Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Mini-Review Article

Male Reproductive Dysfunction and Pharmacological Action of Curcumin: A Concise Review

Author(s): Damilare E. Rotimi*, Omowumi T. Kayode and Oluyomi S. Adeyemi

Volume 19, Issue 1, 2023

Published on: 19 August, 2022

Article ID: e210422203911 Pages: 13

DOI: 10.2174/1573407218666220421134543

Open Access Journals Promotions 2
Abstract

Background: Male reproductive dysfunctions are the results of the malfunctioning of one or more cellular components due to several factors, including exposure to heavy metals, reactive oxygen species, smoking and alcohol, genital infection, lifestyle, hormonal disorders, and unhealthy diet. However, it has been widely reported that curcumin possesses pharmacological potential, which could ameliorate the effects of these factors on male reproductive dysfunctions.

Introduction: This review discusses the pharmacological activities of curcumin, its ameliorating effects on male reproductive dysfunction, especially on sperm disorders, steroidogenic toxicity, immune-regulatory activity, apoptotic toxicity, and oxidative toxicity, along with its possible mechanisms regarding male reproductive dysfunction.

Methods: The terms, such as "Curcumin" together with "testis", "sperm", "male reproductive function", and "testosterone", were searched on Google Scholar, Pubmed, and Scopus. Relevant literature was also assessed.

Results: Curcumin was found to mitigate the adverse effects on hormone levels, cellular apoptotic activity, oxidative stress, and histopathological damages. It also inhibited the activation of the mitogen-activated protein kinase (MAPK) pathway, increased semen quality, sperm motility, and concentration, and restored the IL-1β, TNF-α, and MCP-1 levels in the reproductive tissues. Furthermore, curcumin has been shown to increase mRNA, cytoplasmic Bcl-2, 3β-HSD, and 17β- HSD and Nrf2 expression, γ-GCS, and GSH-Px levels, the number of TUNEL-positive cells, and to reduce levels of LDH-x, and LDH activities.

Conclusion: Curcumin exerts pharmacological activities, which improve the male reproductive functions, indicating how curcumin affects various testicular processes. This will be imperative as a measure to enhance male fertility.

Keywords: Antioxidant, curcumin, male reproductive dysfunction, sperm, testis, testosterone.

Graphical Abstract
[1]
Picut, C.A.; Ziejewski, M.K.; Stanislaus, D. Comparative aspects of pre and postnatal development of the male reproductive system. Birth Defects Res., 2018, 110(3), 190-227.
[http://dx.doi.org/10.1002/bdr2.1133] [PMID: 29063715]
[2]
Zhou, W.; De Iuliis, G.N.; Dun, M.D.; Nixon, B. Characteristics of the epididymal luminal environment responsible for sperm maturation and storage. Front. Endocrinol. (Lausanne), 2018, 9, 59.
[http://dx.doi.org/10.3389/fendo.2018.00059] [PMID: 29541061]
[3]
James, E.R.; Carrell, D.T.; Aston, K.I.; Jenkins, T.G.; Yeste, M.; Salas-Huetos, A. The role of the epididymis and the contribution of epididymosomes to mammalian reproduction. Int. J. Mol. Sci., 2020, 21(15), 5377.
[http://dx.doi.org/10.3390/ijms21155377] [PMID: 32751076]
[4]
Olaolu, D.T.; Rotimi, D.E.; Olaolu, A.P. Effect of alcohol infusion of Cissus populnea root on testicular function and serum hormone of male Wistar rats. Asian Pac. J. Reprod., 2018, 7(3), 117-122.
[http://dx.doi.org/10.4103/2305-0500.233572]
[5]
Kayode, O.T.; Rotimi, D.E.; Kayode, A.A.A.; Olaolu, T.D.; Adeyemi, O.S. Monosodium glutamate (MSG)-induced male reproductive dysfunction: a mini review. Toxics, 2020, 8(1), 7.
[http://dx.doi.org/10.3390/toxics8010007] [PMID: 31979139]
[6]
Kayode, O.T.; Rotimi, D.E.; Olaolu, T.D.; Adeyemi, O.S. Ketogenic diet improves and restores redox status and biochemical indices in monosodium glutamate-induced rat testicular toxicity. Biomed. Pharmacother., 2020, 127, 110227.
[http://dx.doi.org/10.1016/j.biopha.2020.110227] [PMID: 32434144]
[7]
Mirzaei, H.; Shakeri, A.; Rashidi, B.; Jalili, A.; Banikazemi, Z.; Sahebkar, A. Phytosomal curcumin: A review of pharmacokinetic, experimental and clinical studies. Biomed. Pharmacother., 2017, 85, 102-112.
[http://dx.doi.org/10.1016/j.biopha.2016.11.098] [PMID: 27930973]
[8]
Mohebbati, R; Anaeigoudari, A; Khazdair, MR The effects of Curcuma longa and curcumin on reproductive systems. Endoc. regul, 2017, 51, (4), 220-8.
[http://dx.doi.org/10.1515/enr-2017-0024]
[9]
Kocaadam, B. Şanlier, N. Curcumin, an active component of turmeric (Curcuma longa), and its effects on health. Crit. Rev. Food Sci. Nutr., 2017, 57(13), 2889-2895.
[http://dx.doi.org/10.1080/10408398.2015.1077195] [PMID: 26528921]
[10]
Akbik, D.; Ghadiri, M.; Chrzanowski, W.; Rohanizadeh, R. Curcumin as a wound healing agent. Life Sci., 2014, 116(1), 1-7.
[http://dx.doi.org/10.1016/j.lfs.2014.08.016] [PMID: 25200875]
[11]
Yadav, D.; Yadav, S.K.; Khar, R.K.; Mujeeb, M.; Akhtar, M. Turmeric (Curcuma longa L.): A promising spice for phytochemical and pharmacological activities. Int. J. Green Pharm., 2013, 7(2), 85.
[http://dx.doi.org/10.4103/0973-8258.116375]
[12]
Qin, S.; Huang, L.; Gong, J.; Shen, S.; Huang, J.; Tang, Y.; Ren, H.; Hu, H. Meta-analysis of randomized controlled trials of 4 weeks or longer suggest that curcumin may afford some protection against oxidative stress. Nutr. Res., 2018, 60, 1-12.
[http://dx.doi.org/10.1016/j.nutres.2018.08.003] [PMID: 30527253]
[13]
Kim, S.H.; Lee, H.S. Acute oral toxicity study of ethanol extract of Curcuma longa L. in mice. J. Life Sci., 2014, 24(10), 1132-1136.
[http://dx.doi.org/10.5352/JLS.2014.24.10.1132]
[14]
Choi, Y.; Ban, I.; Lee, H.; Baik, M.Y.; Kim, W. Puffing as a novel process to enhance the antioxidant and anti-inflammatory properties of Curcuma longa L. (turmeric). Antioxidants, 2019, 8(11), 506.
[http://dx.doi.org/10.3390/antiox8110506] [PMID: 31652746]
[15]
Salzedas, L.M.; Batista, G.T.; Barbalho, S.M. The effects of Curcuma longa in insulin resistance. European J. Med. Plants, 2020, 86-98.
[http://dx.doi.org/10.9734/ejmp/2020/v31i1030286]
[16]
Mollaei, H.; Babaei, E. Therapeutic potential of novel nano-based curcumin compounds in vitro and in vivo. Asian Pac. J. Cancer Prev., 2017, 18(4), 885-888.
[PMID: 28545183]
[17]
Farombi, E.O.; Abarikwu, S.O.; Adedara, I.A.; Oyeyemi, M.O. Curcumin and kolaviron ameliorate di-n-butylphthalate-induced testicular damage in rats. Basic Clin. Pharmacol. Toxicol., 2007, 100(1), 43-48.
[http://dx.doi.org/10.1111/j.1742-7843.2007.00005.x] [PMID: 17214610]
[18]
Mathuria, N.; Verma, R.J. Curcumin ameliorates aflatoxin-induced toxicity in mice spermatozoa. Fertil. Steril., 2008, 90(3), 775-780.
[http://dx.doi.org/10.1016/j.fertnstert.2007.07.1300] [PMID: 18163997]
[19]
Pineau, C. An overview of male reproductive toxicants: facts and opinions. Tox. Chemi. Biol. Age., 2020, 153-174.
[20]
Sidorkiewicz, I. Zaręba, K.; Wołczyński, S.; Czerniecki, J. Endocrine-disrupting chemicals-Mechanisms of action on male reproductive system. Toxicol. Ind. Health, 2017, 33(7), 601-609.
[http://dx.doi.org/10.1177/0748233717695160] [PMID: 28464759]
[21]
Momeni, H.R.; Eskandari, N. Curcumin protects the testis against cadmium-induced histopathological damages and oxidative stress in mice. Hum. Exp. Toxicol., 2020, 39(5), 653-661.
[http://dx.doi.org/10.1177/0960327119895564] [PMID: 31876186]
[22]
Yang, S.H.; He, J.B.; Yu, L.H.; Li, L.; Long, M.; Liu, M.D.; Li, P. Protective role of curcumin in cadmium-induced testicular injury in mice by attenuating oxidative stress via Nrf2/ARE pathway. Environ. Sci. Pollut. Res. Int., 2019, 26(33), 34575-34583.
[http://dx.doi.org/10.1007/s11356-019-06587-9] [PMID: 31650475]
[23]
Salem, N.A.; Alnahdi, H.S.; Ibrahim, G.S. Therapeutic effect of curcumin against nicotine-induced reproductive dysfunction in male rats. J. Innov. Pharm, 2017, 4(4), 26-31.
[24]
Cheraghi, E.; Golkar, A.; Roshanaei, K.; Alani, B. Aluminium-induced oxidative stress, apoptosis and alterations in testicular tissue and sperm quality in Wistar rats: ameliorative effects of curcumin. Int. J. Fertil. Steril., 2017, 11(3), 166-175.
[PMID: 28868838]
[25]
Momeni, H.R.; Eskandari, N. Curcumin inhibits the adverse effects of sodium arsenite in mouse epididymal sperm. Int. J. Fertil. Steril., 2016, 10(2), 245-252.
[PMID: 27441059]
[26]
Khorsandi, L.; Mirhoseini, M.; Mohamadpour, M.; Orazizadeh, M.; Khaghani, S. Effect of curcumin on dexamethasone-induced testicular toxicity in mice. Pharm. Biol., 2013, 51(2), 206-212.
[http://dx.doi.org/10.3109/13880209.2012.716854] [PMID: 23116244]
[27]
Ali, R.I.; Ibrahim, M.A. Malathion induced testicular toxicity and oxidative damage in male mice: the protective effect of curcumin. Egypt. J. Forensic Sci., 2018, 8(1), 1-3.
[28]
Sudjarwo, S.A.; Sudjarwo, G.W. Koerniasari, Protective effect of curcumin on lead acetate-induced testicular toxicity in Wistar rats. Res. Pharm. Sci., 2017, 12(5), 381-390.
[http://dx.doi.org/10.4103/1735-5362.213983] [PMID: 28974976]
[29]
Lonare, M.; Kumar, M.; Raut, S.; More, A.; Doltade, S.; Badgujar, P.; Telang, A. Evaluation of ameliorative effect of curcumin on imidacloprid-induced male reproductive toxicity in wistar rats. Environ. Toxicol., 2016, 31(10), 1250-1263.
[http://dx.doi.org/10.1002/tox.22132] [PMID: 25758541]
[30]
Karimi, S.; Khorsandi, L.; Nejaddehbashi, F. Protective effects of Curcumin on testicular toxicity induced by titanium dioxide nanoparticles in mice. JBRA Assist. Reprod., 2019, 23(4), 344-351.
[http://dx.doi.org/10.5935/1518-0557.20190031] [PMID: 31091065]
[31]
Othman, A.I.; Abdel-Hamid, M. Curcumin mitigates fenthion-induced testicular toxicity in rats: histopathological and immunohistochemical study. Afr. Zool., 2017, 52(4), 209-215.
[http://dx.doi.org/10.1080/15627020.2017.1396194]
[32]
Sony, D.; Latheef, L.; Kamath, K.; Khaled, M.; Wilkins, J.; Kochikuzhyil, B.M.; Baliga, M.S. Turmeric and its principle compound curcumin are effective in the prevention and treatment of arthritis.In: Polyphenols in Human Health and Disease; Academic Press, 2014, pp. 785-789.
[http://dx.doi.org/10.1016/B978-0-12-398456-2.00061-X]
[33]
Alrawaiq, N.S.; Abdullah, A. A review of antioxidant polyphenol curcumin and its role in detoxification. Int. J. Pharm. Tech. Res., 2014, 6(1), 280-289.
[34]
Prasad, S.; Gupta, S.C.; Tyagi, A.K.; Aggarwal, B.B. Curcumin, a component of golden spice: from bedside to bench and back. Biotechnol. Adv., 2014, 32(6), 1053-1064.
[http://dx.doi.org/10.1016/j.biotechadv.2014.04.004] [PMID: 24793420]
[35]
Wanninger, S.; Lorenz, V.; Subhan, A.; Edelmann, F.T. Metal complexes of curcumin--synthetic strategies, structures and medicinal applications. Chem. Soc. Rev., 2015, 44(15), 4986-5002.
[http://dx.doi.org/10.1039/C5CS00088B] [PMID: 25964104]
[36]
Lee, W.H.; Loo, C.Y.; Bebawy, M.; Luk, F.; Mason, R.S.; Rohanizadeh, R. Curcumin and its derivatives: their application in neuropharmacology and neuroscience in the 21st century. Curr. Neuropharmacol., 2013, 11(4), 338-378.
[http://dx.doi.org/10.2174/1570159X11311040002] [PMID: 24381528]
[37]
Noorafshan, A.; Ashkani-Esfahani, S. A review of therapeutic effects of curcumin. Pharmazie, 2013, 19(11), 2032-2046.
[PMID: 23116311]
[38]
Kunnumakkara, A.B.; Bordoloi, D.; Padmavathi, G.; Monisha, J.; Roy, N.K.; Prasad, S.; Aggarwal, B.B. Curcumin, the golden nutraceutical: multitargeting for multiple chronic diseases. Br. J. Pharmacol., 2017, 174(11), 1325-1348.
[http://dx.doi.org/10.1111/bph.13621] [PMID: 27638428]
[39]
Devassy, J.G.; Nwachukwu, I.D.; Jones, P.J. Curcumin and cancer: barriers to obtaining a health claim. Nutr. Rev., 2015, 73(3), 155-165.
[http://dx.doi.org/10.1093/nutrit/nuu064] [PMID: 26024538]
[40]
Ganjali, S.; Blesso, C.N.; Banach, M.; Pirro, M.; Majeed, M.; Sahebkar, A. Effects of curcumin on HDL functionality. Pharm. Res., 2017, 119, 208-218.
[http://dx.doi.org/10.1016/j.phrs.2017.02.008] [PMID: 28192240]
[41]
Deogade, S.C.; Ghate, S. Curcumin: therapeutic applications in systemic and oral health. Int. J. Biol. Pharm. Res., 2015, 6(4), 281-290.
[42]
Dolai, S.; Shi, W.; Corbo, C.; Sun, C.; Averick, S.; Obeysekera, D.; Farid, M.; Alonso, A.; Banerjee, P.; Raja, K. “Clicked” sugar-curcumin conjugate: modulator of amyloid-β and tau peptide aggregation at ultralow concentrations. ACS Chem. Neurosci., 2011, 2(12), 694-699.
[http://dx.doi.org/10.1021/cn200088r] [PMID: 22860163]
[43]
Trujillo, J.; Chirino, Y.I.; Molina-Jijón, E.; Andérica-Romero, A.C.; Tapia, E.; Pedraza-Chaverrí, J. Renoprotective effect of the antioxidant curcumin: Recent findings. Redox Biol., 2013, 1(1), 448-456.
[http://dx.doi.org/10.1016/j.redox.2013.09.003] [PMID: 24191240]
[44]
Korkmaz, F.; Malama, E.; Siuda, M.; Leiding, C.; Bollwein, H. Effects of sodium pyruvate on viability, synthesis of reactive oxygen species, lipid peroxidation and DNA integrity of cryopreserved bovine sperm. Anim. Reprod. Sci., 2017, 185, 18-27.
[http://dx.doi.org/10.1016/j.anireprosci.2017.07.017] [PMID: 28864278]
[45]
Zhao, L.; Gu, Q.; Xiang, L.; Dong, X.; Li, H.; Ni, J.; Wan, L.; Cai, G.; Chen, G. Curcumin inhibits apoptosis by modulating Bax/Bcl-2 expression and alleviates oxidative stress in testes of streptozotocin-induced diabetic rats. Ther. Clin. Risk Manag., 2017, 13, 1099-1105.
[http://dx.doi.org/10.2147/TCRM.S141738] [PMID: 28894373]
[46]
Zha, W.; Bai, Y.; Xu, L.; Liu, Y.; Yang, Z.; Gao, H.; Li, J. Curcumin attenuates testicular injury in rats with streptozotocin-induced diabetes. BioMed Res. Int., 2018, 2018, 7468019.
[http://dx.doi.org/10.1155/2018/7468019] [PMID: 30151389]
[47]
Mu, Y.; Yan, W.J.; Yin, T.L.; Yang, J. Curcumin ameliorates high fat diet induced spermatogenesis dysfunction. Mol. Med. Rep., 2016, 14(4), 3588-3594.
[http://dx.doi.org/10.3892/mmr.2016.5712] [PMID: 27600729]
[48]
Carroll, R.E.; Benya, R.V.; Turgeon, D.K.; Vareed, S.; Neuman, M.; Rodriguez, L.; Kakarala, M.; Carpenter, P.M.; McLaren, C.; Meyskens, F.L., Jr; Brenner, D.E. Phase IIa clinical trial of curcumin for the prevention of colorectal neoplasia. Cancer Prev. Res. (Phila.), 2011, 4(3), 354-364.
[http://dx.doi.org/10.1158/1940-6207.CAPR-10-0098] [PMID: 21372035]
[49]
Liu, F.; Gao, S.; Yang, Y.; Zhao, X.; Fan, Y.; Ma, W.; Yang, D.; Yang, A.; Yu, Y. Antitumor activity of curcumin by modulation of apoptosis and autophagy in human lung cancer A549 cells through inhibiting PI3K/Akt/mTOR pathway. Oncol. Rep., 2018, 39(3), 1523-1531.
[http://dx.doi.org/10.3892/or.2018.6188] [PMID: 29328421]
[50]
Xi, Y.; Gao, H.; Callaghan, M.U.; Fribley, A.M.; Garshott, D.M.; Xu, Z.X.; Zeng, Q.; Li, Y.L. Induction of BCL2-interacting killer, BIK, is mediated for anti-cancer activity of curcumin in human head and neck squamous cell carcinoma cells. J. Cancer, 2015, 6(4), 327-332.
[http://dx.doi.org/10.7150/jca.11185] [PMID: 25767602]
[51]
Feng, S.; Wang, Y.; Zhang, R.; Yang, G.; Liang, Z.; Wang, Z.; Zhang, G. Curcumin exerts its antitumor activity through regulation of miR-7/Skp2/p21 in nasopharyngeal carcinoma cells. OncoTargets Ther., 2017, 10, 2377-2388.
[http://dx.doi.org/10.2147/OTT.S130055] [PMID: 28496336]
[52]
Chen, CC; Sureshbabul, M; Chen, HW; Lin, YS; Lee, JY; Hong, QS; Yang, YC Yu, SL Curcumin suppresses metastasis via Sp-1, FAK inhibition, and E-cadherin upregulation in colorectal cancer. Evid- Based Compl. Alt, 2013, 2013.
[53]
Zhou, D.Y.; Zhang, K.; Conney, A.H.; Ding, N.; Cui, X.X.; Wang, H.; Verano, M.; Zhao, S.Q.; Fan, Y.X.; Zheng, X.; Du, Z.Y. Synthesis and evaluation of curcumin-related compounds containing benzyl piperidone for their effects on human cancer cells. Chem. Pharm. Bull. (Tokyo), 2013, 61(11), 1149-1155.
[http://dx.doi.org/10.1248/cpb.c13-00507] [PMID: 23985704]
[54]
Vallianou, N.G.; Evangelopoulos, A.; Schizas, N.; Kazazis, C. Potential anticancer properties and mechanisms of action of curcumin. Anticancer Res., 2015, 35(2), 645-651.
[PMID: 25667441]
[55]
Mimeault, M.; Batra, S.K. Potential applications of curcumin and its novel synthetic analogs and nanotechnology-based formulations in cancer prevention and therapy. Chin. Med., 2011, 6(1), 31.
[http://dx.doi.org/10.1186/1749-8546-6-31] [PMID: 21859497]
[56]
Jordan, B.C.; Mock, C.D.; Thilagavathi, R.; Selvam, C. Molecular mechanisms of curcumin and its semisynthetic analogues in prostate cancer prevention and treatment. Life Sci., 2016, 152, 135-144.
[http://dx.doi.org/10.1016/j.lfs.2016.03.036] [PMID: 27018446]
[57]
Kasi, P.D.; Tamilselvam, R. Skalicka-Woźniak, K.; Nabavi, S.F.; Daglia, M.; Bishayee, A.; Pazoki-Toroudi, H.; Nabavi, S.M. Molecular targets of curcumin for cancer therapy: an updated review. Tumour Biol., 2016, 37(10), 13017-13028.
[http://dx.doi.org/10.1007/s13277-016-5183-y] [PMID: 27468716]
[58]
Abdollahi, E.; Momtazi, A.A.; Johnston, T.P.; Sahebkar, A. Therapeutic effects of curcumin in inflammatory and immune-mediated diseases: A nature-made jack-of-all-trades? J. Cell. Physiol., 2018, 233(2), 830-848.
[http://dx.doi.org/10.1002/jcp.25778] [PMID: 28059453]
[59]
Shakeri, F.; Boskabady, M.H. Anti-inflammatory, antioxidant, and immunomodulatory effects of curcumin in ovalbumin-sensitized rat. Biofactors, 2017, 43(4), 567-576.
[http://dx.doi.org/10.1002/biof.1364] [PMID: 28509396]
[60]
Liu, Y.; Chen, L.; Shen, Y.; Tan, T.; Xie, N.; Luo, M.; Li, Z.; Xie, X. Curcumin ameliorates ischemia-induced limb injury through immunomodulation. Med. Sci. Monit., 2016, 22, 2035-2042.
[http://dx.doi.org/10.12659/MSM.896217] [PMID: 27302110]
[61]
Xun, W.; Shi, L.; Zhou, H.; Hou, G.; Cao, T.; Zhao, C. Effects of curcumin on growth performance, jejunal mucosal membrane integrity, morphology and immune status in weaned piglets challenged with enterotoxigenic Escherichia coli. Int. Immunopharmacol., 2015, 27(1), 46-52.
[http://dx.doi.org/10.1016/j.intimp.2015.04.038] [PMID: 25937483]
[62]
Lee, G.; Chung, H.S.; Lee, K.; Lee, H.; Kim, M.; Bae, H. Curcumin attenuates the scurfy-induced immune disorder, a model of IPEX syndrome, with inhibiting Th1/Th2/Th17 responses in mice. Phytomedicine, 2017, 33, 1-6.
[http://dx.doi.org/10.1016/j.phymed.2017.01.008] [PMID: 28887914]
[63]
Shehzad, A.; Rehman, G.; Lee, Y.S. Curcumin in inflammatory diseases. Biofactors, 2013, 39(1), 69-77.
[http://dx.doi.org/10.1002/biof.1066] [PMID: 23281076]

© 2024 Bentham Science Publishers | Privacy Policy