Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Computational Drug Shifting Towards Drug-Drug Conjugates and Monoclonal Antibody Conjugates in the Contradictory Excursion of Asthma

Author(s): Muhammad Naveed*, Noor-ul-Ain and Muhammad Aqib Shabbir

Volume 20, Issue 9, 2023

Published on: 12 October, 2022

Page: [1219 - 1229] Pages: 11

DOI: 10.2174/1570180819666220422114450

Price: $65

Abstract

Background: Pandemic of COVID-19 has gathered up the surrounding respiratory diseases such as asthma. The need to combat asthma is an unanswerable question nowadays and about 20-30% of people are getting into the trap of asthma.

Objectives: The mechanistic involvement of GPCR receptors in the protuberant signaling pathway such as Neuropeptide S receptor 1 (NPSR1 receptor) acts as a projected entry that needs to be inhibited for the prohibition of asthma.

Methods: Exaggerative G-proteins of NPSR1 receptors are exposed as a target through GPCR modeling to point drug targeting. Three Drug-Drug Conjugates (DDCs) are designed through the combination of nine chemical compounds through methylene bridges and selection was done based on docking energy and ADMET profiling. Designation of three Monoclonal Antibody Conjugates (MACs) is expedited using single monoclonal antibodies, linked through EAAAK linkers and the best conjugate was valued based on docking energy, allergenicity, toxicity, and surface accessibility leading towards cloning and expression.

Results: The best Drug-Drug Conjugate was Fluoroquinolone and 1-Indanone conjugate which possessed -7.7 Kcal/mol docking energy, lipophilicity 6.41, water solubility 1.19e-09 mg/ml, and pharmacokinetics -8.31 cm/s, indicating it to act as best drug candidate. The best Monoclonal Antibody Conjugate was Ustekinumab and Belimumab conjugate which retained -383.1 Kcal/mol docking energy, computed as non-allergen and nontoxic.

Conclusion: The use of MACs and DDCs may prove an effective treatment for lethal diseases like asthma and the future exertion will support the in vitro synthesis delivered in this study of conjugation against bronchial diseases.

Keywords: Asthma, GPCR, NPSR1, drug-drug conjugates, monoclonal-antibody conjugates, drug shifting.

Graphical Abstract
[1]
Hegde, S. Does asthma make COVID-19 worse? Nat. Rev. Immunol., 2020, 20(6), 352-352.
[http://dx.doi.org/10.1038/s41577-020-0324-3] [PMID: 32346090]
[2]
Jartti, T. Role of viruses in asthma. In: Seminars in immunopathology; Springer: Berlin, Heidelberg, 2020; pp. 61-74.
[http://dx.doi.org/10.1007/s00281-020-00781-5]
[3]
Abrams, E.M.; ’t Jong, G.W.; Yang, C.L. Asthma and COVID-19. CMAJ, 2020, 192(20), E551-E551.
[http://dx.doi.org/10.1503/cmaj.200617] [PMID: 32332038]
[4]
Bousquet, J.; Jutel, M.; Akdis, C.A.; Klimek, L.; Pfaar, O.; Nadeau, K.C.; Eiwegger, T.; Bedbrook, A.; Ansotegui, I.J.; Anto, J.M.; Bachert, C.; Bateman, E.D.; Bennoor, K.S.; Berghea, E.C.; Bergmann, K.C.; Blain, H.; Bonini, M.; Bosnic-Anticevich, S.; Boulet, L.P.; Brussino, L.; Buhl, R.; Camargos, P.; Canonica, G.W.; Cardona, V.; Casale, T.; Chinthrajah, S.; Akdis, M.; Chivato, T.; Christoff, G.; Cruz, A.A.; Czarlewski, W.; Del Giacco, S.; Du, H.; El-Gamal, Y.; Fokkens, W.J.; Fonseca, J.A.; Gao, Y.; Gaga, M.; Gemicioglu, B.; Gotua, M.; Haahtela, T.; Halpin, D.; Hamelmann, E.; Hoffmann-Sommergruber, K.; Humbert, M.; Ilina, N.; Ivancevich, J.C.; Joos, G.; Khaitov, M.; Kirenga, B.; Knol, E.F.; Ko, F.W.; Koskinen, S.; Kowalski, M.L.; Kraxner, H.; Kudlay, D.; Kuna, P.; Kupczyk, M.; Kvedariene, V.; Abdul Latiff, A.H.; Le, L.T.; Levin, M.; Larenas-Linnemann, D.; Louis, R.; Masjedi, M.R.; Melén, E.; Mihaltan, F.; Milenkovic, B.; Mohammad, Y.; Morais-Almeida, M.; Mullol, J.; Namazova, L.; Neffen, H.; Nunes, E.; O’Byrne, P.; O’Hehir, R.; O’Mahony, L.; Ohta, K.; Okamoto, Y.; Onorato, G.L.; Panzner, P.; Papadopoulos, N.G.; Passalacqua, G.; Patella, V.; Pawankar, R.; Pham-Thi, N.; Pigearias, B.; Popov, T.A.; Puggioni, F.; Regateiro, F.S.; Rolla, G.; Rottem, M.; Samolinski, B.; Sastre, J.; Schwarze, J.; Sheikh, A.; Scichilone, N.; Soto-Quiros, M.; Soto-Martinez, M.; Sova, M.; Nicola, S.; Stelmach, R.; Suppli-Ulrik, C.; Taborda-Barata, L.; To, T.; Tomazic, P.V.; Toppila-Salmi, S.; Tsiligianni, I.; Usmani, O.; Valiulis, A.; Ventura, M.T.; Viegi, G.; Vontetsianos, T.; Wang, D.Y.; Williams, S.; Wong, G.W.K.; Yorgancioglu, A.; Zernotti, M.; Zidarn, M.; Zuberbier, T.; Agache, I. ARIA‐EAACI statement on asthma and COVID‐19 (June 2, 2020). Allergy, 2021, 76(3), 689-697.
[http://dx.doi.org/10.1111/all.14471] [PMID: 32588922]
[5]
Oates, J.A.; Wood, A.J.J.; Barnes, P.J. A new approach to the treatment of asthma. N. Engl. J. Med., 1989, 321(22), 1517-1527.
[http://dx.doi.org/10.1056/NEJM198911303212206] [PMID: 2572966]
[6]
Carli, G. Is asthma protective against COVID‐19? Allergy, 2021, 76(3), 866-868.
[PMID: 32479648]
[7]
Catley, M.C.; Coote, J.; Bari, M.; Tomlinson, K.L. Monoclonal antibodies for the treatment of asthma. Pharmacol. Ther., 2011, 132(3), 333-351.
[http://dx.doi.org/10.1016/j.pharmthera.2011.09.005] [PMID: 21944943]
[8]
Choi, S-Y.; Ro, H.; Yi, H. A prerequisite for cloning. In: DNA Cloning: A Hands-on Approach,; Springer, 2019; pp. 5-28.
[9]
Choi, Y.J.; Park, J.Y.; Lee, H.S.; Suh, J.; Song, J.Y.; Byun, M.K.; Cho, J.H.; Kim, H.J.; Lee, J.H.; Park, J.W.; Park, H.J. Effect of asthma and asthma medication on the prognosis of patients with COVID-19. Eur. Respir. J., 2021, 57(3), 2002226.
[http://dx.doi.org/10.1183/13993003.02226-2020] [PMID: 32978309]
[10]
Crump, C.; Groves, A.; Sundquist, J.; Sundquist, K. Association of preterm birth with long-term risk of heart failure into adulthood. JAMA Pediatr., 2021, 175(7), 689-697.
[http://dx.doi.org/10.1001/jamapediatrics.2021.0131] [PMID: 33818601]
[11]
Rogliani, P.; Calzetta, L.; Matera, M.G.; Laitano, R.; Ritondo, B.L.; Hanania, N.A.; Cazzola, M. Severe asthma and biological therapy: When, which, and for whom. Pulm. Ther., 2020, 6(1), 47-66.
[http://dx.doi.org/10.1007/s41030-019-00109-1] [PMID: 32048241]
[12]
Dimov, V.V.; Stokes, J.R.; Casale, T.B. Immunomodulators in asthma therapy. Curr. Allergy Asthma Rep., 2009, 9(6), 475-483.
[http://dx.doi.org/10.1007/s11882-009-0070-x] [PMID: 19814921]
[13]
Kaye, L.; Theye, B.; Smeenk, I.; Gondalia, R.; Barrett, M.A.; Stempel, D.A. Changes in medication adherence among patients with asthma and COPD during the COVID-19 pandemic. J. Allergy Clin. Immunol. Pract., 2020, 8(7), 2384-2385.
[http://dx.doi.org/10.1016/j.jaip.2020.04.053] [PMID: 32371047]
[14]
Kavanagh, J.E.; Hearn, A.P.; Dhariwal, J.; d’Ancona, G.; Douiri, A.; Roxas, C.; Fernandes, M.; Green, L.; Thomson, L.; Nanzer, A.M.; Kent, B.D.; Jackson, D.J. Real-world effectiveness of benralizumab in severe eosinophilic asthma. Chest, 2021, 159(2), 496-506.
[http://dx.doi.org/10.1016/j.chest.2020.08.2083] [PMID: 32882249]
[15]
Ortega, H.G.; Liu, M.C.; Pavord, I.D.; Brusselle, G.G.; FitzGerald, J.M.; Chetta, A.; Humbert, M.; Katz, L.E.; Keene, O.N.; Yancey, S.W.; Chanez, P. Mepolizumab treatment in patients with severe eosinophilic asthma. N. Engl. J. Med., 2014, 371(13), 1198-1207.
[http://dx.doi.org/10.1056/NEJMoa1403290] [PMID: 25199059]
[16]
Federhen, S. The NCBI taxonomy database. Nucleic Acids Res., 2012, 40(D1), D136-D143.
[http://dx.doi.org/10.1093/nar/gkr1178] [PMID: 22139910]
[17]
Kooistra, A.J.; Mordalski, S.; Pándy-Szekeres, G.; Esguerra, M.; Mamyrbekov, A.; Munk, C.; Keserű, G.M.; Gloriam, D.E. GPCRdb in 2021: Integrating GPCR sequence, structure and function. Nucleic Acids Res., 2021, 49(D1), D335-D343.
[http://dx.doi.org/10.1093/nar/gkaa1080] [PMID: 33270898]
[18]
Miszta, P.; Pasznik, P.; Jakowiecki, J.; Sztyler, A.; Latek, D.; Filipek, S. GPCRM: A homology modeling web service with triple membrane-fitted quality assessment of GPCR models. Nucleic Acids Res., 2018, 46(W1), W387-W395.
[http://dx.doi.org/10.1093/nar/gky429] [PMID: 29788177]
[19]
Kim, S.; Thiessen, P.A.; Bolton, E.E.; Chen, J.; Fu, G.; Gindulyte, A.; Han, L.; He, J.; He, S.; Shoemaker, B.A.; Wang, J.; Yu, B.; Zhang, J.; Bryant, S.H. PubChem substance and compound databases. Nucleic Acids Res., 2016, 44(D1), D1202-D1213.
[http://dx.doi.org/10.1093/nar/gkv951] [PMID: 26400175]
[20]
Huey, R.; Morris, G.M.; Forli, S. Using AutoDock 4 and AutoDock vina with AutoDockTools: A tutorial. Scripps Res Ins Mol Grap Lab., 2012, 10550, 92037-1000.
[21]
Avhad, D. Molecular docking of chromone derivatives compare with ibuprofen by the part 1 receptors as an anti inflammatory agents. Int. J. Mod. Pharm. Res., 2021, 5(4), 142-146.
[22]
Naveed, M.; Tehreem, S.; Arshad, S.; Bukhari, S.A.; Shabbir, M.A.; Essa, R.; Ali, N.; Zaib, S.; Khan, A.; Al-Harrasi, A.; Khan, I. Design of a novel multiple epitope-based vaccine: An immunoinformatics approach to combat SARS-CoV-2 strains. J. Infect. Public Health, 2021, 14(7), 938-946.
[http://dx.doi.org/10.1016/j.jiph.2021.04.010] [PMID: 34119848]
[23]
López-Blanco, J.R.; Aliaga, J.I.; Quintana-Ortí, E.S.; Chacón, P. iMODS: Internal coordinates normal mode analysis server. Nucleic Acids Res., 2014, 42(W1), W271-W276.
[http://dx.doi.org/10.1093/nar/gku339] [PMID: 24771341]
[24]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[25]
Kozakov, D.; Hall, D.R.; Xia, B.; Porter, K.A.; Padhorny, D.; Yueh, C.; Beglov, D.; Vajda, S. The ClusPro web server for protein–protein docking. Nat. Protoc., 2017, 12(2), 255-278.
[http://dx.doi.org/10.1038/nprot.2016.169] [PMID: 28079879]
[26]
Klausen, M.S.; Jespersen, M.C.; Nielsen, H.; Jensen, K.K.; Jurtz, V.I.; Sønderby, C.K.; Sommer, M.O.A.; Winther, O.; Nielsen, M.; Petersen, B.; Marcatili, P. NetSurfP‐2.0: Improved prediction of protein structural features by integrated deep learning. Proteins, 2019, 87(6), 520-527.
[http://dx.doi.org/10.1002/prot.25674] [PMID: 30785653]
[27]
Dimitrov, I.; Bangov, I.; Flower, D.R.; Doytchinova, I. AllerTOP v.2—a server for in silico prediction of allergens. J. Mol. Model., 2014, 20(6), 2278.
[http://dx.doi.org/10.1007/s00894-014-2278-5] [PMID: 24878803]
[28]
Pan, X.; Tox, D.L. Deep learning using primary structure and domain embeddings for assessing protein toxicity. Bioinformatics, 2021, 36, 5159-5168.
[PMID: 32692832]
[29]
McGuffin, L.J.; Bryson, K.; Jones, D.T. The PSIPRED protein structure prediction server. Bioinformatics, 2000, 16(4), 404-405.
[http://dx.doi.org/10.1093/bioinformatics/16.4.404] [PMID: 10869041]
[30]
Rost, B.; Liu, J. The PredictProtein server. Nucleic Acids Res., 2003, 31(13), 3300-3304.
[http://dx.doi.org/10.1093/nar/gkg508] [PMID: 12824312]
[31]
Laskowski, R.A.; MacArthur, M.W.; Moss, D.S.; Thornton, J.M. PROCHECK: A program to check the stereochemical quality of protein structures. J. Appl. Cryst., 1993, 26(2), 283-291.
[http://dx.doi.org/10.1107/S0021889892009944]
[32]
Singh, A. Deep learning 3D structures. Nat. Methods, 2020, 17(3), 249-249.
[http://dx.doi.org/10.1038/s41592-020-0779-y] [PMID: 32132733]
[33]
Terry, P.D.; Heidel, R.E.; Dhand, R. Asthma in adult patients with COVID-19. prevalence and risk of severe disease. Am. J. Respir. Crit. Care Med., 2021, 203(7), 893-905.
[http://dx.doi.org/10.1164/rccm.202008-3266OC] [PMID: 33493416]
[34]
Sunjaya, A.P. Asthma and risk of infection, hospitalization, ICU admission and mortality from COVID-19: Systematic review and meta-analysis. J. Asthma, 2022, 59(5), 866-879.
[PMID: 33556287]
[35]
Li, J.X.; Fan, L.C.; Li, M.H.; Cao, W.J.; Xu, J.F. Beneficial effects of Omalizumab therapy in allergic bronchopulmonary aspergillosis: A synthesis review of published literature. Respir. Med., 2017, 122, 33-42.
[http://dx.doi.org/10.1016/j.rmed.2016.11.019] [PMID: 27993289]
[36]
Rahman, M.S.; Hoque, M.N.; Islam, M.R.; Akter, S.; Rubayet-Ul-Alam, A.S.M.; Siddique, M.A.; Saha, O.; Rahaman, M.M.; Sultana, M.; Crandall, K.A.; Hossain, M.A. Epitope-based chimeric peptide vaccine design against S, M and E proteins of SARS-CoV-2 etiologic agent of global pandemic COVID-19: An in silico approach. PeerJ, 2020, 8, e9572.
[http://dx.doi.org/10.7717/peerj.9572] [PMID: 33194329]
[37]
Tu, X.; Donovan, C.; Kim, R.Y.; Wark, P.A.B.; Horvat, J.C.; Hansbro, P.M. Asthma-COPD overlap: Current understanding and the utility of experimental models. Eur. Respir. Rev., 2021, 30(159), 190185.
[http://dx.doi.org/10.1183/16000617.0185-2019] [PMID: 33597123]
[38]
Song, J.; Zeng, M.; Wang, H.; Qin, C.; Hou, H.Y.; Sun, Z.Y.; Xu, S.P.; Wang, G.P.; Guo, C.L.; Deng, Y.K.; Wang, Z.C.; Ma, J.; Pan, L.; Liao, B.; Du, Z.H.; Feng, Q.M.; Liu, Y.; Xie, J.G.; Liu, Z. Distinct effects of asthma and COPD comorbidity on disease expression and outcome in patients with COVID‐19. Allergy, 2021, 76(2), 483-496.
[http://dx.doi.org/10.1111/all.14517] [PMID: 32716553]

© 2024 Bentham Science Publishers | Privacy Policy