, J.W.; Kwon, T.K. Endoplasmic reticulum stress mediates withaferin A-induced apoptosis in human renal carcinoma cells. Toxicol. In Vitro, 2011, 25(3), 692-698.
[http://dx.doi.org/10.1016/j.tiv.2011.01.010] [PMID: 21266191]
[166]
Alessandra-Perini, J.; Rodrigues-Baptista, K.C.; Machado, D.E.; Nasciutti, L.E.; Perini, J.A. Anticancer potential, molecular mechanisms and toxicity of Euterpe oleracea extract (açaí): A systematic review. PLoS One, 2018, 13(7), e0200101.
[http://dx.doi.org/10.1371/journal.pone.0200101] [PMID: 29966007]
[167]
Stoner, G.D.; Wang, L.S.; Seguin, C.; Rocha, C.; Stoner, K.; Chiu, S.; Kinghorn, A.D. Multiple berry types prevent N-nitrosomethylbenzylamine-induced esophageal cancer in rats. Pharm. Res., 2010, 27(6), 1138-1145.
[http://dx.doi.org/10.1007/s11095-010-0102-1] [PMID: 20232121]
[168]
Fragoso, M.F.; Prado, M.G.; Barbosa, L.; Rocha, N.S.; Barbisan, L.F. Inhibition of mouse urinary bladder carcinogenesis by açai fruit (Euterpe oleraceae Martius) intake. Plant Foods Hum. Nutr., 2012, 67(3), 235-241.
[http://dx.doi.org/10.1007/s11130-012-0308-y] [PMID: 22961050]
[169]
Fragoso, M.F.; Romualdo, G.R.; Ribeiro, D.A.; Barbisan, L.F. Açai (Euterpe oleracea Mart.) feeding attenuates dimethylhydrazine-induced rat colon carcinogenesis. Food Chem. Toxicol., 2013, 58, 68-76.
[http://dx.doi.org/10.1016/j.fct.2013.04.011] [PMID: 23597449]
[170]
Do Nascimento, V.H.N.; Lima, C.D.S.; Paixão, J.T.C.; Freitas, J.J.D.S.; Kietzer, K.S. Antioxidant effects of açaí seed (Euterpe oleracea) in anorexia-cachexia syndrome induced by walker-256 tumor. Acta Cir. Bras., 2016, 31(9), 597-601.
[171]
Monge-Fuentes, V.; Muehlmann, L.A.; Longo, J.P.F.; Silva, J.R.; Fascineli, M.L.; de Souza, P.; Faria, F.; Degterev, I.A.; Rodriguez, A.; Carneiro, F.P.; Lucci, C.M.; Escobar, P.; Amorim, R.F.; Azevedo, R.B. Photodynamic therapy mediated by acai oil (Euterpe oleracea Martius) in nanoemulsion: A potential treatment for melanoma. J. Photochem. Photobiol. B, 2017, 166, 301-310.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.12.002] [PMID: 28024281]
[172]
Alessandra-Perini, J.; Perini, J.A.; Rodrigues-Baptista, K.C.; de Moura, R.S.; Junior, A.P.; Dos Santos, T.A.; Souza, P.J.C.; Nasciutti, L.E.; Machado, D.E. Euterpe oleracea extract inhibits tumorigenesis effect of the chemical carcinogen DMBA in breast experimental cancer. BMC Complement. Altern. Med., 2018, 18(1), 116.
[http://dx.doi.org/10.1186/s12906-018-2183-z] [PMID: 29609579]
[173]
Khan, M.A.; Ali, R.; Parveen, R.; Najmi, A.K.; Ahmad, S. Pharmacological evidences for cytotoxic and antitumor properties of Boswellic acids from Boswellia serrata. J. Ethnopharmacol., 2016, 191, 315-323.
[http://dx.doi.org/10.1016/j.jep.2016.06.053] [PMID: 27346540]
[174]
Pang, X.; Yi, Z.; Zhang, X.; Sung, B.; Qu, W.; Lian, X.; Aggarwal, B.B.; Liu, M. Acetyl-11-keto-β-boswellic acid inhibits prostate tumor growth by suppressing vascular endothelial growth factor receptor 2-mediated angiogenesis. Cancer Res., 2009, 69(14), 5893-5900.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-0755] [PMID: 19567671]
[175]
Yadav, V.R.; Prasad, S.; Sung, B.; Gelovani, J.G.; Guha, S.; Krishnan, S.; Aggarwal, B.B. Boswellic acid inhibits growth and metastasis of human colorectal cancer in orthotopic mouse model by downregulating inflammatory, proliferative, invasive and angiogenic biomarkers. Int. J. Cancer, 2012, 130(9), 2176-2184.
[http://dx.doi.org/10.1002/ijc.26251] [PMID: 21702037]
[176]
Zhang, Y.S.; Xie, J.Z.; Zhong, J.L.; Li, Y.Y.; Wang, R.Q.; Qin, Y.Z.; Lou, H.X.; Gao, Z.H.; Qu, X.J. Acetyl-11-Keto-β-Boswellic Acid (AKBA) inhibits human gastric carcinoma growth through modulation of the wnt/β-catenin signaling pathway. Biochim. Biophys. Acta, 2013, 1830(6), 3604-3615.
[http://dx.doi.org/10.1016/j.bbagen.2013.03.003]
[177]
Park, B.; Sung, B.; Yadav, V.R.; Cho, S.G.; Liu, M.; Aggarwal, B.B. Acetyl-11-keto-β-boswellic acid suppresses invasion of pancreatic cancer cells through the downregulation of CXCR4 chemokine receptor expression. Int. J. Cancer, 2011, 129(1), 23-33.
[http://dx.doi.org/10.1002/ijc.25966] [PMID: 21448932]
[178]
Wu, C.; Chen, M.; Zhang, Q.; Yu, L.; Zhu, J.; Gao, X. Genomic and GeneChip expression profiling reveals the inhibitory effects of Amorphophalli Rhizoma in TNBC cells. J. Ethnopharmacol., 2019, 235, 206-218.
[http://dx.doi.org/10.1016/j.jep.2019.02.004] [PMID: 30731183]
[179]
Wu, C.; Qiu, S.; Liu, P.; Ge, Y.; Gao, X. Rhizoma Amorphophalli inhibits TNBC cell proliferation, migration, invasion and metastasis through the PI3K/Akt/mTOR pathway. J. Ethnopharmacol., 2018, 211, 89-100.
[http://dx.doi.org/10.1016/j.jep.2017.09.033] [PMID: 28962890]
[180]
Ansil, P.N.; Wills, P.J.; Varun, R.; Latha, M.S. Cytotoxic and apoptotic activities of Amorphophallus campanulatus tuber extracts against human hepatoma cell line. Res. Pharm. Sci., 2014, 9(4), 269-277.
[PMID: 25657798]
[181]
Ansil, P.N.; Prabha, S.P.; Nitha, A.; Latha, M.S. Chemopreventive effect of Amorphophallus campanulatus (Roxb.) blume tuber against aberrant crypt foci and cell proliferation in 1, 2-dimethylhydrazine induced colon carcinogenesis. Asian Pac. J. Cancer Prev., 2013, 14(9), 5331-5339.
[http://dx.doi.org/10.7314/APJCP.2013.14.9.5331] [PMID: 24175821]
[182]
Chen, X.; Yuan, L.Q.; Li, L.J.; Lv, Y.; Chen, P.F.; Pan, L. Suppression of gastric cancer by extract from the tuber of amorphophallus konjac via induction of apoptosis and autophagy. Oncol. Rep., 2017, 38(2), 1051-1058.
[http://dx.doi.org/10.3892/or.2017.5747] [PMID: 28656314]
[183]
Liu, T.; Liu, X.; Li, W. Tetrandrine, a Chinese plant-derived alkaloid, is a potential candidate for cancer chemotherapy. Oncotarget, 2016, 7(26), 40800-40815.
[http://dx.doi.org/10.18632/oncotarget.8315] [PMID: 27027348]
[184]
Nobili, S.; Lippi, D.; Witort, E.; Donnini, M.; Bausi, L.; Mini, E.; Capaccioli, S. Natural compounds for cancer treatment and prevention. Pharmacol. Res., 2009, 59(6), 365-378.
[http://dx.doi.org/10.1016/j.phrs.2009.01.017] [PMID: 19429468]
[185]
Shanmugam, M.K.; Lee, J.H.; Chai, E.Z.P.; Kanchi, M.M.; Kar, S.; Arfuso, F.; Dharmarajan, A.; Kumar, A.P.; Ramar, P.S.; Looi, C.Y.; Mustafa, M.R.; Tergaonkar, V.; Bishayee, A.; Ahn, K.S.; Sethi, G. Cancer prevention and therapy through the modulation of transcription factors by bioactive natural compounds. Semin. Cancer Biol., 2016, 40-41, 35-47.
[http://dx.doi.org/10.1016/j.semcancer.2016.03.005] [PMID: 27038646]
[186]
Siddiqui, I.A.; Adhami, V.M.; Bharali, D.J.; Hafeez, B.B.; Asim, M.; Khwaja, S.I.; Ahmad, N.; Cui, H.; Mousa, S.A.; Mukhtar, H. Introducing nanochemoprevention as a novel approach for cancer control: Proof of principle with green tea polyphenol epigallocatechin-3-gallate. Cancer Res., 2009, 69(5), 1712-1716.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-3978] [PMID: 19223530]
[187]
Brigger, I.; Dubernet, C.; Couvreur, P. Nanoparticles in cancer therapy and diagnosis. Adv. Drug Deliv. Rev., 2002, 54(5), 631-651.
[http://dx.doi.org/10.1016/j.addr.2012.09.006] [PMID: 12204596]
[188]
Waite, C.L.; Roth, C.M. Nanoscale drug delivery systems for enhanced drug penetration into solid tumors: Current progress and opportunities. Crit. Rev. Biomed. Eng., 2012, 40(1), 21-41.
[http://dx.doi.org/10.1615/CritRevBiomedEng.v40.i1.20] [PMID: 22428797]
[189]
Du, J.; Lane, L.A.; Nie, S. Stimuli-responsive nanoparticles for targeting the tumor microenvironment. J. Control. Release, 2015, 219, 205-214.
[http://dx.doi.org/10.1016/j.jconrel.2015.08.050] [PMID: 26341694]
[190]
Ansari, S.H.; Islam, F.; Sameem, M. Influence of nanotechnology on herbal drugs: A review. J. Adv. Pharm. Technol. Res., 2012, 3(3), 142-146.
[http://dx.doi.org/10.4103/2231-4040.101006]
[191]
Chen, M.; Chen, R.; Wang, S.; Tan, W.; Hu, Y.; Peng, X.; Wang, Y. Chemical components, pharmacological properties, and nanoparticulate delivery systems of Brucea javanica. Int. J. Nanomedicine, 2013, 8, 85-92.
[http://dx.doi.org/10.2147/IJN.S31636] [PMID: 23319860]
[192]
Shi, L.; Yue, Y.; Wang, Z.R. Suppression of human hepatocellular cancer cell line HepG2 by Brucea liposome in vitro and in vivo. Xi’an Jiaotong Daxue Xuebao. Yixue Ban, 2011.
[193]
Li, J.; Jiang, F.; Chi, Z.; Han, D.; Yu, L.; Liu, C. Development of Enteromorpha prolifera polysaccharide-based nanoparticles for delivery of curcumin to cancer cells. Int. J. Biol. Macromol., 2018, 112, 413-421.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.02.002] [PMID: 29410267]
[194]
Gupta, V.; Aseh, A.; Ríos, C.N.; Aggarwal, B.B.; Mathur, A.B. Fabrication and characterization of silk fibroin-derived curcumin nanoparticles for cancer therapy. Int. J. Nanomedicine, 2009, 4, 115-122.
[http://dx.doi.org/10.2147/IJN.S5581] [PMID: 19516890]
[195]
Razi, M.A.; Wakabayashi, R.; Tahara, Y.; Goto, M.; Kamiya, N. Genipin-stabilized caseinate-chitosan nanoparticles for enhanced stability and anti-cancer activity of curcumin. Colloids Surf. B Biointerfaces, 2018, 164, 308-315.
[http://dx.doi.org/10.1016/j.colsurfb.2018.01.041] [PMID: 29413610]
[196]
Ibrahim, S.; Tagami, T.; Kishi, T.; Ozeki, T. Curcumin marinosomes as promising nano-drug delivery system for lung cancer. Int. J. Pharm., 2018, 540(1-2), 40-49.
[http://dx.doi.org/10.1016/j.ijpharm.2018.01.051] [PMID: 29408473]
[197]
Ramaswamy, S.; Dwarampudi, L.P.; Kadiyala, M.; Kuppuswamy, G.; Veera, V.S.R.K.; Kumar, C.K.A.; Paranjothy, M. Formulation and characterization of chitosan encapsulated phytoconstituents of curcumin and rutin nanoparticles. Int. J. Biol. Macromol., 2017, 104(Pt B), 1807-1812.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.06.112] [PMID: 28668610]
[198]
Liu, C.; Yang, X.; Wu, W.; Long, Z.; Xiao, H.; Luo, F.; Shen, Y.; Lin, Q. Elaboration of curcumin-loaded rice bran albumin nanoparticles formulation with increased in vitro bioactivity and in vivo bioavailability. Food Hydrocoll., 2018, 77, 834-842.
[http://dx.doi.org/10.1016/j.foodhyd.2017.11.027]
[199]
Peng, S.; Li, Z.; Zou, L.; Liu, W.; Liu, C.; McClements, D.J. Improving curcumin solubility and bioavailability by encapsulation in saponin-coated curcumin nanoparticles prepared using a simple pH-driven loading method. Food Funct., 2018, 9(3), 1829-1839.
[http://dx.doi.org/10.1039/C7FO01814B] [PMID: 29517797]
[200]
Matloubi, Z.; Hassan, Z. HSA-curcumin nanoparticles: A promising substitution for curcumin as a cancer chemoprevention and therapy. Daru, 2020, 28(1), 209-219.
[http://dx.doi.org/10.1007/s40199-020-00331-2] [PMID: 32270402]
[201]
Barahuie, F.; Dorniani, D.; Saifullah, B.; Gothai, S.; Hussein, M.Z.; Pandurangan, A.K.; Arulselvan, P.; Norhaizan, M.E. Sustained release of anticancer agent phytic acid from its chitosan-coated magnetic nanoparticles for drug-delivery system. Int. J. Nanomedicine, 2017, 12, 2361-2372.
[http://dx.doi.org/10.2147/IJN.S126245] [PMID: 28392693]
[202]
Barahuie, F.; Saifullah, B.; Dorniani, D.; Fakurazi, S.; Karthivashan, G.; Hussein, M.Z.; Elfghi, F.M. Graphene oxide as a nanocarrier for controlled release and targeted delivery of an anticancer active agent, chlorogenic acid. Mater. Sci. Eng. C, 2017, 74, 177-185.
[http://dx.doi.org/10.1016/j.msec.2016.11.114] [PMID: 28254283]
[203]
El-Ashmawy, N.E.; Khedr, E.G.; Ebeid, E.M.; Salem, M.L.; Zidan, A.A.A.; Mosalam, E.M. Enhanced anticancer effect and reduced toxicity of doxorubicin in combination with thymoquinone released from poly-N-acetyl glucosamine nanomatrix in mice bearing solid Ehrlish carcinoma. Eur. J. Pharm. Sci., 2017, 109, 525-532.
[http://dx.doi.org/10.1016/j.ejps.2017.09.012] [PMID: 28890201]
[204]
Kabary, D.M.; Helmy, M.W.; Abdelfattah, E.A.; Fang, J.Y.; Elkhodairy, K.A.; Elzoghby, A.O. Inhalable multi-compartmental phospholipid enveloped lipid core nanocomposites for localized mTOR inhibitor/herbal combined therapy of lung carcinoma. Eur. J. Pharm. Biopharm., 2018, 130, 152-164.
[http://dx.doi.org/10.1016/j.ejpb.2018.06.027] [PMID: 29964122]
[205]
Nguyen, T.X.; Huang, L.; Liu, L.; Elamin Abdalla, A.M.; Gauthier, M.; Yang, G. Chitosan-coated nano-liposomes for the oral delivery of berberine hydrochloride. J. Mater. Chem. B Mater. Biol. Med., 2014, 2(41), 7149-7159.
[http://dx.doi.org/10.1039/C4TB00876F] [PMID: 32261793]
[206]
Khan, N.; Bharali, D.J.; Adhami, V.M.; Siddiqui, I.A.; Cui, H.; Shabana, S.M.; Mousa, S.A.; Mukhtar, H. Oral administration of naturally occurring chitosan-based nanoformulated green tea polyphenol EGCG effectively inhibits prostate cancer cell growth in a xenograft model. Carcinogenesis, 2014, 35(2), 415-423.
[http://dx.doi.org/10.1093/carcin/bgt321] [PMID: 24072771]
[207]
Sanna, V.; Singh, C.K.; Jashari, R.; Adhami, V.M.; Chamcheu, J.C.; Rady, I.; Sechi, M.; Mukhtar, H.; Siddiqui, I.A. Targeted nanoparticles encapsulating (-)-epigallocatechin-3-gallate for prostate cancer prevention and therapy. Sci. Rep., 2017, 7, 41573.
[http://dx.doi.org/10.1038/srep41573] [PMID: 28145499]
[208]
Singh, M.; Bhatnagar, P.; Mishra, S.; Kumar, P.; Shukla, Y.; Gupta, K.C. PLGA-encapsulated tea polyphenols enhance the chemotherapeutic efficacy of cisplatin against human cancer cells and mice bearing Ehrlich ascites carcinoma. Int. J. Nanomedicine, 2015, 10, 6789-6809.
[http://dx.doi.org/10.2147/IJN.S79489] [PMID: 26586942]
[209]
Pangeni, R.; Panthi, V.K.; Yoon, I.S.; Park, J.W. Preparation, characterization, and in vivo evaluation of an oral multiple nanoemulsive system for co-delivery of pemetrexed and quercetin. Pharmaceutics, 2018, 10(3), E158.
[http://dx.doi.org/10.3390/pharmaceutics10030158] [PMID: 30213140]
[210]
Rosman, R.; Saifullah, B.; Maniam, S.; Dorniani, D.; Hussein, M.Z.; Fakurazi, S. Improved anticancer effect of magnetite nanocomposite formulation of GALLIC acid (Fe3O4-PEG-GA) against lung, breast and colon cancer cells. Nanomaterials (Basel), 2018, 8(2), E83.
[http://dx.doi.org/10.3390/nano8020083] [PMID: 29393902]
[211]
Tang, W.L.; Tang, W.H.; Szeitz, A.; Kulkarni, J.; Cullis, P.; Li, S.D. Systemic study of solvent-assisted active loading of gambogic acid into liposomes and its formulation optimization for improved delivery. Biomaterials, 2018, 166, 13-26.
[http://dx.doi.org/10.1016/j.biomaterials.2018.03.004] [PMID: 29529479]
[212]
Castillo, P.M.; de la Mata, M.; Casula, M.F.; Sánchez-Alcázar, J.A.; Zaderenko, A.P. PEGylated versus non-PEGylated magnetic nanoparticles as camptothecin delivery system. Beilstein J. Nanotechnol., 2014, 5, 1312-1319.
[http://dx.doi.org/10.3762/bjnano.5.144] [PMID: 25247114]
[213]
Yang, A.; Liu, Z.; Yan, B.; Zhou, M.; Xiong, X. Preparation of camptothecin-loaded targeting nanoparticles and their antitumor effects on hepatocellular carcinoma cell line H22. Drug Deliv., 2016, 23(5), 1699-1706.
[http://dx.doi.org/10.3109/10717544.2014.950767] [PMID: 25148540]
[214]
Zhang, T.; Wang, H.; Ye, Y.; Zhang, X.; Wu, B. Micellar emulsions composed of mPEG-PCL/MCT as novel nanocarriers for systemic delivery of genistein: A comparative study with micelles. Int. J. Nanomedicine, 2015, 10, 6175-6184.
[http://dx.doi.org/10.2147/IJN.S91348] [PMID: 26491290]
[215]
Geor, M.C. Bavanilathamuthiah, Dendrosomal capsaicin nanoformulation for the in vitro anticancer effect on HEP 2 and MCF -7 cell lines. Int. J. Appl. Bioeng., 2015, 9(12), 30-35.
[http://dx.doi.org/10.18000/ijabeg.10133]
[216]
Elkholi, E.I. Evaluation of anti-cancer potential of capsaicin-loaded trimethyl chitosan-based nanoparticles in HepG2 hepatocarcinoma cells. J. Nanomed. Nanotechnol., 2014, 5, 6.
[http://dx.doi.org/10.4172/2157-7439.1000240]
[217]
Odeh, F.; Ismail, S.I.; Abu-Dahab, R.; Mahmoud, I.S.; Al Bawab, A. Thymoquinone in liposomes: A study of loading efficiency and biological activity towards breast cancer. Drug Deliv., 2012, 19(8), 371-377.
[http://dx.doi.org/10.3109/10717544.2012.727500] [PMID: 23043626]
[218]
Sanna, V.; Siddiqui, I.A.; Sechi, M.; Mukhtar, H. Resveratrol-loaded nanoparticles based on poly(epsilon-caprolactone) and poly(D,L-lactic-co-glycolic acid)-poly(ethylene glycol) blend for prostate cancer treatment. Mol. Pharm., 2013, 10(10), 3871-3881.
[http://dx.doi.org/10.1021/mp400342f] [PMID: 23968375]
[219]
Zhou, H.; Liu, X.; Wu, F.; Zhang, J.; Wu, Z.; Yin, H.; Shi, H. Preparation, characterization, and antitumor evaluation of electrospun resveratrol loaded nanofibers. J. Nanomater., 2016, 2016, 5918462.
[http://dx.doi.org/10.1155/2016/5918462]
[220]
Zhang, X.; Tan, Z.; Jia, K.; Zhang, W.; Dang, M. Rabdosia rubescens Linn: Green synthesis of gold nanoparticles and their anticancer effects against human lung cancer cells A549. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 2171-2178.
[http://dx.doi.org/10.1080/21691401.2019.1620249] [PMID: 31159596]
[221]
Tiloke, C.; Anand, K.; Gengan, R.M.; Chuturgoon, A.A. Moringa oleifera and their phytonanoparticles: Potential antiproliferative agents against cancer. Biomed. Pharmacother., 2018, 108, 457-466.
[http://dx.doi.org/10.1016/j.biopha.2018.09.060] [PMID: 30241049]
[222]
Cao, M.; Yan, H.; Han, X.; Weng, L.; Wei, Q.; Sun, X.; Lu, W.; Wei, Q.; Ye, J.; Cai, X.; Hu, C.; Yin, X.; Cao, P. Ginseng-derived nanoparticles alter macrophage polarization to inhibit melanoma growth. J. Immunother. Cancer, 2019, 7(1), 326.
[http://dx.doi.org/10.1186/s40425-019-0817-4] [PMID: 31775862]
[223]
Zheng, D.; Wang, Y.; Zhang, D.; Liu, Z.; Duan, C.; Jia, L.; Wang, F.; Liu, Y.; Liu, G.; Hao, L.; Zhang, Q. In vitro antitumor activity of silybin nanosuspension in PC-3 cells. Cancer Lett., 2011, 307(2), 158-164.
[http://dx.doi.org/10.1016/j.canlet.2011.03.028] [PMID: 21507570]
[224]
Ochi, M.M.; Amoabediny, G.; Rezayat, S.M.; Akbarzadeh, A.; Ebrahimi, B. In vitro co-delivery evaluation of novel pegylated nano-liposomal herbal drugs of silibinin and glycyrrhizic acid (nano-phytosome) to hepatocellular carcinoma cells. Cell J., 2016, 18(2), 135-148.
[http://dx.doi.org/10.22074/cellj.2016.4308] [PMID: 27540518]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy