Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Insights into the Cellular Interactions and Molecular Mechanisms of Ketogenic Diet for Comprehensive Management of Epilepsy

Author(s): Amit Kumar, Savita Kumari and Damanpreet Singh*

Volume 20, Issue 11, 2022

Published on: 03 September, 2022

Page: [2034 - 2049] Pages: 16

DOI: 10.2174/1570159X20666220420130109

Price: $65

Abstract

A high-fat diet with appropriate protein and low carbohydrate content, widely known as the ketogenic diet (KD), is considered as an effective non-pharmacotherapeutic treatment option for certain types of epilepsies. Several preclinical and clinical studies have been carried out to elucidate its mechanism of antiepileptic action. Ketone bodies produced after KD's breakdown interact with cellular excito-inhibitory processes and inhibit abnormal neuronal firing. The generated ketone bodies decrease glutamate release by inhibiting the vesicular glutamate transporter 1 and alter the transmembrane potential by hyperpolarization. Apart from their effect on the well-known pathogenic mechanisms of epilepsy, some recent studies have shown the interaction of KD metabolites with novel neuronal targets, particularly adenosine receptors, adenosine triphosphate-sensitive potassium channel, mammalian target of rapamycin, histone deacetylase, hydroxycarboxylic acid receptors, and the NLR family pyrin domain containing 3 inflammasomes to suppress seizures. The role of KD in augmenting gut microbiota as a potential mechanism for epileptic seizure suppression has been established. Furthermore, some recent findings also support the beneficial effect of KD against epilepsy- associated comorbidities. Despite several advantages of the KD in epilepsy management, its use is also associated with a wide range of side effects. Hypoglycemia, excessive ketosis, acidosis, renal stones, cardiomyopathies, and other metabolic disturbances are the primary adverse effects observed with the use of KD. However, in some recent studies, modified KD has been tested with lesser side effects and better tolerability. The present review discusses the molecular mechanism of KD and its role in managing epilepsy and its associated comorbidities.

Keywords: Epilepsy-associated comorbidities, gut microbiota, mammalian target for rapamycin, medium-chain triglyceride, neuronal activity, vesicular glutamate transporters.

Graphical Abstract
[1]
Zavala-Tecuapetla, C.; Cuellar-Herrera, M.; Luna-Munguia, H. Insights into potential targets for therapeutic intervention in epilepsy. Int. J. Mol. Sci., 2020, 21(22), 8573.
[http://dx.doi.org/10.3390/ijms21228573] [PMID: 33202963]
[2]
Russ, S.A.; Larson, K.; Halfon, N. A national profile of childhood epilepsy and seizure disorder. Pediatrics, 2012, 129(2), 256-264.
[http://dx.doi.org/10.1542/peds.2010-1371] [PMID: 22271699]
[3]
St Louis, E.K. Minimizing AED adverse effects: Improving quality of life in the interictal state in epilepsy care. Curr. Neuropharmacol., 2009, 7(2), 106-114.
[http://dx.doi.org/10.2174/157015909788848857] [PMID: 19949568]
[4]
St Louis, E.K.; Rosenfeld, W.E.; Bramley, T. Antiepileptic drug monotherapy: The initial approach in epilepsy management. Curr. Neuropharmacol., 2009, 7(2), 77-82.
[http://dx.doi.org/10.2174/157015909788848866] [PMID: 19949565]
[5]
Sankaraneni, R.; Lachhwani, D. Antiepileptic drugs--a review. Pediatr. Ann., 2015, 44(2), e36-e42.
[http://dx.doi.org/10.3928/00904481-20150203-10] [PMID: 25658217]
[6]
Luszczki, J.J.; Borowicz, K.K.; Swiader, M.; Czuczwar, S.J. Interactions between oxcarbazepine and conventional antiepileptic drugs in the maximal electroshock test in mice: An isobolographic analysis. Epilepsia, 2003, 44(4), 489-499.
[http://dx.doi.org/10.1046/j.1528-1157.2003.32702.x] [PMID: 12680997]
[7]
Matsuo, F.; Bergen, D.; Faught, E.; Messenheimer, J.A.; Dren, A.T.; Rudd, G.D.; Lineberry, C.G. Placebo-controlled study of the efficacy and safety of lamotrigine in patients with partial seizures. U.S. Lamotrigine Protocol 0.5 Clinical Trial Group. Neurology, 1993, 43(11), 2284-2291.
[http://dx.doi.org/10.1212/WNL.43.11.2284] [PMID: 8232944]
[8]
Elshorbagy, H.H.; Barseem, N.F.; Suliman, H.A.; Talaat, E. AlSHOKARY, A.H.; Abdelghani, W.E.; Abdulsamea, S.E.; Maksoud, Y.H.A.; Azab, S.M.; Elsadek, A.E.; Nour El Din, D.M. The impact of antiepileptic drugs on thyroid function in children with Epilepsy: New versus old. Iran. J. Child. Neurol., 2020, 14(1), 31-41.
[PMID: 32021626]
[9]
Kwan, P.; Arzimanoglou, A.; Berg, A.T.; Brodie, M.J.; Allen Hauser, W.; Mathern, G.; Moshé, S.L.; Perucca, E.; Wiebe, S.; French, J. Def-inition of drug resistant epilepsy: Consensus proposal by the ad hoc Task Force of the ILAE Commission on Therapeutic Strategies. Epilepsia, 2010, 51(6), 1069-1077.
[http://dx.doi.org/10.1111/j.1528-1167.2009.02397.x] [PMID: 19889013]
[10]
Reddy, D.S.; Golub, V.M. The pharmacological basis of cannabis therapy for epilepsy. J. Pharmacol. Exp. Ther., 2016, 357(1), 45-55.
[http://dx.doi.org/10.1124/jpet.115.230151] [PMID: 26787773]
[11]
Guekht, A. Epilepsy, comorbidities and treatments. Curr. Pharm. Des., 2017, 23(37), 5702-5726.
[http://dx.doi.org/10.2174/1381612823666171009144400] [PMID: 28990527]
[12]
Dawit, S.; Crepeau, A.Z. When drugs do not work: Alternatives to antiseizure medications. Curr. Neurol. Neurosci. Rep., 2020, 20(9), 37.
[http://dx.doi.org/10.1007/s11910-020-01061-3] [PMID: 32648170]
[13]
Swink, T.D.; Vining, E.P.; Freeman, J.M. The ketogenic diet: 1997. Adv. Pediatr., 1997, 44, 297-329.
[PMID: 9265974]
[14]
Saxena, V.S.; Nadkarni, V.V. Nonpharmacological treatment of epilepsy. Ann. Indian Acad. Neurol., 2011, 14(3), 148-152.
[http://dx.doi.org/10.4103/0972-2327.85870] [PMID: 22028523]
[15]
Walczyk, T.; Wick, J.Y. The ketogenic diet: Making a comeback. Consult Pharm., 2017, 32(7), 388-396.
[http://dx.doi.org/10.4140/TCP.n.2017.388] [PMID: 28701250]
[16]
Boison, D. Ketogenic Diet, Inflammation, and Epilepsy.In: Inflammation and Epilepsy: New Vistas; Springer: Cham, 2021, pp. 185-201.
[http://dx.doi.org/10.1007/978-3-030-67403-8_8]
[17]
de Kinderen, R.J.; Lambrechts, D.A.; Postulart, D.; Kessels, A.G.; Hendriksen, J.G.; Aldenkamp, A.P.; Evers, S.M.; Majoie, M.H. Re-search into the (Cost-) effectiveness of the ketogenic diet among children and adolescents with intractable epilepsy: Design of a random-ized controlled trial. BMC Neurol., 2011, 11(1), 10.
[http://dx.doi.org/10.1186/1471-2377-11-10] [PMID: 21262002]
[18]
Veech, R.L. The therapeutic implications of ketone bodies: The effects of ketone bodies in pathological conditions: Ketosis, ketogenic diet, redox states, insulin resistance, and mitochondrial metabolism. Prostaglandins Leukot. Essent. Fatty Acids, 2004, 70(3), 309-319.
[http://dx.doi.org/10.1016/j.plefa.2003.09.007] [PMID: 14769489]
[19]
Kverneland, M.; Taubøll, E.; Molteberg, E.; Veierød, M.B.; Selmer, K.K.; Nakken, K.O.; Iversen, P.O. Pharmacokinetic interaction be-tween modified Atkins diet and antiepileptic drugs in adults with drug-resistant epilepsy. Epilepsia, 2019, 60(11), 2235-2244.
[http://dx.doi.org/10.1111/epi.16364] [PMID: 31602644]
[20]
Abdelmoity, A.T.; Le Pichon, J.B.; Abdelmoity, S.A.; Sherman, A.K.; Hall, A.S.; Abdelmoity, A.T. Combined use of the ketogenic diet and vagus nerve stimulation in pediatric drug-resistant epilepsy. Epilepsia Open, 2021, 6(1), 112-119.
[http://dx.doi.org/10.1002/epi4.12453] [PMID: 33681654]
[21]
Lambrechts, D.A.J.E.; Bovens, M.J.M.; de la Parra, N.M.; Hendriksen, J.G.M.; Aldenkamp, A.P.; Majoie, M.J.M. Ketogenic diet effects on cognition, mood, and psychosocial adjustment in children. Acta Neurol. Scand., 2013, 127(2), 103-108.
[http://dx.doi.org/10.1111/j.1600-0404.2012.01686.x] [PMID: 22690843]
[22]
Ghazavi, A.; Tonekaboni, S.H.; Karimzadeh, P.; Nikibakhsh, A.A.; Khajeh, A.; Fayyazi, A. The ketogenic and atkins diets effect on intrac-table epilepsy: A comparison. Iran. J. Child. Neurol., 2014, 8(3), 12-17.
[PMID: 25143768]
[23]
Wells, J.; Swaminathan, A.; Paseka, J.; Hanson, C. Efficacy and safety of a ketogenic diet in children and adolescents with refractory epi-lepsy-A review. Nutrients, 2020, 12(6), 1809.
[http://dx.doi.org/10.3390/nu12061809] [PMID: 32560503]
[24]
Greene, A.E.; Todorova, M.T.; McGowan, R.; Seyfried, T.N. Caloric restriction inhibits seizure susceptibility in epileptic EL mice by re-ducing blood glucose. Epilepsia, 2001, 42(11), 1371-1378.
[http://dx.doi.org/10.1046/j.1528-1157.2001.17601.x] [PMID: 11879337]
[25]
Fedorovich, S.V.; Voronina, P.P.; Waseem, T.V. Ketogenic diet versus ketoacidosis: What determines the influence of ketone bodies on neurons? Neural Regen. Res., 2018, 13(12), 2060-2063.
[http://dx.doi.org/10.4103/1673-5374.241442] [PMID: 30323121]
[26]
Rothman, S.M.; Griffioen, K.J.; Wan, R.; Mattson, M.P. Brain-derived neurotrophic factor as a regulator of systemic and brain energy metabolism and cardiovascular health. Ann. N. Y. Acad. Sci., 2012, 1264(1), 49-63.
[http://dx.doi.org/10.1111/j.1749-6632.2012.06525.x] [PMID: 22548651]
[27]
Mao, T.; Wei, Q.; Zhao, F.; Zhang, C. Short-term fasting reshapes fat tissue. Endocr. J., 2021, 68(4), 387-398.
[http://dx.doi.org/10.1507/endocrj.EJ20-0405] [PMID: 33441502]
[28]
Grajower, M.M.; Horne, B.D. Clinical management of intermittent fasting in patients with diabetes mellitus. Nutrients, 2019, 11(4), 873.
[http://dx.doi.org/10.3390/nu11040873] [PMID: 31003482]
[29]
Lee, J.; Seroogy, K.B.; Mattson, M.P. Dietary restriction enhances neurotrophin expression and neurogenesis in the hippocampus of adult mice. J. Neurochem., 2002, 80(3), 539-547.
[http://dx.doi.org/10.1046/j.0022-3042.2001.00747.x] [PMID: 11905999]
[30]
Augustin, K.; Khabbush, A.; Williams, S.; Eaton, S.; Orford, M.; Cross, J.H.; Heales, S.J.R.; Walker, M.C.; Williams, R.S.B. Mechanisms of action for the medium-chain triglyceride ketogenic diet in neurological and metabolic disorders. Lancet Neurol., 2018, 17(1), 84-93.
[http://dx.doi.org/10.1016/S1474-4422(17)30408-8] [PMID: 29263011]
[31]
Sikder, K.; Shukla, S.K.; Patel, N.; Singh, H.; Rafiq, K. High fat diet upregulates fatty acid oxidation and ketogenesis via intervention of PPAR- γ. Cell. Physiol. Biochem., 2018, 48(3), 1317-1331.
[http://dx.doi.org/10.1159/000492091] [PMID: 30048968]
[32]
Freeman, J.M.; Kelly, M.T.; Freeman, J.B. The epilepsy diet treatment: An introduction to the ketogenic diet; 1996.
[33]
Pitkänen, A.; Lukasiuk, K. Mechanisms of epileptogenesis and potential treatment targets. Lancet Neurol., 2011, 10(2), 173-186.
[http://dx.doi.org/10.1016/S1474-4422(10)70310-0] [PMID: 21256455]
[34]
Weber, D.J.; Moeller, J.J. J. Epilepsy education: Recent advances and future directions. Curr. Neurol. Neurosci. Rep., 2019, 19(6), 35.
[http://dx.doi.org/10.1007/s11910-019-0946-7] [PMID: 31123986]
[35]
Quek, A.M.; Britton, J.W.; McKeon, A.; So, E.; Lennon, V.A.; Shin, C.; Klein, C.; Watson, R.E., Jr; Kotsenas, A.L.; Lagerlund, T.D.; Cas-cino, G.D.; Worrell, G.A.; Wirrell, E.C.; Nickels, K.C.; Aksamit, A.J.; Noe, K.H.; Pittock, S.J. Autoimmune epilepsy: Clinical characteris-tics and response to immunotherapy. Arch. Neurol., 2012, 69(5), 582-593.
[http://dx.doi.org/10.1001/archneurol.2011.2985] [PMID: 22451162]
[36]
D’Andrea Meira, I.; Romão, T.T.; Pires do Prado, H.J.; Krüger, L.T.; Pires, M.E.P.; da Conceição, P.O. Ketogenic diet and epilepsy: What we know so far. Front. Neurosci., 2019, 13, 5.
[http://dx.doi.org/10.3389/fnins.2019.00005] [PMID: 30760973]
[37]
Bjurulf, B.; Magnus, P.; Hallböök, T.; Strømme, P. Potassium citrate and metabolic acidosis in children with epilepsy on the ketogenic diet: A prospective controlled study. Dev. Med. Child Neurol., 2020, 62(1), 57-61.
[http://dx.doi.org/10.1111/dmcn.14393] [PMID: 31745987]
[38]
Liu, Y.M.C.; Williams, S.; Basualdo-Hammond, C.; Stephens, D.; Curtis, R. A prospective study: Growth and nutritional status of children treated with the ketogenic diet. J. Am. Diet. Assoc., 2003, 103(6), 707-712.
[http://dx.doi.org/10.1053/jada.2003.50136] [PMID: 12778041]
[39]
Sondhi, V.; Agarwala, A.; Pandey, R.M.; Chakrabarty, B.; Jauhari, P.; Lodha, R.; Toteja, G.S.; Sharma, S.; Paul, V.K.; Kossoff, E.; Gulati, S. Efficacy of ketogenic diet, modified atkins diet, and low glycemic index therapy diet among children with drug-resistant epilepsy: A randomized clinical trial. JAMA Pediatr., 2020, 174(10), 944-951.
[http://dx.doi.org/10.1001/jamapediatrics.2020.2282] [PMID: 32761191]
[40]
Kverneland, M.; Molteberg, E.; Iversen, P.O.; Veierød, M.B.; Taubøll, E.; Selmer, K.K.; Nakken, K.O. Effect of modified Atkins diet in adults with drug-resistant focal epilepsy: A randomized clinical trial. Epilepsia, 2018, 59(8), 1567-1576.
[http://dx.doi.org/10.1111/epi.14457] [PMID: 29901816]
[41]
Schwartz, R.M.; Boyes, S.; Aynsley-Green, A. Metabolic effects of three ketogenic diets in the treatment of severe epilepsy. Dev. Med. Child Neurol., 1989, 31(2), 152-160.
[http://dx.doi.org/10.1111/j.1469-8749.1989.tb03973.x] [PMID: 2661288]
[42]
Guzel, O.; Uysal, U.; Arslan, N. Efficacy and tolerability of olive oil-based ketogenic diet in children with drug-resistant epilepsy: A single center experience from Turkey. Eur. J. Paediatr. Neurol., 2019, 23(1), 143-151.
[http://dx.doi.org/10.1016/j.ejpn.2018.11.007] [PMID: 30497921]
[43]
Wang, B.H.; Hou, Q.; Lu, Y.Q.; Jia, M.M.; Qiu, T.; Wang, X.H.; Zhang, Z.X.; Jiang, Y. Ketogenic diet attenuates neuronal injury via au-tophagy and mitochondrial pathways in pentylenetetrazol-kindled seizures. Brain Res., 2018, 1678, 106-115.
[http://dx.doi.org/10.1016/j.brainres.2017.10.009] [PMID: 29056525]
[44]
Law, T.H.; Davies, E.S.; Pan, Y.; Zanghi, B.; Want, E.; Volk, H.A. A randomised trial of a medium-chain TAG diet as treatment for dogs with idiopathic epilepsy. Br. J. Nutr., 2015, 114(9), 1438-1447.
[http://dx.doi.org/10.1017/S000711451500313X] [PMID: 26337751]
[45]
Maciejak, P.; Szyndler, J. Turzyń;ska, D.; Sobolewska, A.; Koł;osowska, K.; Krzą;ś;cik, P.; Pł;aź;nik, A. Is the interaction between fatty acids and tryptophan responsible for the efficacy of a ketogenic diet in epilepsy? The new hypothesis of action. Neuroscience, 2016, 313, 130-148.
[http://dx.doi.org/10.1016/j.neuroscience.2015.11.029] [PMID: 26601775]
[46]
Thavendiranathan, P.; Mendonca, A.; Dell, C.; Likhodii, S.S.; Musa, K.; Iracleous, C.; Cunnane, S.C.; Burnham, W.M. The MCT ketogenic diet: Effects on animal seizure models. Exp. Neurol., 2000, 161(2), 696-703.
[http://dx.doi.org/10.1006/exnr.1999.7298] [PMID: 10686088]
[47]
Sanya, E.O.; Soladoye, A.O.; Desalu, O.O.; Kolo, P.M.; Olatunji, L.A.; Olarinoye, J.K. Antiseizure effects of ketogenic diet on seizures induced with pentylenetetrazole, 4-aminopyridine and strychnine in Wistar rats. Niger. J. Physiol. Sci., 2017, 31(2), 115-119.
[PMID: 28262846]
[48]
Zarnowska, I.; Luszczki, J.J.; Zarnowski, T.; Wlaz, P.; Czuczwar, S.J.; Gasior, M. Proconvulsant effects of the ketogenic diet in electro-shock-induced seizures in mice. Metab. Brain Dis., 2017, 32(2), 351-358.
[http://dx.doi.org/10.1007/s11011-016-9900-4] [PMID: 27644408]
[49]
Jeong, E.A.; Jeon, B.T.; Shin, H.J.; Kim, N.; Lee, D.H.; Kim, H.J.; Kang, S.S.; Cho, G.J.; Choi, W.S.; Roh, G.S. Ketogenic diet-induced peroxisome proliferator-activated receptor-γ; activation decreases neuroinflammation in the mouse hippocampus after kainic acid-induced seizures. Exp. Neurol., 2011, 232(2), 195-202.
[http://dx.doi.org/10.1016/j.expneurol.2011.09.001] [PMID: 21939657]
[50]
Titre-Johnson, S.; Schoeler, N.; Eltze, C.; Williams, R.; Vezyroglou, K.; McCullagh, H.; Freemantle, N.; Heales, S.; Kneen, R.; Marston, L.; Martland, T.; Nazareth, I.; Neal, E.; Lux, A.; Parker, A.; Agrawal, S.; Fallon, P.; Cross, J.H. Ketogenic diet in the treatment of epilepsy in children under the age of 2 years: Study protocol for a randomised controlled trial. Trials, 2017, 18(1), 195.
[http://dx.doi.org/10.1186/s13063-017-1918-3] [PMID: 28446244]
[51]
Lauritzen, F.; Eid, T.; Bergersen, L.H. Monocarboxylate transporters in temporal lobe epilepsy: Roles of lactate and ketogenic diet. Brain Struct. Funct., 2015, 220(1), 1-12.
[http://dx.doi.org/10.1007/s00429-013-0672-x] [PMID: 24248427]
[52]
Campbell, I.; Campbell, H. Mechanisms of insulin resistance, mitochondrial dysfunction and the action of the ketogenic diet in bipolar disorder. Focus on the PI3K/AKT/HIF1-a pathway. Med. Hypotheses, 2020, 145, 110299.
[http://dx.doi.org/10.1016/j.mehy.2020.110299] [PMID: 33091780]
[53]
Motamedi, S.; Karimi, I.; Jafari, F. The interrelationship of metabolic syndrome and neurodegenerative diseases with focus on brain-derived neurotrophic factor (BDNF): Kill two birds with one stone. Metab. Brain Dis., 2017, 32(3), 651-665.
[http://dx.doi.org/10.1007/s11011-017-9997-0] [PMID: 28361262]
[54]
McDaniel, S.S.; Rensing, N.R.; Thio, L.L.; Yamada, K.A.; Wong, M. The ketogenic diet inhibits the mammalian target of rapamycin (mTOR) pathway. Epilepsia, 2011, 52(3), e7-e11.
[http://dx.doi.org/10.1111/j.1528-1167.2011.02981.x] [PMID: 21371020]
[55]
Mazumder, A.G.; Padwad, Y.S.; Singh, D. Anticancer mammalian target of rapamycin (mTOR) signaling pathway inhibitors: Current sta-tus, challenges and future prospects in management of epilepsy. CNS Neurol. Disord. Drug Targets, 2016, 15(8), 945-955.
[http://dx.doi.org/10.2174/1871527315666160615022203] [PMID: 27306063]
[56]
Kumari, S.; Sharma, P.; Mazumder, A.G.; Rana, A.K.; Sharma, S.; Singh, D. Development and validation of chemical kindling in adult zebrafish: A simple and improved chronic model for screening of antiepileptic agents. J. Neurosci. Methods, 2020, 346, 108916.
[http://dx.doi.org/10.1016/j.jneumeth.2020.108916] [PMID: 32818549]
[57]
Rogawski, M.A.; Löscher, W.; Rho, J.M. Mechanisms of action of antiseizure drugs and the ketogenic diet. Cold Spring Harb. Perspect. Med., 2016, 6(5), a022780.
[http://dx.doi.org/10.1101/cshperspect.a022780] [PMID: 26801895]
[58]
Boison, D. New insights into the mechanisms of the ketogenic diet. Curr. Opin. Neurol., 2017, 30(2), 187-192.
[http://dx.doi.org/10.1097/WCO.0000000000000432] [PMID: 28141738]
[59]
Rho, J.M.; Anderson, G.D.; Donevan, S.D.; White, H.S. Acetoacetate, acetone, and dibenzylamine (a contaminant in l-(+)-β;-hydroxybutyrate) exhibit direct anticonvulsant actions in vivo. Epilepsia, 2002, 43(4), 358-361.
[http://dx.doi.org/10.1046/j.1528-1157.2002.47901.x] [PMID: 11952765]
[60]
Neves, G.S.; Lunardi, M.S.; Lin, K.; Rieger, D.K.; Ribeiro, L.C.; Moreira, J.D. Ketogenic diet, seizure control, and cardiometabolic risk in adult patients with pharmacoresistant epilepsy: A review. Nutr. Rev., 2021, 79(8), 931-944.
[PMID: 33230563]
[61]
Qi, X.; Tester, R.F. The ‘epileptic diet’- ketogenic and/or slow release of glucose intervention: A review. Clin. Nutr., 2020, 39(5), 1324-1330.
[http://dx.doi.org/10.1016/j.clnu.2019.05.026] [PMID: 31227228]
[62]
Luna-Munguia, H.; Zestos, A.G.; Gliske, S.V.; Kennedy, R.T.; Stacey, W.C. Chemical biomarkers of epileptogenesis and ictogenesis in experimental epilepsy. Neurobiol. Dis., 2019, 121, 177-186.
[http://dx.doi.org/10.1016/j.nbd.2018.10.005] [PMID: 30304705]
[63]
Lee, S.E.; Lee, Y.; Lee, G.H. The regulation of glutamic acid decarboxylases in GABA neurotransmission in the brain. Arch. Pharm. Res., 2019, 42(12), 1031-1039.
[http://dx.doi.org/10.1007/s12272-019-01196-z] [PMID: 31786745]
[64]
Simeone, T.A.; Simeone, K.A.; Rho, J.M. Ketone bodies as anti-seizure agents. Neurochem. Res., 2017, 42(7), 2011-2018.
[http://dx.doi.org/10.1007/s11064-017-2253-5] [PMID: 28397070]
[65]
Masino, S.A.; Rho, J.M. Mechanisms of ketogenic diet action. In: Jasper's Basic Mechanisms of the Epilepsies, 4th edition; Noebels, J.L.; Avoli, M.; Rogawski, M.A.; Olsen, R.W.; Delgado-Escueta, A.V., Eds.; National Center for Biotechnology Information (US): Bethesda (MD), 2012.
[PMID: 22787591]
[66]
Guerriero, R.M.; Giza, C.C.; Rotenberg, A. Glutamate and GABA imbalance following traumatic brain injury. Curr. Neurol. Neurosci. Rep., 2015, 15(5), 27.
[http://dx.doi.org/10.1007/s11910-015-0545-1] [PMID: 25796572]
[67]
DiNuzzo, M.; Mangia, S.; Maraviglia, B.; Giove, F. Physiological bases of the K+ and the glutamate/GABA hypotheses of epilepsy. Epilepsy Res., 2014, 108(6), 995-1012.
[http://dx.doi.org/10.1016/j.eplepsyres.2014.04.001] [PMID: 24818957]
[68]
Yum, M.S. Lee, M.; Woo, D.C.; Kim, D.W.; Ko, T.S.; Velíšek, L.; D’Agostino, D.; Planavsky, N.; Lupfer, C.; Kanneganti, T.D.; Kang, S.; Horvath, T.L.; Yum, M.S.; Lee, M.; Woo, D.C.; Kim, D.W.; Ko, T.S.; Velíšek, L. β;-Hydroxybutyrate attenuates NMDA-induced spasms in rats with evidence of neuronal stabilization on MR spectroscopy. Epilepsy Res., 2015, 117, 125-132.
[http://dx.doi.org/10.1016/j.eplepsyres.2015.08.005] [PMID: 26452206]
[69]
Halassa, M.M.; Haydon, P.G. Integrated brain circuits: Astrocytic networks modulate neuronal activity and behavior. Annu. Rev. Physiol., 2010, 72(1), 335-355.
[http://dx.doi.org/10.1146/annurev-physiol-021909-135843] [PMID: 20148679]
[70]
Baron, A.; Lingueglia, E. Pharmacology of acid-sensing ion channels - Physiological and therapeutical perspectives. Neuropharmacology, 2015, 94, 19-35.
[http://dx.doi.org/10.1016/j.neuropharm.2015.01.005] [PMID: 25613302]
[71]
Cao, Q.; Wang, W.; Gu, J.; Jiang, G.; Wang, K.; Xu, Z.; Li, J.; Chen, G.; Wang, X. Elevated expression of acid-sensing ion channel 3 inhib-its epilepsy via activation of interneurons. Mol. Neurobiol., 2016, 53(1), 485-498.
[http://dx.doi.org/10.1007/s12035-014-9014-0] [PMID: 25476599]
[72]
Zhu, F.; Shan, W.; Xu, Q.; Guo, A.; Wu, J.; Wang, Q. Ketone bodies inhibit the opening of acid-sensing ion channels (ASICs) in rat hippo-campal excitatory neurons in vitro. Front. Neurol., 2019, 10, 155.
[http://dx.doi.org/10.3389/fneur.2019.00155] [PMID: 30915014]
[73]
Waldbaum, S.; Patel, M. Mitochondria, oxidative stress, and temporal lobe epilepsy. Epilepsy Res., 2010, 88(1), 23-45.
[http://dx.doi.org/10.1016/j.eplepsyres.2009.09.020] [PMID: 19850449]
[74]
Aguiar, C.C.; Almeida, A.B.; Araújo, P.V.; de Abreu, R.N.; Chaves, E.M.; do Vale, O.C.; Macêdo, D.S.; Woods, D.J.; Fonteles, M.M.; Vasconcelos, S.M. Oxidative stress and epilepsy: Literature review. Oxid. Med. Cell. Longev., 2012, 2012, 795259.
[http://dx.doi.org/10.1155/2012/795259] [PMID: 22848783]
[75]
Puttachary, S.; Sharma, S.; Stark, S.; Thippeswamy, T. Seizure-induced oxidative stress in temporal lobe epilepsy. BioMed Res. Int., 2015, 2015, 745613.
[http://dx.doi.org/10.1155/2015/745613] [PMID: 25650148]
[76]
Borowicz-Reutt, K.K.; Czuczwar, S.J. Role of oxidative stress in epileptogenesis and potential implications for therapy. Pharmacol. Rep., 2020, 72(5), 1218-1226.
[http://dx.doi.org/10.1007/s43440-020-00143-w] [PMID: 32865811]
[77]
Shin, E.J.; Jeong, J.H.; Chung, Y.H.; Kim, W.K.; Ko, K.H.; Bach, J.H.; Hong, J.S.; Yoneda, Y.; Kim, H.C. Role of oxidative stress in epilep-tic seizures. Neurochem. Int., 2011, 59(2), 122-137.
[http://dx.doi.org/10.1016/j.neuint.2011.03.025] [PMID: 21672578]
[78]
Parfenova, H.; Carratu, P.; Tcheranova, D.; Fedinec, A.; Pourcyrous, M.; Leffler, C.W. Epileptic seizures cause extended postictal cerebral vascular dysfunction that is prevented by HO-1 overexpression. Am. J. Physiol. Heart Circ. Physiol., 2005, 288(6), H2843-H2850.
[http://dx.doi.org/10.1152/ajpheart.01274.2004] [PMID: 15681702]
[79]
Li, G.; Bauer, S.; Nowak, M.; Norwood, B.; Tackenberg, B.; Rosenow, F.; Knake, S.; Oertel, W.H.; Hamer, H.M. Cytokines and epilepsy. Seizure, 2011, 20(3), 249-256.
[http://dx.doi.org/10.1016/j.seizure.2010.12.005] [PMID: 21216630]
[80]
Waldbaum, S.; Patel, M. Mitochondrial dysfunction and oxidative stress: A contributing link to acquired epilepsy? J. Bioenerg. Biomembr., 2010, 42(6), 449-455.
[http://dx.doi.org/10.1007/s10863-010-9320-9] [PMID: 21132357]
[81]
Kim, D.Y.; Davis, L.M.; Sullivan, P.G.; Maalouf, M.; Simeone, T.A.; van Brederode, J.; Rho, J.M. Ketone bodies are protective against oxidative stress in neocortical neurons. J. Neurochem., 2007, 101(5), 1316-1326.
[http://dx.doi.org/10.1111/j.1471-4159.2007.04483.x] [PMID: 17403035]
[82]
Paoli, A.; Bianco, A.; Damiani, E.; Bosco, G. Ketogenic diet in neuromuscular and neurodegenerative diseases. BioMed Res. Int., 2014, 2014, 474296.
[http://dx.doi.org/10.1155/2014/474296] [PMID: 25101284]
[83]
Noh, H.S.; Hah, Y.S.; Nilufar, R.; Han, J.; Bong, J.H.; Kang, S.S.; Cho, G.J.; Choi, W.S. Acetoacetate protects neuronal cells from oxidative glutamate toxicity. J. Neurosci. Res., 2006, 83(4), 702-709.
[http://dx.doi.org/10.1002/jnr.20736] [PMID: 16435389]
[84]
Haces, M.L.; Hernández-Fonseca, K.; Medina-Campos, O.N.; Montiel, T.; Pedraza-Chaverri, J.; Massieu, L. Antioxidant capacity contrib-utes to protection of ketone bodies against oxidative damage induced during hypoglycemic conditions. Exp. Neurol., 2008, 211(1), 85-96.
[http://dx.doi.org/10.1016/j.expneurol.2007.12.029] [PMID: 18339375]
[85]
Greco, T.; Glenn, T.C.; Hovda, D.A.; Prins, M.L. Ketogenic diet decreases oxidative stress and improves mitochondrial respiratory com-plex activity. J. Cereb. Blood Flow Metab., 2016, 36(9), 1603-1613.
[http://dx.doi.org/10.1177/0271678X15610584] [PMID: 26661201]
[86]
Ziegler, D.R.; Ribeiro, L.C.; Hagenn, M.; Siqueira, I.R.; Araújo, E.; Torres, I.L.; Gottfried, C.; Netto, C.A.; Gonçalves, C.A. Ketogenic diet increases glutathione peroxidase activity in rat hippocampus. Neurochem. Res., 2003, 28(12), 1793-1797.
[http://dx.doi.org/10.1023/A:1026107405399] [PMID: 14649719]
[87]
Folbergrová, J.; Kunz, W.S. Mitochondrial dysfunction in epilepsy. Mitochondrion, 2012, 12(1), 35-40.
[http://dx.doi.org/10.1016/j.mito.2011.04.004] [PMID: 21530687]
[88]
Tinker, A.; Aziz, Q.; Thomas, A. The role of ATP-sensitive potassium channels in cellular function and protection in the cardiovascular system. Br. J. Pharmacol., 2014, 171(1), 12-23.
[http://dx.doi.org/10.1111/bph.12407] [PMID: 24102106]
[89]
Blondeau, N.; Widmann, C.; Lazdunski, M.; Heurteaux, C. Polyunsaturated fatty acids induce ischemic and epileptic tolerance. Neuroscience, 2002, 109(2), 231-241.
[http://dx.doi.org/10.1016/S0306-4522(01)00473-0] [PMID: 11801360]
[90]
Zorova, L.D.; Popkov, V.A.; Plotnikov, E.Y.; Silachev, D.N.; Pevzner, I.B.; Jankauskas, S.S.; Babenko, V.A.; Zorov, S.D.; Balakireva, A.V.; Juhaszova, M.; Sollott, S.J.; Zorov, D.B. Mitochondrial membrane potential. Anal. Biochem., 2018, 552, 50-59.
[http://dx.doi.org/10.1016/j.ab.2017.07.009] [PMID: 28711444]
[91]
Giménez-Cassina, A.; Martínez-François, J.R.; Fisher, J.K.; Szlyk, B.; Polak, K.; Wiwczar, J.; Tanner, G.R.; Lutas, A.; Yellen, G.; Danial, N.N. BAD-dependent regulation of fuel metabolism and K(ATP) channel activity confers resistance to epileptic seizures. Neuron, 2012, 74(4), 719-730.
[http://dx.doi.org/10.1016/j.neuron.2012.03.032] [PMID: 22632729]
[92]
Yamada, K.; Ji, J.J.; Yuan, H.; Miki, T.; Sato, S.; Horimoto, N.; Shimizu, T.; Seino, S.; Inagaki, N. Protective role of ATP-sensitive potas-sium channels in hypoxia-induced generalized seizure. Science, 2001, 292(5521), 1543-1546.
[http://dx.doi.org/10.1126/science.1059829] [PMID: 11375491]
[93]
Sun, H.S.; Feng, Z.P.; Miki, T.; Seino, S.; French, R.J. Enhanced neuronal damage after ischemic insults in mice lacking Kir6.2-containing ATP-sensitive K+ channels. J. Neurophysiol., 2006, 95(4), 2590-2601.
[http://dx.doi.org/10.1152/jn.00970.2005] [PMID: 16354731]
[94]
Weltha, L.; Reemmer, J.; Boison, D. The role of adenosine in epilepsy. Brain Res. Bull., 2019, 151, 46-54.
[http://dx.doi.org/10.1016/j.brainresbull.2018.11.008] [PMID: 30468847]
[95]
Canas, P.M.; Porciúncula, L.O.; Simões, A.P.; Augusto, E.; Silva, H.B.; Machado, N.J.; Gonçalves, N.; Alfaro, T.M.; Gonçalves, F.Q.; Araújo, I.M.; Real, J.I.; Coelho, J.E.; Andrade, G.M.; Almeida, R.D.; Chen, J.F.; Köfalvi, A.; Agostinho, P.; Cunha, R.A. Neuronal adeno-sine A2A receptors are critical mediators of neurodegeneration triggered by convulsions. eNeuro, 2018, 5(6), 5.
[http://dx.doi.org/10.1523/ENEURO.0385-18.2018] [PMID: 30627646]
[96]
Boison, D. Adenosine dysfunction in epilepsy. Glia, 2012, 60(8), 1234-1243.
[http://dx.doi.org/10.1002/glia.22285] [PMID: 22700220]
[97]
Haas, H.L.; Selbach, O. Functions of neuronal adenosine receptors. Naunyn Schmiedebergs Arch. Pharmacol., 2000, 362(4-5), 375-381.
[http://dx.doi.org/10.1007/s002100000314] [PMID: 11111831]
[98]
Masino, S.A.; Li, T.; Theofilas, P.; Sandau, U.S.; Ruskin, D.N.; Fredholm, B.B.; Geiger, J.D.; Aronica, E.; Boison, D. A ketogenic diet suppresses seizures in mice through adenosine A₁; receptors. J. Clin. Invest., 2011, 121(7), 2679-2683.
[http://dx.doi.org/10.1172/JCI57813] [PMID: 21701065]
[99]
Sheth, S.; Brito, R.; Mukherjea, D.; Rybak, L.P.; Ramkumar, V. Adenosine receptors: Expression, function and regulation. Int. J. Mol. Sci., 2014, 15(2), 2024-2052.
[http://dx.doi.org/10.3390/ijms15022024] [PMID: 24477263]
[100]
Brunner, B.; Ari, C.; D’Agostino, D.P.; Kovács, Z. Adenosine receptors modulate the exogenous ketogenic supplement-evoked alleviating effect on lipopolysaccharide-generated increase in absence epileptic activity in WAG/Rij rats. Nutrients, 2021, 13(11), 4082.
[http://dx.doi.org/10.3390/nu13114082] [PMID: 34836344]
[101]
Shao, L.R.; Rho, J.M.; Stafstrom, C.E. Glycolytic inhibition: A novel approach toward controlling neuronal excitability and seizures. Epilepsia Open, 2018, 3((Suppl)(Suppl. 2)), 191-197.
[http://dx.doi.org/10.1002/epi4.12251] [PMID: 30564778]
[102]
Pinchefsky, E.F.; Hahn, C.D.; Kamino, D.; Chau, V.; Brant, R.; Moore, A.M.; Tam, E.W.Y. Hyperglycemia and glucose variability are associated with worse brain function and seizures in neonatal encephalopathy: A prospective cohort study. J. Pediatr., 2019, 209, 23-32.
[http://dx.doi.org/10.1016/j.jpeds.2019.02.027] [PMID: 30982528]
[103]
Kalsbeek, A.; la Fleur, S.; Fliers, E. Circadian control of glucose metabolism. Mol. Metab., 2014, 3(4), 372-383.
[http://dx.doi.org/10.1016/j.molmet.2014.03.002] [PMID: 24944897]
[104]
Stafstrom, C.E.; Ockuly, J.C.; Murphree, L.; Valley, M.T.; Roopra, A.; Sutula, T.P. Anticonvulsant and antiepileptic actions of 2-deoxy-D-glucose in epilepsy models. Ann. Neurol., 2009, 65(4), 435-447.
[http://dx.doi.org/10.1002/ana.21603] [PMID: 19399874]
[105]
Vilalta, A.; Brown, G.C. Deoxyglucose prevents neurodegeneration in culture by eliminating microglia. J. Neuroinflammation, 2014, 11(1), 58.
[http://dx.doi.org/10.1186/1742-2094-11-58] [PMID: 24669778]
[106]
Marsan, E.; Baulac, S. Review: Mechanistic target of rapamycin (mTOR) pathway, focal cortical dysplasia and epilepsy. Neuropathol. Appl. Neurobiol., 2018, 44(1), 6-17.
[http://dx.doi.org/10.1111/nan.12463] [PMID: 29359340]
[107]
Nguyen, L.H.; Mahadeo, T.; Bordey, A. mTOR hyperactivity levels influence the severity of epilepsy and associated neuropathology in an experimental model of tuberous sclerosis complex and focal cortical dysplasia. J. Neurosci., 2019, 39(14), 2762-2773.
[http://dx.doi.org/10.1523/JNEUROSCI.2260-18.2019] [PMID: 30700531]
[108]
Inoki, K.; Corradetti, M.N.; Guan, K.L. Dysregulation of the TSC-mTOR pathway in human disease. Nat. Genet., 2005, 37(1), 19-24.
[http://dx.doi.org/10.1038/ng1494] [PMID: 15624019]
[109]
Mazumder, A.G.; Kumari, S.; Singh, D. Anticonvulsant action of a selective phosphatidylinositol-3-kinase inhibitor LY294002 in pen-tylenetetrazole-mediated convulsions in zebrafish. Epilepsy Res., 2019, 157, 106207.
[http://dx.doi.org/10.1016/j.eplepsyres.2019.106207] [PMID: 31563029]
[110]
Curatolo, P.; Moavero, R.; de Vries, P.J. Neurological and neuropsychiatric aspects of tuberous sclerosis complex. Lancet Neurol., 2015, 14(7), 733-745.
[http://dx.doi.org/10.1016/S1474-4422(15)00069-1] [PMID: 26067126]
[111]
Koene, L.M.C.; van Grondelle, S.E.; Proietti Onori, M.; Wallaard, I.; Kooijman, N.H.R.M.; van Oort, A.; Schreiber, J.; Elgersma, Y. Effects of antiepileptic drugs in a new TSC/mTOR-dependent epilepsy mouse model. Ann. Clin. Transl. Neurol., 2019, 6(7), 1273-1291.
[http://dx.doi.org/10.1002/acn3.50829] [PMID: 31353861]
[112]
Liu, H.; Huang, J.; Liu, H.; Li, F.; Peng, Q.; Liu, C. Effects of ketogenic diet containing medium-chain fatty acids on serum inflammatory factor and mTOR signaling pathway in rats. Chem. Biol. Technol. Agric., 2020, 7.
[http://dx.doi.org/10.1186/s40538-020-00194-4]
[113]
Warren, E.C.; Dooves, S.; Lugarà, E.; Damstra-Oddy, J.; Schaf, J.; Heine, V.M.; Walker, M.C.; Williams, R.S.B. Decanoic acid inhibits mTORC1 activity independent of glucose and insulin signaling. Proc. Natl. Acad. Sci. USA, 2020, 117(38), 23617-23625.
[http://dx.doi.org/10.1073/pnas.2008980117] [PMID: 32879008]
[114]
Wang, J.; Huang, J.; Yao, S.; Wu, J.H.; Li, H.B.; Gao, F.; Wang, Y.; Huang, G.B.; You, Q.L.; Li, J.; Chen, X.; Sun, X.D. The ketogenic diet increases Neuregulin 1 expression via elevating histone acetylation and its anti-seizure effect requires ErbB4 kinase activity. Cell Biosci., 2021, 11(1), 93.
[http://dx.doi.org/10.1186/s13578-021-00611-7] [PMID: 34020711]
[115]
Wang, X.; Wu, X.; Liu, Q.; Kong, G.; Zhou, J.; Jiang, J.; Wu, X.; Huang, Z.; Su, W.; Zhu, Q. Ketogenic metabolism inhibits histone deacetylase (HDAC) and reduces oxidative stress after spinal cord injury in rats. Neuroscience, 2017, 366, 36-43.
[http://dx.doi.org/10.1016/j.neuroscience.2017.09.056] [PMID: 29024787]
[116]
Chang, P.; Terbach, N.; Plant, N.; Chen, P.E.; Walker, M.C.; Williams, R.S. Seizure control by ketogenic diet-associated medium chain fatty acids. Neuropharmacology, 2013, 69, 105-114.
[http://dx.doi.org/10.1016/j.neuropharm.2012.11.004] [PMID: 23177536]
[117]
Shen, H.H.; Yang, Y.X.; Meng, X.; Luo, X.Y.; Li, X.M.; Shuai, Z.W.; Ye, D.Q.; Pan, H.F. NLRP3: A promising therapeutic target for auto-immune diseases. Autoimmun. Rev., 2018, 17(7), 694-702.
[http://dx.doi.org/10.1016/j.autrev.2018.01.020] [PMID: 29729449]
[118]
Shippy, D.C. Wilhelm, C.; Viharkumar, P.A.; Raife, T.J.; Ulland, T.K. β;-Hydroxybutyrate inhibits inflammasome activation to attenuate Alzheimer’s disease pathology. J. Neuroinflammation, 2020, 17(1), 280.
[http://dx.doi.org/10.1186/s12974-020-01948-5] [PMID: 32958021]
[119]
Guo, M.; Wang, X.; Zhao, Y.; Yang, Q.; Ding, H.; Dong, Q.; Chen, X.; Cui, M. Ketogenic diet improves brain ischemic tolerance and inhib-its NLRP3 inflammasome activation by preventing Drp1-mediated mitochondrial fission and endoplasmic reticulum stress. Front. Mol. Neurosci., 2018, 11, 86.
[http://dx.doi.org/10.3389/fnmol.2018.00086] [PMID: 29662437]
[120]
Dahlin, M.; Prast-Nielsen, S. The gut microbiome and epilepsy. EBioMedicine, 2019, 44, 741-746.
[http://dx.doi.org/10.1016/j.ebiom.2019.05.024] [PMID: 31160269]
[121]
Grenham, S.; Clarke, G.; Cryan, J.F.; Dinan, T.G. Brain-gut-microbe communication in health and disease. Front. Physiol., 2011, 2, 94.
[http://dx.doi.org/10.3389/fphys.2011.00094] [PMID: 22162969]
[122]
Pittman, Q.J. A gut feeling about the ketogenic diet in epilepsy. Epilepsy Res., 2020, 166, 106409.
[http://dx.doi.org/10.1016/j.eplepsyres.2020.106409] [PMID: 32673970]
[123]
Xie, G.; Zhou, Q.; Qiu, C.Z.; Dai, W.K.; Wang, H.P.; Li, Y.H.; Liao, J.X.; Lu, X.G.; Lin, S.F.; Ye, J.H.; Ma, Z.Y.; Wang, W.J. Ketogenic diet poses a significant effect on imbalanced gut microbiota in infants with refractory epilepsy. World J. Gastroenterol., 2017, 23(33), 6164-6171.
[http://dx.doi.org/10.3748/wjg.v23.i33.6164] [PMID: 28970732]
[124]
Lin, C.; Zhao, S.; Zhu, Y.; Fan, Z.; Wang, J.; Zhang, B.; Chen, Y. Microbiota-gut-brain axis and toll-like receptors in Alzheimer’s disease. Comput. Struct. Biotechnol. J., 2019, 17, 1309-1317.
[http://dx.doi.org/10.1016/j.csbj.2019.09.008] [PMID: 31921396]
[125]
Panasevich, M.R.; Meers, G.M.; Linden, M.A.; Booth, F.W.; Perfield, J.W., II; Fritsche, K.L.; Wankhade, U.D.; Chintapalli, S.V.; Shankar, K.; Ibdah, J.A.; Rector, R.S. High-fat, high-fructose, high-cholesterol feeding causes severe NASH and cecal microbiota dysbiosis in juve-nile Ossabaw swine. Am. J. Physiol. Endocrinol. Metab., 2018, 314(1), E78-E92.
[http://dx.doi.org/10.1152/ajpendo.00015.2017] [PMID: 28899857]
[126]
Roehl, K.; Falco-Walter, J.; Ouyang, B.; Balabanov, A. Modified ketogenic diets in adults with refractory epilepsy: Efficacious improve-ments in seizure frequency, seizure severity, and quality of life. Epilepsy Behav., 2019, 93, 113-118.
[http://dx.doi.org/10.1016/j.yebeh.2018.12.010] [PMID: 30867113]
[127]
McDonald, T.; Puchowicz, M.; Borges, K. Impairments in oxidative glucose metabolism in epilepsy and metabolic treatments thereof. Front. Cell. Neurosci., 2018, 12, 274.
[http://dx.doi.org/10.3389/fncel.2018.00274] [PMID: 30233320]
[128]
Zamani, G.R.; Mohammadi, M.; Ashrafi, M.R.; Karimi, P.; Mahmoudi, M.; Badv, R.S.; Tavassoli, A.R.; Azizi Malamiri, R. The effects of classic ketogenic diet on serum lipid profile in children with refractory seizures. Acta Neurol. Belg., 2016, 116(4), 529-534.
[http://dx.doi.org/10.1007/s13760-016-0601-x] [PMID: 26791878]
[129]
Miranda, M.J.; Mortensen, M.; Povlsen, J.H.; Nielsen, H.; Beniczky, S. Danish study of a modified Atkins diet for medically intractable epilepsy in children: Can we achieve the same results as with the classical ketogenic diet? Seizure, 2011, 20(2), 151-155.
[http://dx.doi.org/10.1016/j.seizure.2010.11.010] [PMID: 21126887]
[130]
Lord, K.; Magrath, G. Use of the ketogenic diet and dietary practices in the UK. J. Hum. Nutr. Diet., 2010, 23(2), 126-132.
[http://dx.doi.org/10.1111/j.1365-277X.2010.01040.x] [PMID: 20487177]
[131]
Goswami, J.N.; Sharma, S. Current perspectives on the role of the ketogenic diet in epilepsy management. Neuropsychiatr. Dis. Treat., 2019, 15, 3273-3285.
[http://dx.doi.org/10.2147/NDT.S201862] [PMID: 31819454]
[132]
Cervenka, M.C.; Terao, N.N.; Bosarge, J.L.; Henry, B.J.; Klees, A.A.; Morrison, P.F.; Kossoff, E.H. E-mail management of the modified Atkins Diet for adults with epilepsy is feasible and effective. Epilepsia, 2012, 53(4), 728-732.
[http://dx.doi.org/10.1111/j.1528-1167.2012.03406.x] [PMID: 22332768]
[133]
Miranda, M.J.; Turner, Z.; Magrath, G. Alternative diets to the classical ketogenic diet--can we be more liberal? Epilepsy Res., 2012, 100(3), 278-285.
[http://dx.doi.org/10.1016/j.eplepsyres.2012.06.007] [PMID: 22771252]
[134]
Husari, K.S.; Cervenka, M.C. The ketogenic diet all grown up-Ketogenic diet therapies for adults. Epilepsy Res., 2020, 162, 106319.
[http://dx.doi.org/10.1016/j.eplepsyres.2020.106319] [PMID: 32199222]
[135]
Wheless, J.W. The ketogenic diet: An effective medical therapy with side effects. J. Child Neurol., 2001, 16(9), 633-635.
[http://dx.doi.org/10.1177/088307380101600901] [PMID: 11575600]
[136]
Martin-McGill, K.J.; Srikandarajah, N.; Marson, A.G.; Tudur Smith, C.; Jenkinson, M.D. The role of ketogenic diets in the therapeutic management of adult and paediatric gliomas: A systematic review. CNS Oncol., 2018, 7(2), CNS17.
[http://dx.doi.org/10.2217/cns-2017-0030] [PMID: 29658772]
[137]
Poff, A.M.; Rho, J.M.; D’Agostino, D.P. Ketone administration for seizure disorders: History and rationale for ketone esters and metabolic alternatives. Front. Neurosci., 2019, 13, 1041.
[http://dx.doi.org/10.3389/fnins.2019.01041] [PMID: 31680801]
[138]
Cai, Q.Y.; Zhou, Z.J.; Luo, R.; Gan, J.; Li, S.P.; Mu, D.Z.; Wan, C.M. Safety and tolerability of the ketogenic diet used for the treatment of refractory childhood epilepsy: A systematic review of published prospective studies. World J. Pediatr., 2017, 13(6), 528-536.
[http://dx.doi.org/10.1007/s12519-017-0053-2] [PMID: 28702868]
[139]
Freeman, J.M.; Kossoff, E.H. Ketosis and the ketogenic diet, 2010: Advances in treating epilepsy and other disorders. Adv. Pediatr., 2010, 57(1), 315-329.
[http://dx.doi.org/10.1016/j.yapd.2010.08.003] [PMID: 21056745]
[140]
Zhao, Q.; Stafstrom, C.E.; Fu, D.D.; Hu, Y.; Holmes, G.L. Detrimental effects of the ketogenic diet on cognitive function in rats. Pediatr. Res., 2004, 55(3), 498-506.
[http://dx.doi.org/10.1203/01.PDR.0000112032.47575.D1] [PMID: 14711901]
[141]
Ellenbroek, J.H. van,Dijck, L.;Töns, H.A.;Rabelink, T.J.;Carlotti, F.;Ballieux, B.E.; de Koning, E.J. Long-term ketogenic diet causes glucose intolerance and reduced β-and α-cell mass but no weight loss in mice. Am. J. Physiol. Endocrinol. Metab., 2014, 306, E552-E558.
[http://dx.doi.org/10.1152/ajpendo.00453.2013] [PMID: 24398402]
[142]
Best, T.H.; Franz, D.N.; Gilbert, D.L.; Nelson, D.P.; Epstein, M.R. Cardiac complications in pediatric patients on the ketogenic diet. Neurology, 2000, 54(12), 2328-2330.
[http://dx.doi.org/10.1212/WNL.54.12.2328] [PMID: 10881264]
[143]
Bank, I.M.; Shemie, S.D.; Rosenblatt, B.; Bernard, C.; Mackie, A.S. Sudden cardiac death in association with the ketogenic diet. Pediatr. Neurol., 2008, 39(6), 429-431.
[http://dx.doi.org/10.1016/j.pediatrneurol.2008.08.013] [PMID: 19027591]
[144]
Chen, H.; Chen, Y.H.; Liu, L.; Wang, Y. Effects of ketogenic diet on lipid metabolism in children with intractable epilepsy. Zhongguo Dang Dai Er Ke Za Zhi, 2019, 21(5), 450-453.
[http://dx.doi.org/10.7499/j.issn.1008-8830.2019.05.010] [PMID: 31104661]
[145]
Sudhakaran, S.; Yazdani, L.; Wheelan, K.R.; Rao, P.K. The ketogenic diet and the QT interval. Proc. Bayl. Univ. Med. Cent., 2019, 33(1), 77-79.
[http://dx.doi.org/10.1080/08998280.2019.1664220] [PMID: 32063779]
[146]
Sharma, S.; Gulati, S. The ketogenic diet and the QT interval. J. Clin. Neurosci., 2012, 19(1), 181-182.
[http://dx.doi.org/10.1016/j.jocn.2011.05.012] [PMID: 22133817]
[147]
Choi, J.N.; Song, J.E.; Shin, J.I.; Kim, H.D.; Kim, M.J.; Lee, J.S. Renal stone associated with the ketogenic diet in a 5-year old girl with intractable epilepsy. Yonsei Med. J., 2010, 51(3), 457-459.
[http://dx.doi.org/10.3349/ymj.2010.51.3.457] [PMID: 20376903]
[148]
Sampath, A.; Kossoff, E.H.; Furth, S.L.; Pyzik, P.L.; Vining, E.P. Kidney stones and the ketogenic diet: Risk factors and prevention. J. Child Neurol., 2007, 22(4), 375-378.
[http://dx.doi.org/10.1177/0883073807301926] [PMID: 17621514]
[149]
McNally, M.A.; Pyzik, P.L.; Rubenstein, J.E.; Hamdy, R.F.; Kossoff, E.H. Empiric use of potassium citrate reduces kidney-stone inci-dence with the ketogenic diet. Pediatrics, 2009, 124(2), e300-e304.
[http://dx.doi.org/10.1542/peds.2009-0217] [PMID: 19596731]
[150]
Dudziń;ska, M. Ketogenic diet in epilepsy: An updated review. J. Epilepsy Res., 2018, 26, 27-47.
[151]
Kossoff, E.H.; Zupec-Kania, B.A.; Auvin, S.; Ballaban-Gil, K.R.; Christina Bergqvist, A.G.; Blackford, R.; Buchhalter, J.R.; Caraballo, R.H.; Cross, J.H.; Dahlin, M.G.; Donner, E.J.; Guzel, O.; Jehle, R.S.; Klepper, J.; Kang, H.C.; Lambrechts, D.A.; Liu, Y.M.C.; Nathan, J.K.; Nordli, D.R., Jr; Pfeifer, H.H.; Rho, J.M.; Scheffer, I.E.; Sharma, S.; Stafstrom, C.E.; Thiele, E.A.; Turner, Z.; Vaccarezza, M.M.; van der Louw, E.J.T.M.; Veggiotti, P.; Wheless, J.W.; Wirrell, E.C. Optimal clinical management of children receiving dietary therapies for epilep-sy: Updated recommendations of the International Ketogenic Diet Study Group. Epilepsia Open, 2018, 3(2), 175-192.
[http://dx.doi.org/10.1002/epi4.12225] [PMID: 29881797]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy