Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

Treatment and Management of Autosomal Recessive Cerebellar Ataxias: Current Advances and Future Perspectives

Author(s): Ikhlass H. Salem, Marie Beaudin, Christopher J. Klein and Nicolas Dupré*

Volume 22, Issue 5, 2023

Published on: 09 June, 2022

Page: [678 - 697] Pages: 20

DOI: 10.2174/1871527321666220418114846

Price: $65

Abstract

The autosomal recessive cerebellar ataxias (ARCAs) compose a clinically and genetically heterogeneous group of neurodegenerative diseases characterized by prominent cerebellar ataxia, dysmetria, dysarthria, and nystagmus that are inherited in an autosomal recessive fashion. The diagnosis of ARCAs is challenging because of their low prevalence, poor medical recognition, and heterogeneous clinical presentation with many overlapping features between entities. There currently exist no disease-modifying therapies for most ARCAs, and treatment is mainly symptomatic, aimed at prolonging independence and maintaining the quality of life. As knowledge of the common pathogenic pathways underlying several ARCAs grows, so do these pathways to target with new drugs. Chelation or enzyme replacement therapies are available for some specific ataxias caused by amenable metabolic alterations. A large number of drug trials are ongoing and aim to identify new therapeutic approaches to expand the options in our repertoire. Improved protocols of motor rehabilitation and noninvasive cerebellar stimulation have been shown to delay disease progression and maintain quality of life. Furthermore, recent progress in gene and molecular targeting therapies is rapidly expanding and holds promise for repairing defective genes. Neurotransplantation of grafted stem cells, which is still at the experimental preclinical stage, has opened new therapeutic strategies aimed at delaying cell degeneration and facilitating compensatory functions. This article is an overview of the current management and treatment strategies with an emphasis on promising perspectives for patients with ARCAs.

Keywords: Recessive ataxia, treatment management, rehabilitation therapy, neurostimulation, disease-modifying therapy, gene therapy, neurotransplantation.

[1]
Fogel BL, Perlman S. Clinical features and molecular genetics of autosomal recessive cerebellar ataxias. Lancet Neurol 2007; 6(3): 245-57.
[http://dx.doi.org/10.1016/S1474-4422(07)70054-6] [PMID: 17303531]
[2]
Bodranghien F, Bastian A, Casali C, et al. Consensus Paper: Revisiting the symptoms and signs of cerebellar syndrome. Cerebellum 2016; 15(3): 369-91.
[http://dx.doi.org/10.1007/s12311-015-0687-3] [PMID: 26105056]
[3]
Rossi M, Anheim M, Durr A, et al. International parkinson and movement disorder society task force on classification and nomenclature of genetic movement disorders. The genetic nomenclature of recessive cerebellar ataxias. Mov Disord 2018; 33(7): 1056-76.
[http://dx.doi.org/10.1002/mds.27415] [PMID: 29756227]
[4]
Beaudin M, Matilla-Dueñas A, Soong BW, et al. The classification of autosomal recessive cerebellar ataxias: A consensus statement from the society for research on the cerebellum and ataxias task force. Cerebellum 2019; 18(6): 1098-125.
[http://dx.doi.org/10.1007/s12311-019-01052-2] [PMID: 31267374]
[5]
Synofzik M, Puccio H, Mochel F, Schöls L. Autosomal recessive cerebellar ataxias: Paving the way toward targeted molecular therapies. Neuron 2019; 101(4): 560-83.
[http://dx.doi.org/10.1016/j.neuron.2019.01.049] [PMID: 30790538]
[6]
Vermeer S, van de Warrenburg BP, Willemsen MA, et al. Autosomal recessive cerebellar ataxias: The current state of affairs. J Med Genet 2011; 48(10): 651-9.
[http://dx.doi.org/10.1136/jmedgenet-2011-100210] [PMID: 21856962]
[7]
van de Warrenburg BP, van Gaalen J, Boesch S, et al. EFNS/ENS Consensus on the diagnosis and management of chronic ataxias in adulthood. Eur J Neurol 2014; 21(4): 552-62.
[http://dx.doi.org/10.1111/ene.12341] [PMID: 24418350]
[8]
Mitoma H, Manto M. The physiological basis of therapies for cerebellar ataxias. Ther Adv Neurol Disord 2016; 9(5): 396-413.
[http://dx.doi.org/10.1177/1756285616648940] [PMID: 27582895]
[9]
Marmolino D, Manto M. Past, present and future therapeutics for cerebellar ataxias. Curr Neuropharmacol 2010; 8(1): 41-61.
[http://dx.doi.org/10.2174/157015910790909476] [PMID: 20808545]
[10]
Ilg W, Bastian AJ, Boesch S, et al. Consensus paper: Management of degenerative cerebellar disorders. Cerebellum 2014; 13(2): 248-68.
[http://dx.doi.org/10.1007/s12311-013-0531-6] [PMID: 24222635]
[11]
Manto M, Ben Taib NO. A novel approach for treating cerebellar ataxias. Med Hypotheses 2008; 71(1): 58-60.
[http://dx.doi.org/10.1016/j.mehy.2008.01.009] [PMID: 18281160]
[12]
Maas RPPWM, Helmich RCG, van de Warrenburg BPC. The role of the cerebellum in degenerative ataxias and essential tremor: Insights from noninvasive modulation of cerebellar activity. Mov Disord 2020; 35(2): 215-27.
[http://dx.doi.org/10.1002/mds.27919] [PMID: 31820832]
[13]
Grimaldi G, Argyropoulos GP, Boehringer A, et al. Non-invasive cerebellar stimulation--a consensus paper. Cerebellum 2014; 13(1): 121-38.
[http://dx.doi.org/10.1007/s12311-013-0514-7] [PMID: 23943521]
[14]
Grimaldi G, Argyropoulos GP, Bastian A, et al. Cerebellar transcranial direct current stimulation (ctDCS): A novel approach to understanding cerebellar function in health and disease. Neuroscientist 2016; 22(1): 83-97.
[http://dx.doi.org/10.1177/1073858414559409] [PMID: 25406224]
[15]
Buxbaum JN. Oligonucleotide drugs for transthyretin amyloidosis. N Engl J Med 2018; 379(1): 82-5.
[http://dx.doi.org/10.1056/NEJMe1805499] [PMID: 29972750]
[16]
McCafferty EH, Scott LJ. Migalastat: A review in fabry disease. Drugs 2019; 79(5): 543-54.
[http://dx.doi.org/10.1007/s40265-019-01090-4] [PMID: 30875019]
[17]
Anheim M, Tranchant C, Koenig M. The autosomal recessive cerebellar ataxias. N Engl J Med 2012; 366(7): 636-46.
[http://dx.doi.org/10.1056/NEJMra1006610] [PMID: 22335741]
[18]
Renaud M, Tranchant C, Martin JVT, et al. RADIAL Working Group. A recessive ataxia diagnosis algorithm for the next generation sequencing era. Ann Neurol 2017; 82(6): 892-9.
[http://dx.doi.org/10.1002/ana.25084] [PMID: 29059497]
[19]
Fox NG, Yu X, Feng X, et al. Structure of the human frataxin-bound iron-sulfur cluster assembly complex provides insight into its activation mechanism. Nat Commun 2019; 10(1): 2210.
[http://dx.doi.org/10.1038/s41467-019-09989-y] [PMID: 31101807]
[20]
Mühlenhoff U, Richhardt N, Ristow M, Kispal G, Lill R. The yeast frataxin homolog Yfh1p plays a specific role in the maturation of cellular Fe/S proteins. Hum Mol Genet 2002; 11(17): 2025-36.
[http://dx.doi.org/10.1093/hmg/11.17.2025] [PMID: 12165564]
[21]
Shan Y, Napoli E, Cortopassi G. Mitochondrial frataxin interacts with ISD11 of the NFS1/ISCU complex and multiple mitochondrial chaperones. Hum Mol Genet 2007; 16(8): 929-41.
[http://dx.doi.org/10.1093/hmg/ddm038] [PMID: 17331979]
[22]
Delatycki MB, Bidichandani SI. Friedreich ataxia-pathogenesis and implications for therapies. Neurobiol Dis 2019; 132: 104606.
[http://dx.doi.org/10.1016/j.nbd.2019.104606] [PMID: 31494282]
[23]
Babcock M, de Silva D, Oaks R, et al. Regulation of mitochondrial iron accumulation by Yfh1p, a putative homolog of frataxin. Science 1997; 276(5319): 1709-12.
[http://dx.doi.org/10.1126/science.276.5319.1709] [PMID: 9180083]
[24]
Delatycki MB, Camakaris J, Brooks H, et al. Direct evidence that mitochondrial iron accumulation occurs in Friedreich ataxia. Ann Neurol 1999; 45(5): 673-5.
[http://dx.doi.org/10.1002/1531-8249(199905)45:5<673::AID-ANA20>3.0.CO;2-Q] [PMID: 10319894]
[25]
Girard M, Larivière R, Parfitt DA, et al. Mitochondrial dysfunction and Purkinje cell loss in autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS). Proc Natl Acad Sci USA 2012; 109(5): 1661-6.
[http://dx.doi.org/10.1073/pnas.1113166109] [PMID: 22307627]
[26]
Criscuolo C, Procaccini C, Meschini MC, et al. Powerhouse failure and oxidative damage in autosomal recessive spastic ataxia of Charlevoix-Saguenay. J Neurol 2015; 262(12): 2755-63.
[http://dx.doi.org/10.1007/s00415-015-7911-4] [PMID: 26530509]
[27]
Duncan EJ, Larivière R, Bradshaw TY, et al. Altered organization of the intermediate filament cytoskeleton and relocalization of proteostasis modulators in cells lacking the ataxia protein sacsin. Hum Mol Genet 2017; 26(16): 3130-43.
[http://dx.doi.org/10.1093/hmg/ddx197] [PMID: 28535259]
[28]
Bakkenist CJ, Kastan MB. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 2003; 421(6922): 499-506.
[http://dx.doi.org/10.1038/nature01368] [PMID: 12556884]
[29]
Das BB, Dexheimer TS, Maddali K, Pommier Y. Role of tyrosyl-DNA phosphodiesterase (TDP1) in mitochondria. Proc Natl Acad Sci USA 2010; 107(46): 19790-5.
[http://dx.doi.org/10.1073/pnas.1009814107] [PMID: 21041670]
[30]
Sykora P, Croteau DL, Bohr VA, Wilson DM III. Aprataxin localizes to mitochondria and preserves mitochondrial function. Proc Natl Acad Sci USA 2011; 108(18): 7437-42.
[http://dx.doi.org/10.1073/pnas.1100084108] [PMID: 21502511]
[31]
Tahbaz N, Subedi S, Weinfeld M. Role of polynucleotide kinase/phosphatase in mitochondrial DNA repair. Nucleic Acids Res 2012; 40(8): 3484-95.
[http://dx.doi.org/10.1093/nar/gkr1245] [PMID: 22210862]
[32]
Geberhiwot T, Moro A, Dardis A, et al. International Niemann-Pick Disease Registry (INPDR). Consensus clinical management guidelines for Niemann-Pick disease type C. Orphanet J Rare Dis 2018; 13(1): 50.
[http://dx.doi.org/10.1186/s13023-018-0785-7] [PMID: 29625568]
[33]
Nie S, Chen G, Cao X, Zhang Y. Cerebrotendinous xanthomatosis: A comprehensive review of pathogenesis, clinical manifestations, diagnosis, and management. Orphanet J Rare Dis 2014; 9(1): 179.
[http://dx.doi.org/10.1186/s13023-014-0179-4] [PMID: 25424010]
[34]
De Munter S, Verheijden S, Régal L, Baes M. Peroxisomal disorders: A review on cerebellar pathologies. Brain Pathol 2015; 25(6): 663-78.
[http://dx.doi.org/10.1111/bpa.12290] [PMID: 26201894]
[35]
Stephen CD, Brizzi KT, Bouffard MA, Gomery P, Sullivan SL, Mello J. The comprehensive management of cerebellar ataxia in adults. Curr Treat Opt Neurol 2019; 21: 3-9.
[36]
Mitoma H, Buffo A, Gelfo F, et al. Consensus paper. Cerebellar reserve: From cerebellar physiology to cerebellar disorders. Cerebellum 2020; 19(1): 131-53.
[http://dx.doi.org/10.1007/s12311-019-01091-9] [PMID: 31879843]
[37]
Ulatowski L, Parker R, Warrier G, Sultana R, Butterfield DA, Manor D. Vitamin E is essential for Purkinje neuron integrity. Neuroscience 2014; 260: 120-9.
[http://dx.doi.org/10.1016/j.neuroscience.2013.12.001] [PMID: 24342566]
[38]
Picher-Martel V, Dupre N. Current and promising therapies in autosomal recessive ataxias. CNS Neurol Disord Drug Targets 2018; 17(3): 161-71.
[http://dx.doi.org/10.2174/1871527317666180419115029] [PMID: 29676235]
[39]
Gabsi S, Gouider-Khouja N, Belal S, et al. Effect of vitamin E supplementation in patients with ataxia with vitamin E deficiency. Eur J Neurol 2001; 8(5): 477-81.
[http://dx.doi.org/10.1046/j.1468-1331.2001.00273.x] [PMID: 11554913]
[40]
Braga Neto P, Pedroso JL, Kuo SH, Marcondes Junior CF, Teive HA, Barsottini OGP. Current concepts in the treatment of hereditary ataxias. Arq Neuro 2016; 74(3): 244-52.
[http://dx.doi.org/10.1590/0004-282X20160038] [PMID: 27050855]
[41]
Brewer GJ, Terry CA, Aisen AM, Hill GM. Worsening of neurologic syndrome in patients with Wilson’s disease with initial penicillamine therapy. Arch Neurol 1987; 44(5): 490-3.
[http://dx.doi.org/10.1001/archneur.1987.00520170020016] [PMID: 3579660]
[42]
Brewer GJ, Askari F, Lorincz MT, et al. Treatment of Wilson disease with ammonium tetrathiomolybdate: IV. Comparison of tetrathiomolybdate and trientine in a double-blind study of treatment of the neurologic presentation of Wilson disease. Arch Neurol 2006; 63(4): 521-7.
[http://dx.doi.org/10.1001/archneur.63.4.521] [PMID: 16606763]
[43]
Brewer GJ, Askari F, Dick RB, et al. Treatment of Wilson’s disease with tetrathiomolybdate: V. Control of free copper by tetrathiomolybdate and a comparison with trientine. Transl Res 2009; 154(2): 70-7.
[http://dx.doi.org/10.1016/j.trsl.2009.05.002] [PMID: 19595438]
[44]
Medici V, Mirante VG, Fassati LR, et al. Monotematica AISF 2000 OLT Study Group. Liver transplantation for Wilson’s disease: The burden of neurological and psychiatric disorders. Liver Transpl 2005; 11(9): 1056-63.
[http://dx.doi.org/10.1002/lt.20486] [PMID: 16123950]
[45]
Weiss KH, Schäfer M, Gotthardt DN, et al. Outcome and development of symptoms after orthotopic liver transplantation for Wilson disease. Clin Transplant 2013; 27(6): 914-22.
[http://dx.doi.org/10.1111/ctr.12259] [PMID: 24118554]
[46]
Mihalik SJ, Morrell JC, Kim D, Sacksteder KA, Watkins PA, Gould SJ. Identification of PAHX, a Refsum disease gene. Nat Genet 1997; 17(2): 185-9.
[http://dx.doi.org/10.1038/ng1097-185] [PMID: 9326939]
[47]
van den Brink DM, Brites P, Haasjes J, et al. Identification of PEX7 as the second gene involved in Refsum disease. Am J Hum Genet 2003; 72(2): 471-7.
[http://dx.doi.org/10.1086/346093] [PMID: 12522768]
[48]
Wanders RJA, Waterham HR, Leroy BP, et al. Refsum Disease. Gene Reviews Seattle (WA). Seattle: University of Washington 1993.
[49]
Jansen GA, Waterham HR, Wanders RJA. Molecular basis of Refsum disease: Sequence variations in phytanoyl-CoA hydroxylase (PHYH) and the PTS2 receptor (PEX7). Hum Mutat 2004; 23(3): 209-18.
[http://dx.doi.org/10.1002/humu.10315] [PMID: 14974078]
[50]
Weinstein R. Phytanic acid storage disease (Refsum’s disease): Clinical characteristics, pathophysiology and the role of therapeutic apheresis in its management. J Clin Apher 1999; 14(4): 181-4.
[http://dx.doi.org/10.1002/(SICI)1098-1101(1999)14:4<181::AID-JCA5>3.0.CO;2-Z] [PMID: 10611628]
[51]
Van Maldergem L, Moser AB, Vincent MF, et al. Orthotopic liver transplantation from a living-related donor in an infant with a peroxisome biogenesis defect of the infantile Refsum disease type. J Inherit Metab Dis 2005; 28(4): 593-600.
[http://dx.doi.org/10.1007/s10545-005-0593-9] [PMID: 15902563]
[52]
Matsunami M, Shimozawa N, Fukuda A, et al. Living-donor liver transplantation from a heterozygous parent for infantile refsum disease. Pediatrics 2016; 137(6): e20153102.
[http://dx.doi.org/10.1542/peds.2015-3102] [PMID: 27221287]
[53]
Patterson MC, Vecchio D, Prady H, Abel L, Wraith JE. Miglustat for treatment of Niemann-Pick C disease: A randomised controlled study. Lancet Neurol 2007; 6(9): 765-72.
[http://dx.doi.org/10.1016/S1474-4422(07)70194-1] [PMID: 17689147]
[54]
Anheim M, Torres Martin JV, Kolb SA. Recessive ataxia differential diagnosis algorithm (radial) versus specific niemann-pick type C suspicion indices: A retrospective algorithm comparison. Cerebellum 2020; 19(2): 243-51.
[http://dx.doi.org/10.1007/s12311-020-01102-0] [PMID: 31933160]
[55]
Lyseng-Williamson KA. Miglustat: A review of its use in Niemann-Pick disease type C. Drugs 2014; 74(1): 61-74.
[http://dx.doi.org/10.1007/s40265-013-0164-6] [PMID: 24338084]
[56]
Fecarotta S, Amitrano M, Romano A, et al. The videofluoroscopic swallowing study shows a sustained improvement of dysphagia in children with Niemann-Pick disease type C after therapy with miglustat. Am J Med Genet A 2011; 155A(3): 540-7.
[http://dx.doi.org/10.1002/ajmg.a.33847] [PMID: 21344635]
[57]
Remenova T, Morand O, Amato D, Chadha-Boreham H, Tsurutani S, Marquardt T. A double-blind, randomized, placebo-controlled trial studying the effects of Saccharomyces boulardii on the gastrointestinal tolerability, safety, and pharmacokinetics of miglustat. Orphanet J Rare Dis 2015; 10(1): 81.
[http://dx.doi.org/10.1186/s13023-015-0297-7] [PMID: 26084276]
[58]
Belmatoug N, Burlina A, Giraldo P, et al. Gastrointestinal disturbances and their management in miglustat-treated patients. J Inherit Metab Dis 2011; 34(5): 991-1001.
[http://dx.doi.org/10.1007/s10545-011-9368-7] [PMID: 21779792]
[59]
Vite CH, Bagel JH, Swain GP, et al. Intracisternal cyclodextrin prevents cerebellar dysfunction and Purkinje cell death in feline Niemann-Pick type C1 disease. Sci Transl Med 2015; 7(276): 276ra26.
[http://dx.doi.org/10.1126/scitranslmed.3010101] [PMID: 25717099]
[60]
Matsuo M, Shraishi K, Wada K, et al. Effects of intracerebroventricular administration of 2-hydroxypropyl-β-cyclodextrin in a patient with Niemann-Pick Type C disease. Mol Genet Metab Rep 2014; 1: 391-400.
[http://dx.doi.org/10.1016/j.ymgmr.2014.08.004] [PMID: 27896112]
[61]
Ory DS, Ottinger EA, Farhat NY, et al. Intrathecal 2-hydroxypropyl-β-cyclodextrin decreases neurological disease progression in Niemann-Pick disease, type C1: A non-randomised, open-label, phase 1-2 trial. Lancet 2017; 390(10104): 1758-68.
[http://dx.doi.org/10.1016/S0140-6736(17)31465-4] [PMID: 28803710]
[62]
Patterson MC, Hendriksz CJ, Walterfang M, Sedel F, Vanier MT, Wijburg F. NP-C Guidelines Working Group. Recommendations for the diagnosis and management of Niemann-Pick disease type C: An update. Mol Genet Metab 2012; 106(3): 330-44.
[http://dx.doi.org/10.1016/j.ymgme.2012.03.012] [PMID: 22572546]
[63]
Keren Z, Falik-Zaccai TC. Cerebrotendinous xanthomatosis (CTX): A treatable lipid storage disease. Pediatr Endocrinol Rev 2009; 7(1): 6-11.
[PMID: 19696711]
[64]
Berginer VM, Salen G, Shefer S. Long-term treatment of cerebrotendinous xanthomatosis with chenodeoxycholic acid. N Engl J Med 1984; 311(26): 1649-52.
[http://dx.doi.org/10.1056/NEJM198412273112601] [PMID: 6504105]
[65]
Pierre G, Setchell K, Blyth J, Preece MA, Chakrapani A, McKiernan P. Prospective treatment of cerebrotendinous xanthomatosis with cholic acid therapy. J Inherit Metab Dis 2008; 31 (Suppl. 2): S241-5.
[http://dx.doi.org/10.1007/s10545-008-0815-z] [PMID: 19125350]
[66]
Verrips A, Wevers RA, Van Engelen BG, et al. Effect of simvastatin in addition to chenodeoxycholic acid in patients with cerebrotendinous xanthomatosis. Metabolism 1999; 48(2): 233-8.
[http://dx.doi.org/10.1016/S0026-0495(99)90040-9] [PMID: 10024088]
[67]
Leen WG, Klepper J, Verbeek MM, et al. Glucose transporter-1 deficiency syndrome: The expanding clinical and genetic spectrum of a treatable disorder. Brain 2010; 133(Pt 3): 655-70.
[http://dx.doi.org/10.1093/brain/awp336] [PMID: 20129935]
[68]
Milne SC, Campagna EJ, Corben LA, et al. Retrospective study of the effects of inpatient rehabilitation on improving and maintaining functional independence in people with Friedreich ataxia. Arch Phys Med Rehabil 2012; 93(10): 1860-3.
[http://dx.doi.org/10.1016/j.apmr.2012.03.026] [PMID: 22484089]
[69]
Ilg W, Synofzik M, Brötz D, Burkard S, Giese MA, Schöls L. Intensive coordinative training improves motor performance in degenerative cerebellar disease. Neurology 2009; 73(22): 1823-30.
[http://dx.doi.org/10.1212/WNL.0b013e3181c33adf] [PMID: 19864636]
[70]
Ilg W, Brötz D, Burkard S, Giese MA, Schöls L, Synofzik M. Long-term effects of coordinative training in degenerative cerebellar disease. Mov Disord 2010; 25(13): 2239-46.
[http://dx.doi.org/10.1002/mds.23222] [PMID: 20737551]
[71]
Audet O, Bui HT, Allisse M, Comtois AS, Leone M. Assessment of the impact of an exercise program on the physical and functional capacity in patients with autosomal recessive spastic ataxia of Charlevoix-Saguenay: An exploratory study. Intractable Rare Dis Res 2018; 7(3): 164-71.
[http://dx.doi.org/10.5582/irdr.2018.01060] [PMID: 30181935]
[72]
Zesiewicz TA, Wilmot G, Kuo SH, et al. Comprehensive systematic review summary: Treatment of cerebellar motor dysfunction and ataxia: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology. Neurology 2018; 90(10): 464-71.
[http://dx.doi.org/10.1212/WNL.0000000000005055] [PMID: 29440566]
[73]
Romano S, Coarelli G, Marcotulli C, et al. Riluzole in patients with hereditary cerebellar ataxia: A randomised, double-blind, placebo-controlled trial. Lancet Neurol 2015; 14(10): 985-91.
[http://dx.doi.org/10.1016/S1474-4422(15)00201-X] [PMID: 26321318]
[74]
Di Prospero NA, Baker A, Jeffries N, Fischbeck KH. Neurological effects of high-dose idebenone in patients with Friedreich’s ataxia: A randomised, placebo-controlled trial. Lancet Neurol 2007; 6(10): 878-86.
[http://dx.doi.org/10.1016/S1474-4422(07)70220-X] [PMID: 17826341]
[75]
Lynch DR, Perlman SL, Meier T. A phase 3, double-blind, placebo-controlled trial of idebenone in friedreich ataxia. Arch Neurol 2010; 67(8): 941-7.
[http://dx.doi.org/10.1001/archneurol.2010.168] [PMID: 20697044]
[76]
Lagedrost SJ, Sutton MS, Cohen MS, et al. Idebenone in Friedreich ataxia cardiomyopathy-results from a 6-month phase III study (IONIA). Am Heart J 2011; 161(3): 639-645.e1.
[http://dx.doi.org/10.1016/j.ahj.2010.10.038] [PMID: 21392622]
[77]
Meier T, Perlman SL, Rummey C, Coppard NJ, Lynch DR. Assessment of neurological efficacy of idebenone in pediatric patients with Friedreich’s ataxia: Data from a 6-month controlled study followed by a 12-month open-label extension study. J Neurol 2012; 259(2): 284-91.
[http://dx.doi.org/10.1007/s00415-011-6174-y] [PMID: 21779958]
[78]
Arpa J, Sanz-Gallego I, Rodríguez-de-Rivera FJ, et al. Triple therapy with deferiprone, idebenone and riboflavin in Friedreich’s ataxia - open-label trial. Acta Neurol Scand 2014; 129(1): 32-40.
[http://dx.doi.org/10.1111/ane.12141] [PMID: 23668357]
[79]
Martinelli C, Battaglini M, Pucci C, et al. Development of nanostructured lipid carriers for the delivery of idebenone in autosomal recessive spastic ataxia of charlevoix-saguenay. ACS Omega 2020; 5(21): 12451-66.
[http://dx.doi.org/10.1021/acsomega.0c01282] [PMID: 32548430]
[80]
Paupe V, Dassa EP, Goncalves S, et al. Impaired nuclear Nrf2 translocation undermines the oxidative stress response in Friedreich ataxia. PLoS One 2009; 4(1): e4253.
[http://dx.doi.org/10.1371/journal.pone.0004253] [PMID: 19158945]
[81]
Shan Y, Schoenfeld RA, Hayashi G, et al. Frataxin deficiency leads to defects in expression of antioxidants and Nrf2 expression in dorsal root ganglia of the Friedreich’s ataxia YG8R mouse model. Antioxid Redox Signal 2013; 19(13): 1481-93.
[http://dx.doi.org/10.1089/ars.2012.4537] [PMID: 23350650]
[82]
D’Oria V, Petrini S, Travaglini L, et al. Frataxin deficiency leads to reduced expression and impaired translocation of NF-E2-related factor (Nrf2) in cultured motor neurons. Int J Mol Sci 2013; 14(4): 7853-65.
[http://dx.doi.org/10.3390/ijms14047853] [PMID: 23574943]
[83]
Lynch DR, Hauser L, McCormick A, et al. Randomized, double-blind, placebo-controlled study of interferon-γ 1b in Friedreich Ataxia. Ann Clin Transl Neurol 2019; 6(3): 546-53.
[http://dx.doi.org/10.1002/acn3.731] [PMID: 30911578]
[84]
Schenck JF, Zimmerman EA. High-field magnetic resonance imaging of brain iron: Birth of a biomarker? NMR Biomed 2004; 17(7): 433-45.
[http://dx.doi.org/10.1002/nbm.922] [PMID: 15523705]
[85]
Boddaert N, Le Quan Sang KH, Rötig A, et al. Selective iron chelation in Friedreich ataxia: Biologic and clinical implications. Blood 2007; 110(1): 401-8.
[http://dx.doi.org/10.1182/blood-2006-12-065433] [PMID: 17379741]
[86]
Simon D, Seznec H, Gansmuller A, et al. Friedreich ataxia mouse models with progressive cerebellar and sensory ataxia reveal autophagic neurodegeneration in dorsal root ganglia. J Neurosci 2004; 24(8): 1987-95.
[http://dx.doi.org/10.1523/JNEUROSCI.4549-03.2004] [PMID: 14985441]
[87]
Pandolfo M, Hausmann L. Deferiprone for the treatment of Friedreich’s ataxia. J Neurochem 2013; 126 (Suppl. 1): 142-6.
[http://dx.doi.org/10.1111/jnc.12300] [PMID: 23859349]
[88]
Pandolfo M, Arpa J, Delatycki MB, et al. Deferiprone in Friedreich ataxia: A 6-month randomized controlled trial. Ann Neurol 2014; 76(4): 509-21.
[http://dx.doi.org/10.1002/ana.24248] [PMID: 25112865]
[89]
Martelli A, Schmucker S, Reutenauer L, et al. Iron regulatory protein 1 sustains mitochondrial iron loading and function in frataxin deficiency. Cell Metab 2015; 21(2): 311-23.
[http://dx.doi.org/10.1016/j.cmet.2015.01.010] [PMID: 25651183]
[90]
Shakkottai VG, Chou CH, Oddo S, et al. Enhanced neuronal excitability in the absence of neurodegeneration induces cerebellar ataxia. J Clin Invest 2004; 113(4): 582-90.
[http://dx.doi.org/10.1172/JCI200420216] [PMID: 14966567]
[91]
Ristori G, Romano S, Visconti A, et al. Riluzole in cerebellar ataxia: A randomized, double-blind, placebo-controlled pilot trial. Neurology 2010; 74(10): 839-45.
[http://dx.doi.org/10.1212/WNL.0b013e3181d31e23] [PMID: 20211908]
[92]
Weissfeld T, Ratliff J. Cerebrotendinous Xanthomatosis ataxia responsive to CDCA and Riluzole. J Clin Neurosci 2018; 53: 263-4.
[http://dx.doi.org/10.1016/j.jocn.2018.04.043] [PMID: 29731275]
[93]
Bremova T, Malinová V, Amraoui Y, et al. Acetyl-dl-leucine in Niemann-Pick type C: A case series. Neurology 2015; 85(16): 1368-75.
[http://dx.doi.org/10.1212/WNL.0000000000002041] [PMID: 26400580]
[94]
Feil K, Adrion C, Teufel J, Bösch S, Claassen J, Giordano I. Effects of acetyl-DL-leucine on cerebellar ataxia (ALCAT trial): Study protocol for a multicenter, multinational, randomized, double-blind, placebo-controlled, crossover phase III trial. BMC Neurol 2017; 7(1): 7.
[95]
Ricca I, Tessa A, Trovato R, Bacci GM, Santorelli FM. Docosahexaenoic acid in ARSACS: Observations in two patients. BMC Neurol 2020; 20(1): 215.
[http://dx.doi.org/10.1186/s12883-020-01803-3] [PMID: 32466761]
[96]
Bazan NG. Neuroprotectin D1-mediated anti-inflammatory and survival signaling in stroke, retinal degenerations, and Alzheimer’s disease. J Lipid Res 2009; 50 (Suppl.): S400-5.
[http://dx.doi.org/10.1194/jlr.R800068-JLR200] [PMID: 19018037]
[97]
Shirooie S, Nabavi SF, Dehpour AR, et al. Targeting mTORs by omega-3 fatty acids: A possible novel therapeutic strategy for neurodegeneration? Pharmacol Res 2018; 135: 37-48.
[http://dx.doi.org/10.1016/j.phrs.2018.07.004] [PMID: 29990625]
[98]
Groiss SJ, Ugawa Y. Cerebellar stimulation in ataxia. Cerebellum 2012; 11(2): 440-2.
[http://dx.doi.org/10.1007/s12311-011-0329-3] [PMID: 22116658]
[99]
Grimaldi G, Manto M. Anodal transcranial direct current stimulation (tDCS) decreases the amplitudes of long-latency stretch reflexes in cerebellar ataxia. Ann Biomed Eng 2013; 41(11): 2437-47.
[http://dx.doi.org/10.1007/s10439-013-0846-y] [PMID: 23780473]
[100]
Ferrucci R, Bocci T, Cortese F, Ruggiero F, Priori A. Cerebellar transcranial direct current stimulation in neurological disease. Cerebellum Ataxias 2016; 3(1): 16.
[http://dx.doi.org/10.1186/s40673-016-0054-2] [PMID: 27595007]
[101]
Benussi A, Koch G, Cotelli M, Padovani A, Borroni B. Cerebellar transcranial direct current stimulation in patients with ataxia: A double-blind, randomized, sham-controlled study. Mov Disord 2015; 30(12): 1701-5.
[http://dx.doi.org/10.1002/mds.26356] [PMID: 26274840]
[102]
Brunoni AR, Nitsche MA, Bolognini N, et al. Clinical research with transcranial direct current stimulation (tDCS): Challenges and future directions. Brain Stimul 2012; 5(3): 175-95.
[http://dx.doi.org/10.1016/j.brs.2011.03.002] [PMID: 22037126]
[103]
Benussi A, Dell’Era V, Cantoni V, et al. Cerebello-spinal tDCS in ataxia: A randomized, double-blind, sham-controlled, crossover trial. Neurology 2018; 91(12): e1090-101.
[http://dx.doi.org/10.1212/WNL.0000000000006210] [PMID: 30135258]
[104]
Bodranghien F, Oulad Ben Taib N, Van Maldergem L, Manto M. A postural tremor highly responsive to transcranial cerebello-Cerebral DCS in ARCA3. Front Neurol 2017; 8: 71.
[http://dx.doi.org/10.3389/fneur.2017.00071] [PMID: 28316589]
[105]
Campuzano V, Montermini L, Moltò MD, et al. Friedreich’s ataxia: Autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 1996; 271(5254): 1423-7.
[http://dx.doi.org/10.1126/science.271.5254.1423] [PMID: 8596916]
[106]
Saveliev A, Everett C, Sharpe T, Webster Z, Festenstein R. DNA triplet repeats mediate heterochromatin-protein-1-sensitive variegated gene silencing. Nature 2003; 422(6934): 909-13.
[http://dx.doi.org/10.1038/nature01596] [PMID: 12712207]
[107]
Herman D, Jenssen K, Burnett R, Soragni E, Perlman SL, Gottesfeld JM. Histone deacetylase inhibitors reverse gene silencing in Friedreich’s ataxia. Nat Chem Biol 2006; 2(10): 551-8.
[http://dx.doi.org/10.1038/nchembio815] [PMID: 16921367]
[108]
Soragni E, Gottesfeld JM. Translating HDAC inhibitors in Friedreich’s ataxia. Expert Opin Orphan Drugs 2016; 4(9): 961-70.
[http://dx.doi.org/10.1080/21678707.2016.1215910] [PMID: 28392990]
[109]
Soragni E, Chou CJ, Rusche JR, Gottesfeld JM. Mechanism of action of 2-aminobenzamide HDAC inhibitors in reversing gene silencing in Friedreich’s Ataxia. Front Neurol 2015; 6: 44.
[http://dx.doi.org/10.3389/fneur.2015.00044] [PMID: 25798128]
[110]
Rai M, Soragni E, Chou CJ, et al. Two new pimelic diphenylamide HDAC inhibitors induce sustained frataxin upregulation in cells from Friedreich’s ataxia patients and in a mouse model. PLoS One 2010; 5(1): e8825.
[http://dx.doi.org/10.1371/journal.pone.0008825] [PMID: 20098685]
[111]
Sandi C, Pinto RM, Al-Mahdawi S, et al. Prolonged treatment with pimelic o-aminobenzamide HDAC inhibitors ameliorates the disease phenotype of a Friedreich ataxia mouse model. Neurobiol Dis 2011; 42(3): 496-505.
[http://dx.doi.org/10.1016/j.nbd.2011.02.016] [PMID: 21397024]
[112]
Chutake YK, Lam CC, Costello WN, Anderson MP, Bidichandani SI. Reversal of epigenetic promoter silencing in Friedreich ataxia by a class I histone deacetylase inhibitor. Nucleic Acids Res 2016; 44(11): 5095-104.
[http://dx.doi.org/10.1093/nar/gkw107] [PMID: 26896803]
[113]
Libri V, Yandim C, Athanasopoulos S, et al. Epigenetic and neurological effects and safety of high-dose nicotinamide in patients with Friedreich’s ataxia: An exploratory, open-label, dose-escalation study. Lancet 2014; 384(9942): 504-13.
[http://dx.doi.org/10.1016/S0140-6736(14)60382-2] [PMID: 24794816]
[114]
Erwin GS, Grieshop MP, Ali A, et al. Synthetic transcription elongation factors license transcription across repressive chromatin. Science 2017; 358(6370): 1617-22.
[http://dx.doi.org/10.1126/science.aan6414] [PMID: 29192133]
[115]
Broccoletti T, Del Giudice E, Cirillo E, et al. Efficacy of very-low-dose betamethasone on neurological symptoms in ataxiatelangiectasia. Eur J Neurol 2011; 18(4): 564-70.
[http://dx.doi.org/10.1111/j.1468-1331.2010.03203.x] [PMID: 20840352]
[116]
Russo I, Cosentino C, Del Giudice E, et al. In ataxiateleangiectasia betamethasone response is inversely correlated to cerebellar atrophy and directly to antioxidative capacity. Eur J Neurol 2009; 16(6): 755-9.
[http://dx.doi.org/10.1111/j.1468-1331.2009.02600.x] [PMID: 19475758]
[117]
Buoni S, Zannolli R, Sorrentino L, Fois A. Betamethasone and improvement of neurological symptoms in ataxia-telangiectasia. Arch Neurol 2006; 63(10): 1479-82.
[http://dx.doi.org/10.1001/archneur.63.10.1479] [PMID: 17030666]
[118]
Zannolli R, Buoni S, Betti G, et al. A randomized trial of oral betamethasone to reduce ataxia symptoms in ataxia telangiectasia. Mov Disord 2012; 27(10): 1312-6.
[http://dx.doi.org/10.1002/mds.25126] [PMID: 22927201]
[119]
Menotta M, Biagiotti S, Bianchi M, Chessa L, Magnani M. Dexamethasone partially rescues ataxia telangiectasia-mutated (ATM) deficiency in ataxia telangiectasia by promoting a shortened protein variant retaining kinase activity. J Biol Chem 2012; 287(49): 41352-63.
[http://dx.doi.org/10.1074/jbc.M112.344473] [PMID: 23055520]
[120]
Menotta M, Biagiotti S, Spapperi C, et al. ATM splicing variants as biomarkers for low dose dexamethasone treatment of A-T. Orphanet J Rare Dis 2017; 12(1): 126.
[http://dx.doi.org/10.1186/s13023-017-0669-2] [PMID: 28679388]
[121]
Chessa L, Leuzzi V, Plebani A, et al. Intra-erythrocyte infusion of dexamethasone reduces neurological symptoms in ataxia teleangiectasia patients: Results of a phase 2 trial. Orphanet J Rare Dis 2014; 9(1): 5.
[http://dx.doi.org/10.1186/1750-1172-9-5] [PMID: 24405665]
[122]
Sturm B, Stupphann D, Kaun C, et al. Recombinant human erythropoietin: Effects on frataxin expression in vitro. Eur J Clin Invest 2005; 35(11): 711-7.
[http://dx.doi.org/10.1111/j.1365-2362.2005.01568.x] [PMID: 16269021]
[123]
Acquaviva F, Castaldo I, Filla A, et al. Recombinant human erythropoietin increases frataxin protein expression without increasing mRNA expression. Cerebellum 2008; 7(3): 360-5.
[http://dx.doi.org/10.1007/s12311-008-0036-x] [PMID: 18581197]
[124]
Boesch S, Nachbauer W, Mariotti C, et al. Safety and tolerability of carbamylated erythropoietin in Friedreich’s ataxia. Mov Disord 2014; 29(7): 935-9.
[http://dx.doi.org/10.1002/mds.25836] [PMID: 24515352]
[125]
Young HA, Bream JH. IFN-gamma: Recent advances in understanding regulation of expression, biological functions, and clinical applications. Curr Top Microbiol Immunol 2007; 316: 97-117.
[http://dx.doi.org/10.1007/978-3-540-71329-6_6] [PMID: 17969445]
[126]
Tomassini B, Arcuri G, Fortuni S, et al. Interferon gamma upregulates frataxin and corrects the functional deficits in a Friedreich ataxia model. Hum Mol Genet 2012; 21(13): 2855-61.
[http://dx.doi.org/10.1093/hmg/dds110] [PMID: 22447512]
[127]
Wyller VB, Jacobsen K, Dahl MB, et al. Interferon gamma may improve cardiac function in Friedreich’s ataxia cardiomyopathy. Int J Cardiol 2016; 221: 376-8.
[http://dx.doi.org/10.1016/j.ijcard.2016.06.288] [PMID: 27404709]
[128]
Seyer L, Greeley N, Foerster D, et al. Open-label pilot study of interferon gamma-1b in Friedreich ataxia. Acta Neurol Scand 2015; 132(1): 7-15.
[http://dx.doi.org/10.1111/ane.12337] [PMID: 25335475]
[129]
Rummey C, Kichula E, Lynch DR. Clinical trial design for Friedreich ataxia ‐ where are we now and what do we need? Expert Opin Orphan Drugs 2018; 6(3): 219-30.
[http://dx.doi.org/10.1080/21678707.2018.1449638]
[130]
Vavla M, D’Angelo MG, Arrigoni F, et al. Safety and efficacy of interferon γ in friedreich’s ataxia. Mov Disord 2020; 35(2): 370-1.
[http://dx.doi.org/10.1002/mds.27979] [PMID: 31930551]
[131]
Rufini A, Cavallo F, Condò I, et al. Highly specific ubiquitin-competing molecules effectively promote frataxin accumulation and partially rescue the aconitase defect in Friedreich ataxia cells. Neurobiol Dis 2015; 75: 91-9.
[http://dx.doi.org/10.1016/j.nbd.2014.12.011] [PMID: 25549872]
[132]
Parenti G, Andria G, Valenzano KJ. Pharmacological chaperone therapy: Preclinical development, clinical translation, and prospects for the treatment of lysosomal storage disorders. Mol Ther 2015; 23(7): 1138-48.
[http://dx.doi.org/10.1038/mt.2015.62] [PMID: 25881001]
[133]
Parfitt DA, Michael GJ, Vermeulen EG, et al. The ataxia protein sacsin is a functional co-chaperone that protects against polyglutamine-expanded ataxin-1. Hum Mol Genet 2009; 18(9): 1556-65.
[http://dx.doi.org/10.1093/hmg/ddp067] [PMID: 19208651]
[134]
Britti E, Delaspre F, Feldman A, et al. Frataxin-deficient neurons and mice models of Friedreich ataxia are improved by TAT-MTScs-FXN treatment. J Cell Mol Med 2018; 22(2): 834-48.
[PMID: 28980774]
[135]
Vyas PM, Tomamichel WJ, Pride PM, et al. A TAT-frataxin fusion protein increases lifespan and cardiac function in a conditional Friedreich’s ataxia mouse model. Hum Mol Genet 2012; 21(6): 1230-47.
[http://dx.doi.org/10.1093/hmg/ddr554] [PMID: 22113996]
[136]
Shen X, Corey DR. Chemistry, mechanism and clinical status of antisense oligonucleotides and duplex RNAs. Nucleic Acids Res 2018; 46(4): 1584-600.
[http://dx.doi.org/10.1093/nar/gkx1239] [PMID: 29240946]
[137]
Li L, Shen X, Liu Z, et al. Activation of frataxin protein expression by antisense oligonucleotides targeting the mutant expanded repeat. Nucleic Acid Ther 2018; 28(1): 23-33.
[http://dx.doi.org/10.1089/nat.2017.0703] [PMID: 29341839]
[138]
Groh M, Lufino MM, Wade-Martins R, Gromak N. R-loops associated with triplet repeat expansions promote gene silencing in Friedreich ataxia and fragile X syndrome. PLoS Genet 2014; 10(5): e1004318.
[http://dx.doi.org/10.1371/journal.pgen.1004318] [PMID: 24787137]
[139]
Groh M, Silva LM, Gromak N. Mechanisms of transcriptional dysregulation in repeat expansion disorders. Biochem Soc Trans 2014; 42(4): 1123-8.
[http://dx.doi.org/10.1042/BST20140049] [PMID: 25110013]
[140]
Li L, Matsui M, Corey DR. Activating frataxin expression by repeat-targeted nucleic acids. Nat Commun 2016; 7(1): 10606.
[http://dx.doi.org/10.1038/ncomms10606] [PMID: 26842135]
[141]
Shen X, Kilikevicius A, O’Reilly D, et al. Activating frataxin expression by single-stranded siRNAs targeting the GAA repeat expansion. Bioorg Med Chem Lett 2018; 28(17): 2850-5.
[http://dx.doi.org/10.1016/j.bmcl.2018.07.033] [PMID: 30076049]
[142]
Shen X, Beasley S, Putman JN, et al. Efficient electroporation of neuronal cells using synthetic oligonucleotides: Identifying duplex RNA and antisense oligonucleotide activators of human frataxin expression. RNA 2019; 25(9): 1118-29.
[http://dx.doi.org/10.1261/rna.071290.119] [PMID: 31151992]
[143]
Teraoka SN, Telatar M, Becker-Catania S, et al. Splicing defects in the ataxia-telangiectasia gene, ATM: Underlying mutations and consequences. Am J Hum Genet 1999; 64(6): 1617-31.
[http://dx.doi.org/10.1086/302418] [PMID: 10330348]
[144]
Du L, Pollard JM, Gatti RA. Correction of prototypic ATM splicing mutations and aberrant ATM function with antisense morpholino oligonucleotides. Proc Natl Acad Sci USA 2007; 104(14): 6007-12.
[http://dx.doi.org/10.1073/pnas.0608616104] [PMID: 17389389]
[145]
Eng L, Coutinho G, Nahas S, et al. Nonclassical splicing mutations in the coding and noncoding regions of the ATM Gene: Maximum entropy estimates of splice junction strengths. Hum Mutat 2004; 23(1): 67-76.
[http://dx.doi.org/10.1002/humu.10295] [PMID: 14695534]
[146]
Foust KD, Nurre E, Montgomery CL, Hernandez A, Chan CM, Kaspar BK. Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes. Nat Biotechnol 2009; 27(1): 59-65.
[http://dx.doi.org/10.1038/nbt.1515] [PMID: 19098898]
[147]
Gray SJ, Matagne V, Bachaboina L, Yadav S, Ojeda SR, Samulski RJ. Preclinical differences of intravascular AAV9 delivery to neurons and glia: A comparative study of adult mice and nonhuman primates. Mol Ther 2011; 19(6): 1058-69.
[http://dx.doi.org/10.1038/mt.2011.72] [PMID: 21487395]
[148]
Manfredsson FP, Rising AC, Mandel RJ. AAV9: A potential blood-brain barrier buster. Mol Ther 2009; 17(3): 403-5.
[http://dx.doi.org/10.1038/mt.2009.15] [PMID: 19247366]
[149]
Perdomini M, Belbellaa B, Monassier L, et al. Prevention and reversal of severe mitochondrial cardiomyopathy by gene therapy in a mouse model of Friedreich’s ataxia. Nat Med 2014; 20(5): 542-7.
[http://dx.doi.org/10.1038/nm.3510] [PMID: 24705334]
[150]
Piguet F, de Montigny C, Vaucamps N, Reutenauer L, Eisenmann A, Puccio H. Rapid and complete reversal of sensory ataxia by gene therapy in a novel model of Friedreich ataxia. Mol Ther 2018; 26(8): 1940-52.
[http://dx.doi.org/10.1016/j.ymthe.2018.05.006] [PMID: 29853274]
[151]
Cortés ML, Bakkenist CJ, Di Maria MV, Kastan MB, Breakefield XO. HSV-1 amplicon vector-mediated expression of ATM cDNA and correction of the ataxia-telangiectasia cellular phenotype. Gene Ther 2003; 10(16): 1321-7.
[http://dx.doi.org/10.1038/sj.gt.3301996] [PMID: 12883528]
[152]
Cortés ML, Oehmig A, Saydam O, et al. Targeted integration of functional human ATM cDNA into genome mediated by HSV/AAV hybrid amplicon vector. Mol Ther 2008; 16(1): 81-8.
[http://dx.doi.org/10.1038/sj.mt.6300338] [PMID: 17998902]
[153]
Cortés ML, Oehmig A, Perry KF, Sanford JD, Breakefield XO. Expression of human ATM cDNA in Atm-deficient mouse brain mediated by HSV-1 amplicon vector. Neuroscience 2006; 141(3): 1247-56.
[http://dx.doi.org/10.1016/j.neuroscience.2006.05.055] [PMID: 16809004]
[154]
Hinderer C, Katz N, Buza EL, et al. Severe toxicity in nonhuman primates and piglets following high-dose intravenous administration of an adeno-associated virus vector expressing human SMN Hum. Gene Ther 2018; 29(3): 285-98.
[http://dx.doi.org/10.1089/hum.2018.015] [PMID: 29378426]
[155]
Chandler RJ, Williams IM, Gibson AL, et al. Systemic AAV9 gene therapy improves the lifespan of mice with Niemann-Pick disease, type C1. Hum Mol Genet 2017; 26(1): 52-64.
[PMID: 27798114]
[156]
Xie C, Gong XM, Luo J, Li BL, Song BL. AAV9-NPC1 significantly ameliorates Purkinje cell death and behavioral abnormalities in mouse NPC disease. J Lipid Res 2017; 58(3): 512-8.
[http://dx.doi.org/10.1194/jlr.M071274] [PMID: 28053186]
[157]
Hughes MP, Smith DA, Morris L, et al. AAV9 intracerebroventricular gene therapy improves lifespan, locomotor function and pathology in a mouse model of Niemann-Pick type C1 disease. Hum Mol Genet 2018; 27(17): 3079-98.
[http://dx.doi.org/10.1093/hmg/ddy212] [PMID: 29878115]
[158]
Nathwani AC, Reiss UM, Tuddenham EG, et al. Long-term safety and efficacy of factor IX gene therapy in hemophilia B. N Engl J Med 2014; 371(21): 1994-2004.
[http://dx.doi.org/10.1056/NEJMoa1407309] [PMID: 25409372]
[159]
Mendell JR, Al-Zaidy S, Shell R, et al. Single-dose gene-replacement therapy for spinal muscular atrophy. N Engl J Med 2017; 377(18): 1713-22.
[http://dx.doi.org/10.1056/NEJMoa1706198] [PMID: 29091557]
[160]
Murillo O, Luqui DM, Gazquez C, et al. Long-term metabolic correction of Wilson’s disease in a murine model by gene therapy. J Hepatol 2016; 64(2): 419-26.
[http://dx.doi.org/10.1016/j.jhep.2015.09.014] [PMID: 26409215]
[161]
Erceg S, Moreno-Manzano V, Garita-Hernandez M, Stojkovic M, Bhattacharya SS. Concise review: Stem cells for the treatment of cerebellar-related disorders. Stem Cells 2011; 29(4): 564-9.
[http://dx.doi.org/10.1002/stem.619] [PMID: 21319272]
[162]
Liu J, Verma PJ, Evans-Galea MV, et al. Generation of induced pluripotent stem cell lines from Friedreich ataxia patients. Stem Cell Rev Rep 2011; 7(3): 703-13.
[http://dx.doi.org/10.1007/s12015-010-9210-x] [PMID: 21181307]
[163]
Nayler S, Gatei M, Kozlov S, et al. Induced pluripotent stem cells from ataxia-telangiectasia recapitulate the cellular phenotype. Stem Cells Transl Med 2012; 1(7): 523-35.
[http://dx.doi.org/10.5966/sctm.2012-0024] [PMID: 23197857]
[164]
Arellano CM, Vilches A, Clemente E, et al. Generation of a human iPSC line from a patient with autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) caused by mutation in SACSIN gene. Stem Cell Res (Amst) 2018; 31: 249-52.
[http://dx.doi.org/10.1016/j.scr.2018.07.012] [PMID: 30144656]
[165]
Koeppen AH, Ramirez RL, Becker AB, Mazurkiewicz JE. Dorsal root ganglia in Friedreich ataxia: Satellite cell proliferation and inflammation. Acta Neuropathol Commun 2016; 4(1): 46.
[http://dx.doi.org/10.1186/s40478-016-0288-5] [PMID: 27142428]
[166]
Jones J, Estirado A, Redondo C, et al. Mesenchymal stem cells improve motor functions and decrease neurodegeneration in ataxic mice. Mol Ther 2015; 23(1): 130-8.
[http://dx.doi.org/10.1038/mt.2014.143] [PMID: 25070719]
[167]
Kemp KC, Hares K, Redondo J, et al. Bone marrow transplantation stimulates neural repair in Friedreich’s ataxia mice. Ann Neurol 2018; 83(4): 779-93.
[http://dx.doi.org/10.1002/ana.25207] [PMID: 29534309]
[168]
Bagley J, Cortes ML, Breakefield XO, Iacomini J. Bone marrow transplantation restores immune system function and prevents lymphoma in Atm-deficient mice. Blood 2004; 104(2): 572-8.
[http://dx.doi.org/10.1182/blood-2003-12-4226] [PMID: 15044255]
[169]
Ussowicz M, Musiał J, Duszeńko E, Haus O, Kałwak K. Long-term survival after allogeneic-matched sibling PBSC transplantation with conditioning consisting of low-dose busilvex and fludarabine in a 3-year-old boy with ataxia-telangiectasia syndrome and ALL. Bone Marrow Transplant 2013; 48(5): 740-1.
[http://dx.doi.org/10.1038/bmt.2012.207] [PMID: 23103677]
[170]
Beier R, Sykora KW, Woessmann W, et al. Allogeneic-matched sibling stem cell transplantation in a 13-year-old boy with ataxia telangiectasia and EBV-positive non-Hodgkin lymphoma. Bone Marrow Transplant 2016; 51(9): 1271-4.
[http://dx.doi.org/10.1038/bmt.2016.93] [PMID: 27159176]
[171]
Ussowicz M, Wawrzyniak-Dzierżek E, Mielcarek-Siedziuk M, et al. Allogeneic stem cell transplantation after fanconi anemia conditioning in children with ataxia-telangiectasia results in stable T cell engraftment and lack of infections despite mixed chimerism. Biol Blood Marrow Transplant 2018; 24(11): 2245-9.
[http://dx.doi.org/10.1016/j.bbmt.2018.07.001] [PMID: 30454873]
[172]
Ambrose M, Gatti RA. Pathogenesis of ataxia-telangiectasia: The next generation of ATM functions. Blood 2013; 121(20): 4036-45.
[http://dx.doi.org/10.1182/blood-2012-09-456897] [PMID: 23440242]
[173]
Bae JS, Furuya S, Ahn SJ, Yi SJ, Hirabayashi Y, Jin HK. Neuroglial activation in Niemann-Pick Type C mice is suppressed by intracerebral transplantation of bone marrow-derived mesenchymal stem cells. Neurosci Lett 2005; 381(3): 234-6.
[http://dx.doi.org/10.1016/j.neulet.2005.02.029] [PMID: 15896475]
[174]
Bae JS, Furuya S, Shinoda Y, et al. Neurodegeneration augments the ability of bone marrow-derived mesenchymal stem cells to fuse with Purkinje neurons in Niemann-Pick type C mice. Hum Gene Ther 2005; 16(8): 1006-11.
[http://dx.doi.org/10.1089/hum.2005.16.1006] [PMID: 16076258]
[175]
Bae JS, Han HS, Youn DH, et al. Bone marrow-derived mesenchymal stem cells promote neuronal networks with functional synaptic transmission after transplantation into mice with neurodegeneration. Stem Cells 2007; 25(5): 1307-16.
[http://dx.doi.org/10.1634/stemcells.2006-0561] [PMID: 17470534]
[176]
Bae JS, Carter JE, Jin HK. Adipose tissue-derived stem cells rescue Purkinje neurons and alleviate inflammatory responses in Niemann-Pick disease type C mice. Cell Tissue Res 2010; 340(2): 357-69.
[http://dx.doi.org/10.1007/s00441-010-0942-3] [PMID: 20238127]
[177]
Lee H, Lee JK, Min WK, et al. Bone marrow-derived mesenchymal stem cells prevent the loss of Niemann-Pick type C mouse Purkinje neurons by correcting sphingolipid metabolism and increasing sphingosine-1-phosphate. Stem Cells 2010; 28(4): 821-31.
[http://dx.doi.org/10.1002/stem.401] [PMID: 20201063]
[178]
Ahmad I, Hunter RE, Flax JD, Snyder EY, Erickson RP. Neural stem cell implantation extends life in Niemann-Pick C1 mice. J Appl Genet 2007; 48(3): 269-72.
[http://dx.doi.org/10.1007/BF03195222] [PMID: 17666780]
[179]
Choi J, Clement K, Huebner AJ, et al. DUSP9 modulates DNA Hypomethylation in female mouse pluripotent stem cells. Cell Stem Cell 2017; 20(5): 706-719.e7.
[http://dx.doi.org/10.1016/j.stem.2017.03.002] [PMID: 28366588]
[180]
Wang L, Cao J, Wang Y, et al. Immunogenicity and functional evaluation of iPSC-derived organs for transplantation. Cell Discov 2015; 1(1): 15015.
[http://dx.doi.org/10.1038/celldisc.2015.15] [PMID: 27462414]
[181]
Mariotti C, Gellera C, Rimoldi M, et al. Ataxia with isolated vitamin E deficiency: Neurological phenotype, clinical follow-up and novel mutations in TTPA gene in Italian families. Neurol Sci 2004; 25(3): 130-7.
[http://dx.doi.org/10.1007/s10072-004-0246-z] [PMID: 15300460]
[182]
Lee J, Hegele RA. Abetalipoproteinemia and homozygous hypobetalipoproteinemia: A framework for diagnosis and management. J Inherit Metab Dis 2014; 37(3): 333-9.
[http://dx.doi.org/10.1007/s10545-013-9665-4] [PMID: 24288038]
[183]
Gras D, Roze E, Caillet S, et al. GLUT1 deficiency syndrome: An update. Rev Neurol (Paris) 2014; 170(2): 91-9.
[http://dx.doi.org/10.1016/j.neurol.2013.09.005] [PMID: 24269118]
[184]
Wraith JE, Vecchio D, Jacklin E, et al. Miglustat in adult and juvenile patients with Niemann-Pick disease type C: Long-term data from a clinical trial. Mol Genet Metab 2010; 99(4): 351-7.
[http://dx.doi.org/10.1016/j.ymgme.2009.12.006] [PMID: 20045366]
[185]
Pineda M, Montero R, Aracil A, et al. Coenzyme Q(10)-responsive ataxia: 2-year-treatment follow-up. Mov Disord 2010; 25(9): 1262-8.
[http://dx.doi.org/10.1002/mds.23129] [PMID: 20629161]
[186]
Salviati L, Trevisson E, Doimo M, Navas P, Adam MP, Ardinger H. Primary Coenzyme Q10 Deficiency. GeneReviews® Seattle (WA). Seattle: University of Washington 2017.
[187]
Wolf B. Synonym: Late-onset multiple carboxylase deficiency biotinidase deficiency. Gene Rev 2016; 2016: 0026.
[http://dx.doi.org/10.1093/med/9780199972135.003.0026]
[188]
Pierson TM, Adams D, Bonn F, et al. Whole-exome sequencing identifies homozygous AFG3L2 mutations in a spastic ataxia-neuropathy syndrome linked to mitochondrial m-AAA proteases. PLoS Genet 2011; 7(10): e1002325.
[http://dx.doi.org/10.1371/journal.pgen.1002325] [PMID: 22022284]
[189]
Lodi R, Hart PE, Rajagopalan B, et al. Antioxidant treatment improves in vivo cardiac and skeletal muscle bioenergetics in patients with Friedreich’s ataxia. Ann Neurol 2001; 49(5): 590-6.
[http://dx.doi.org/10.1002/ana.1001] [PMID: 11357949]
[190]
Hart PE, Lodi R, Rajagopalan B, et al. Antioxidant treatment of patients with Friedreich ataxia: Four-year follow-up. Arch Neurol 2005; 62(4): 621-6.
[http://dx.doi.org/10.1001/archneur.62.4.621] [PMID: 15824263]
[191]
Cooper JM, Korlipara LV, Hart PE, Bradley JL, Schapira AH. Coenzyme Q10 and vitamin E deficiency in Friedreich’s ataxia: Predictor of efficacy of vitamin E and coenzyme Q10 therapy. Eur J Neurol 2008; 15(12): 1371-9.
[http://dx.doi.org/10.1111/j.1468-1331.2008.02318.x] [PMID: 19049556]
[192]
Schöls L, Zange J, Abele M, et al. L-carnitine and creatine in Friedreich’s ataxia. A randomized, placebo-controlled crossover trial. J Neural Transm (Vienna) 2005; 112(6): 789-96.
[http://dx.doi.org/10.1007/s00702-004-0216-x] [PMID: 15480852]
[193]
Lynch DR, Willi SM, Wilson RB, et al. A0001 in Friedreich ataxia: Biochemical characterization and effects in a clinical trial. Mov Disord 2012; 27(8): 1026-33.
[http://dx.doi.org/10.1002/mds.25058] [PMID: 22744651]
[194]
Yiu EM, Tai G, Peverill RE, et al. An open-label trial in Friedreich ataxia suggests clinical benefit with high-dose resveratrol, without effect on frataxin levels. J Neurol 2015; 262(5): 1344-53.
[http://dx.doi.org/10.1007/s00415-015-7719-2] [PMID: 25845763]
[195]
Patel M, Schadt K, McCormick A, Isaacs C, Dong YN, Lynch DR. Open-label pilot study of oral methylprednisolone for the treatment of patients with friedreich ataxia. Muscle Nerve 2019; 60(5): 571-5.
[http://dx.doi.org/10.1002/mus.26610] [PMID: 31206761]
[196]
Boesch S, Sturm B, Hering S, Goldenberg H, Poewe W, Scheiber-Mojdehkar B. Friedreich’s ataxia: Clinical pilot trial with recombinant human erythropoietin. Ann Neurol 2007; 62(5): 521-4.
[http://dx.doi.org/10.1002/ana.21177] [PMID: 17702040]
[197]
Boesch S, Sturm B, Hering S, et al. Neurological effects of recombinant human erythropoietin in Friedreich’s ataxia: A clinical pilot trial. Mov Disord 2008; 23(13): 1940-4.
[http://dx.doi.org/10.1002/mds.22294] [PMID: 18759345]
[198]
Mariotti C, Fancellu R, Caldarazzo S, et al. Erythropoietin in Friedreich ataxia: No effect on frataxin in a randomized controlled trial. Mov Disord 2012; 27(3): 446-9.
[http://dx.doi.org/10.1002/mds.24066] [PMID: 22411849]
[199]
Zesiewicz T, Heerinckx F, De Jager R, et al. Randomized, clinical trial of RT001: Early signals of efficacy in Friedreich’s ataxia. Mov Disord 2018; 33(6): 1000-5.
[http://dx.doi.org/10.1002/mds.27353] [PMID: 29624723]
[200]
Jones J, Jaramillo-Merchán J, Bueno C, Pastor D, Viso-León M, Martínez S. Mesenchymal stem cells rescue Purkinje cells and improve motor functions in a mouse model of cerebellar ataxia. Neurobiol Dis 2010; 40(2): 415-23.
[http://dx.doi.org/10.1016/j.nbd.2010.07.001] [PMID: 20638477]
[201]
Zhang MJ, Sun JJ, Qian L, et al. Human umbilical mesenchymal stem cells enhance the expression of neurotrophic factors and protect ataxic mice. Brain Res 2011; 1402: 122-31.
[http://dx.doi.org/10.1016/j.brainres.2011.05.055] [PMID: 21683345]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy