Generic placeholder image

Current Bioinformatics

Editor-in-Chief

ISSN (Print): 1574-8936
ISSN (Online): 2212-392X

Research Article

Tensor Decomposition Based on Global Features and Sparse Structure for Analyzing Cancer Multiomics Data

Author(s): Hang-Jin Yang, Ying-Lian Gao, Xiang-Zhen Kong and Jin-Xing Liu*

Volume 17, Issue 10, 2022

Published on: 17 October, 2022

Page: [946 - 957] Pages: 12

DOI: 10.2174/1574893617666220421101459

Price: $65

Abstract

Background: There are correlations between the multiple types of data stored in the tensor space. The matrix formed by the data in the high-dimensional space is of low rank. Therefore, the potential association between genes and cancers can be explored in low-rank space. Tensor robust principal component analysis (TRPCA) is used to extract information by obtaining coefficient tensors with low-rank representation. In practical applications, global features and sparse structure are ignored, which leads to incomplete analysis.

Objective: This paper proposes an adaptive reweighted TRPCA method (ARTRPCA) to explore cancer subtypes and identify conjoint abnormally expressed genes (CAEGs).

Methods: ARTRCA analyzes data based on adaptive learning of primary information. Meanwhile, the weighting scheme based on singular value updates is used to learn global features in low-rank space. The reweighted I1 algorithm is based on prior knowledge, which is used to learn about sparse structures. Moreover, the sparsity threshold of Gaussian entries has been increased to reduce the influence of outliers.

Results: In the experiment of sample clustering, ARTRPCA has obtained promising experimental results. The identified CAEGs are pathogenic genes of various cancers or are highly expressed in specific cancers.

Conclusion: The ATRPCA method has shown excellent application prospects in cancer multiomics data.

Keywords: Tensor singular values, global features, sparse structure, reweighted algorithm, TRPCA, CAEGs.

Graphical Abstract
[1]
Cong F, Lin Q-H, Kuang L-D, Gong X-F, Astikainen P, Ristaniemi T. Tensor decomposition of EEG signals: a brief review. J Neurosci Methods 2015; 248: 59-69.
[http://dx.doi.org/10.1016/j.jneumeth.2015.03.018] [PMID: 25840362]
[2]
Cichocki A, Mandic D, Lathauwer LD, et al. Tensor Decompositions for Signal Processing Applications: From two-way to multiway component analysis. IEEE Signal Process Mag 2015; 32(2): 145-63.
[http://dx.doi.org/10.1109/MSP.2013.2297439]
[3]
Miao J, Kou KI, Liu W. Low-rank quaternion tensor completion for recovering color videos and images. Pattern Recognit 2020; 107: 107505.
[http://dx.doi.org/10.1016/j.patcog.2020.107505]
[4]
Lu C, Feng J, Chen Y, Liu W, Lin Z, Yan S. Tensor robust principal component analysis with a new tensor nuclear norm. IEEE Trans Pattern Anal Mach Intell 2020; 42(4): 925-38.
[http://dx.doi.org/10.1109/TPAMI.2019.2891760] [PMID: 30629495]
[5]
Zhou B, Zhang F, Peng L. Background modeling for dynamic scenes using tensor decomposition. 2016; 6th International Conference on Electronics Information and Emergency Communication (ICEIEC) 206-10.
[6]
Zeng H, Xie X, Cui H, Yin H, Ning J. Hyperspectral image restoration via global L 1-2 spatial–spectral total variation regularized local low-rank tensor recovery. IEEE Trans Geosci Remote Sens 2021; 59(4): 3309-25.
[http://dx.doi.org/10.1109/TGRS.2020.3007945]
[7]
Chen Y, Wang S, Zhou Y. Tensor nuclear norm-based low-rank approximation with total variation regularization. IEEE J Sel Top Signal Process 2018; 12(6): 1364-77.
[http://dx.doi.org/10.1109/JSTSP.2018.2873148]
[8]
Poot DHJ, Klein S. Detecting statistically significant differences in quantitative MRI experiments, applied to diffusion tensor imaging. IEEE Trans Med Imaging 2015; 34(5): 1164-76.
[http://dx.doi.org/10.1109/TMI.2014.2380830] [PMID: 25532168]
[9]
Roohi SF, Zonoobi D, Kassim AA, Jaremko JL. Dynamic MRI reconstruction using low rank plus sparse tensor decomposition. 2016; IEEE International Conference on Image Processing (ICIP) 1769-73.
[http://dx.doi.org/10.1109/ICIP.2016.7532662]
[10]
Hu Y, Liu J-X, Gao Y-L, Li S-J, Wang J. Differentially expressed genes extracted by the Tensor Robust Principal Component Analysis (TRPCA) method. Complexity 2019; 2019: 1-13.
[http://dx.doi.org/10.1155/2019/6136245]
[11]
Hu Y, Liu J-X, Gao Y-L, Shang J. DSTPCA: Double-sparse constrained tensor principal component analysis method for feature selection. IEEE/ACM Trans Comput Biol Bioinformatics 2021; 18(4): 1481-91.
[http://dx.doi.org/10.1109/TCBB.2019.2943459] [PMID: 31562100]
[12]
Kolda TG, Bader BW. Tensor decompositions and applications. SIAM Rev 2009; 51(3): 455-500.
[http://dx.doi.org/10.1137/07070111X]
[13]
Silva Vd, Lim L-H. Tensor rank and the Ill-posedness of the best low-rank approximation problem. SIAM J Matrix Anal Appl 2008; 30(3): 1084-127.
[http://dx.doi.org/10.1137/06066518X]
[14]
Liu Y, Shang F, Cheng H, Cheng J, Tong H. Factor matrix trace norm minimization for low-rank tensor completion. Proceedings of the 2014 SIAM International Conference on Data Mining. 866-74.
[15]
Zhao Q, Zhang L, Cichocki A, Bayesian CP. Bayesian CP factorization of incomplete tensors with automatic rank determination. IEEE Trans Pattern Anal Mach Intell 2015; 37(9): 1751-63.
[http://dx.doi.org/10.1109/TPAMI.2015.2392756] [PMID: 26353124]
[16]
Yokota T, Zhao Q, Cichocki A. Smooth PARAFAC decomposition for tensor completion. IEEE Trans Signal Process 2016; 64(20): 5423-36.
[http://dx.doi.org/10.1109/TSP.2016.2586759]
[17]
Liu Y, Shang F, Jiao L, Cheng J, Cheng H. Trace norm regularized CANDECOMP/PARAFAC Decomposition With Missing Data. IEEE Trans Cybern 2015; 45(11): 2437-48.
[http://dx.doi.org/10.1109/TCYB.2014.2374695] [PMID: 26470059]
[18]
Acar E, Dunlavy DM, Kolda TG, Mørup M. Scalable tensor factorizations for incomplete data. Chemom Intell Lab Syst 2011; 106(1): 41-56.
[http://dx.doi.org/10.1016/j.chemolab.2010.08.004]
[19]
Friedland S, Lim L-H. Nuclear norm of higher-order tensors. Math Comput 2017; 87(311): 1255-81.
[http://dx.doi.org/10.1090/mcom/3239]
[20]
Zhang Z, Ely G, Aeron S, Hao N, Kilmer M. Novel methods for multilinear data completion and de-noising based on tensor-SVD. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 3842-9.
[http://dx.doi.org/10.1109/CVPR.2014.485]
[21]
Liu J, Musialski P, Wonka P, Ye J. Tensor completion for estimating missing values in visual data. IEEE Trans Pattern Anal Mach Intell 2013; 35(1): 208-20.
[http://dx.doi.org/10.1109/TPAMI.2012.39] [PMID: 22271823]
[22]
Mu C, Huang B, Wright J, Goldfarb D. Square deal: Lower bounds and improved relaxations for tensor recovery. International Conference on Machine Learning. 73-81.
[23]
Liu Y, Shang F, Fan W, Cheng J, Cheng H. Generalized higher order orthogonal iteration for tensor learning and decomposition. IEEE Trans Neural Netw Learn Syst 2016; 27(12): 2551-63.
[http://dx.doi.org/10.1109/TNNLS.2015.2496858] [PMID: 26595932]
[24]
Han Z-F, Leung C-S, Huang L-T, So HC. Sparse and truncated nuclear norm based tensor completion. Neural Process Lett 2017; 45(3): 729-43.
[http://dx.doi.org/10.1007/s11063-016-9503-4]
[25]
Gu S, Zhang L, Zuo W, Feng X. Weighted nuclear norm minimization with application to image denoising. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2862-9.
[http://dx.doi.org/10.1109/CVPR.2014.366]
[26]
Hosono K, Ono S, Miyata T. Weighted tensor nuclear norm minimization for color image denoising. 2016; IEEE International Conference on Image Processing 3081-5.
[http://dx.doi.org/10.1109/ICIP.2016.7532926]
[27]
Zhang Z, Aeron S. Exact tensor completion using t-SVD. IEEE Trans Signal Process 2017; 65(6): 1511-26.
[http://dx.doi.org/10.1109/TSP.2016.2639466]
[28]
Liu X-Y, Aeron S, Aggarwal V, Wang X. Low-tubal-rank tensor completion using alternating minimization. IEEE Trans Inf Theory 2020; 66(3): 1714-37.
[http://dx.doi.org/10.1109/TIT.2019.2959980]
[29]
Lu C, Feng J, Chen Y, Liu W, Lin Z, Yan S. Tensor robust principal component analysis: Exact recovery of corrupted low-rank tensors via convex optimization. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 5249-7.
[http://dx.doi.org/10.1109/CVPR.2016.567]
[30]
Hu W, Tao D, Zhang W, Xie Y, Yang Y. The twist tensor nuclear norm for video completion. IEEE Trans Neural Netw Learn Syst 2017; 28(12): 2961-73.
[http://dx.doi.org/10.1109/TNNLS.2016.2611525] [PMID: 27705868]
[31]
Yuan L, Zhao Q, Gui L, Cao J. High-dimension tensor completion via gradient-based optimization under tensor-train format 2018.
[32]
Kong H, Xie X, Lin Z. t-Schatten- $p$ Norm for Low-Rank Tensor Recovery. IEEE J Sel Top Signal Process 2018; 12(6): 1405-19.
[http://dx.doi.org/10.1109/JSTSP.2018.2879185]
[33]
Jiang T-X, Huang T-Z, Zhao X-L, Deng L-J. Multi-dimensional imaging data recovery via minimizing the partial sum of tubal nuclear norm. J Comput Appl Math 2020; 372: 112680.
[http://dx.doi.org/10.1016/j.cam.2019.112680]
[34]
Du Y, Han G, Quan Y, et al. Exploiting Global Low-Rank Structure and Local Sparsity Nature for Tensor Completion. IEEE Trans Cybern 2019; 49(11): 3898-910.
[http://dx.doi.org/10.1109/TCYB.2018.2853122] [PMID: 30047919]
[35]
Xu W, Khajehnejad MA, Avestimehr AS, Hassibi B. Breaking through the thresholds: an analysis for iterative reweighted ℓ 1 minimization via the Grassmann angle framework. 2010 IEEE International Conference on Acoustics, Speech and Signal Processing. 5498-01.
[http://dx.doi.org/10.1109/ICASSP.2010.5495210]
[36]
Wang H, Cen Y, He Z, He Z, Zhao R, Zhang F. Reweighted low-rank matrix analysis with structural smoothness for image denoising. IEEE Trans Image Process 2018; 27(4): 1777-92.
[http://dx.doi.org/10.1109/TIP.2017.2781425] [PMID: 29346094]
[37]
Beck A, Teboulle M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J Imaging Sci 2009; 2(1): 183-202.
[http://dx.doi.org/10.1137/080716542]
[38]
Liu Y, Chen L, Zhu C. Improved robust tensor principal component analysis via low-rank core matrix. IEEE J Sel Top Signal Process 2018; 12(6): 1378-89.
[http://dx.doi.org/10.1109/JSTSP.2018.2873142]
[39]
Lin Z, Liu R, Su Z. Linearized alternating direction method with adaptive penalty for low-rank representation 2011.
[40]
Li Z, Li X, Li C, et al. Transcription factor OCT4 promotes cell cycle progression by regulating CCND1 expression in esophageal carcinoma. Cancer Lett 2014; 354(1): 77-86.
[http://dx.doi.org/10.1016/j.canlet.2014.07.049] [PMID: 25128069]
[41]
Holley SL, Parkes G, Matthias C, et al. Cyclin D1 polymorphism and expression in patients with squamous cell carcinoma of the head and neck. Am J Pathol 2001; 159(5): 1917-24.
[http://dx.doi.org/10.1016/S0002-9440(10)63038-6] [PMID: 11696452]
[42]
Schneeberger C, Eder S, Swoboda H, Ullrich R, Zeillinger R. A differential PCR system for the determination of CCND1 (cyclin D1) gene amplification in head and neck squamous cell carcinomas. Oral Oncol 1998; 34(4): 257-60.
[http://dx.doi.org/10.1016/S1368-8375(98)80004-3] [PMID: 9813719]
[43]
Terrinoni A, Dell’Arciprete R, Fornaro M, Stella M, Alberti S. Cyclin D1 gene contains a cryptic promoter that is functional in human cancer cells. Genes Chromosomes Cancer 2001; 31(3): 209-20.
[http://dx.doi.org/10.1002/gcc.1137] [PMID: 11391791]
[44]
He T, Mo A, Zhang K, Liu L. ABCB1/MDR1 gene polymorphism and colorectal cancer risk: a meta-analysis of case-control studies. Colorectal Dis 2013; 15(1): 12-8.
[http://dx.doi.org/10.1111/j.1463-1318.2012.02919.x] [PMID: 23279665]
[45]
Yamamoto A, Shofuda T, Islam MO, et al. ABCB1 is predominantly expressed in human fetal neural stem/progenitor cells at an early development stage. J Neurosci Res 2009; 87(12): 2615-23.
[http://dx.doi.org/10.1002/jnr.22094] [PMID: 19384922]
[46]
Wu C-P, Hung T-H, Hsiao S-H, et al. Erdafitinib Resensitizes ABCB1-Overexpressing Multidrug-Resistant Cancer Cells to Cytotoxic Anticancer Drugs. Cancers (Basel) 2020; 12(6): E1366.
[http://dx.doi.org/10.3390/cancers12061366] [PMID: 32466597]
[47]
von Mässenhausen A, Franzen A, Heasley L, Perner S. FGFR1 as a novel prognostic and predictive biomarker in squamous cell cancers of the lung and the head and neck area. Ann Transl Med 2013; 1(3): 23-3.
[PMID: 25332967]
[48]
Yang X, Wang H, Xie E, et al. Rewiring ERBB3 and ERK signaling confers resistance to FGFR1 inhibition in gastrointestinal cancer harbored an ERBB3-E928G mutation. Protein Cell 2020; 11(12): 915-20.
[http://dx.doi.org/10.1007/s13238-020-00749-z] [PMID: 32632529]
[49]
Tomlinson DC, Knowles MA. Altered splicing of FGFR1 is associated with high tumor grade and stage and leads to increased sensitivity to FGF1 in bladder cancer. Am J Pathol 2010; 177(5): 2379-86.
[http://dx.doi.org/10.2353/ajpath.2010.100354] [PMID: 20889570]
[50]
Singh AB. EGFR-signaling and autophagy: how they fit in the cancer landscape. J Adenocarcinoma 2016; 1(2): 9.
[http://dx.doi.org/10.21767/2572-309X.100009] [PMID: 30370422]
[51]
Thomas R, Weihua Z. Rethink of EGFR in cancer with its kinase independent function on board. Front Oncol 2019; 9: 800-0.
[http://dx.doi.org/10.3389/fonc.2019.00800] [PMID: 31508364]
[52]
Birkeland AC, Yanik M, Tillman BN, et al. Identification of targetable ERBB2 aberrations in head and neck squamous cell carcinoma. JAMA Otolaryngol Head Neck Surg 2016; 142(6): 559-67.
[http://dx.doi.org/10.1001/jamaoto.2016.0335] [PMID: 27077364]
[53]
Arrington AK, Davydova J, Vickers SM, Yamamoto M. Anti-ERBB2 sh-RNA suppress both cell growth and tumor growth in ERBB2-overexpressing upper gastrointestinal adenocarcinomas. J Gastrointest Surg 2009; 13(10): 1754-61.
[http://dx.doi.org/10.1007/s11605-009-0957-9] [PMID: 19813066]
[54]
Valtorta E, Martino C, Sartore-Bianchi A, et al. Assessment of a HER2 scoring system for colorectal cancer: results from a validation study. Mod Pathol 2015; 28(11): 1481-91.
[http://dx.doi.org/10.1038/modpathol.2015.98] [PMID: 26449765]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy