Generic placeholder image

Current Pediatric Reviews

Editor-in-Chief

ISSN (Print): 1573-3963
ISSN (Online): 1875-6336

Review Article

Biology and Natural History of Type 1 Diabetes Mellitus

Author(s): Jenner Chrystian Veríssimo de Azevedo, Thales Allyrio Araújo de Medeiros Fernandes*, Gilson Aquino Cavalcante, Iluska Almeida Carneiro Martins de Medeiros, Daniel Carlos Ferreira Lanza, Joselio Maria Galvão de Araújo, Fabiana Lima Bezerra and José Veríssimo Fernandes

Volume 19, Issue 3, 2023

Published on: 17 October, 2022

Page: [253 - 275] Pages: 23

DOI: 10.2174/1573396318666220409001955

Price: $65

Abstract

Type 1 diabetes mellitus is a clinical condition characterized by insufficient insulin production due to progressive loss of pancreatic islet β-cells mediated by an autoimmune response. This deregulation of the immune system is caused by the action of genetic, epigenetic, and environmental factors in varying combinations for each individual. Although the inflammation of the islets with immune cell infiltration, known as insulitis, is an important element in pathogenesis, other factors are necessary for disease initiation. Associations with variants of HLA and other genes related to immune system function, mainly haplotypes HLA-DR3-DQ2 and HLA-DR4-DQ8, are more evident. The influence of polymorphisms and epigenetic modifications, as well as the microbiome, is convincing proof of the existence of a complex interaction between genetic, immune, and environmental factors in the etiology and pathogenesis of this metabolic disorder. Loss of selftolerance to autoimmunity is a critical point in the development of the disease, and regulatory T cells play a key role in this process. Thus, any failure of these cells, either due to an insufficient number or altered expression of cytokines and transcription factors, may be the trigger for the onset of the disease. The protective action of regulatory T cells is controlled by gene expression that is modulated by epigenetic modifications, including the dysregulation of noncoding RNAs. This review takes an updated approach to the natural history of type 1 diabetes, focusing on the factors involved in the etiology and pathogenesis.

Keywords: Dysglycemia, diabetes mellitus, type 1 diabetes, autoimmune diabetes, juvenile diabetes, metabolic disease.

Graphical Abstract
[1]
Han HS, Kang G, Kim JS, Choi BH, Koo SH. Regulation of glucose metabolism from a liver-centric perspective. Exp Mol Med 2016; 48(3): e218.
[http://dx.doi.org/10.1038/emm.2015.122] [PMID: 26964834]
[2]
Röder PV, Wu B, Liu Y, Han W. Pancreatic regulation of glucose homeostasis. Exp Mol Med 2016; 48(3): e219.
[http://dx.doi.org/10.1038/emm.2016.6] [PMID: 26964835]
[3]
Zhang S, Mathews CE. Metabolic abnormalities in the pathogenesis of type 1 diabetes. Curr Diab Rep 2018; 18(10): 93.
[http://dx.doi.org/10.1007/s11892-018-1068-3] [PMID: 30173405]
[4]
Esposito S, Toni G, Tascini G, Santi E, Berioli MG, Principi N. Environmental factors associated with type 1 diabetes. Front Endocrinol 2019; 10: 592.
[http://dx.doi.org/10.3389/fendo.2019.00592] [PMID: 31555211]
[5]
Wiedeman AE, Muir VS, Rosasco MG, et al. Autoreactive CD8+ T cell exhaustion distinguishes subjects with slow type 1 diabetes pro-gression. J Clin Invest 2019; 130(1): 480-90.
[http://dx.doi.org/10.1172/JCI126595] [PMID: 31815738]
[6]
Bakay M, Pandey R, Grant SFA, Hakonarson H. The genetic contribution to type 1 diabetes. Curr Diab Rep 2019; 19(11): 116.
[http://dx.doi.org/10.1007/s11892-019-1235-1] [PMID: 31686270]
[7]
Craig ME, Kim KW, Isaacs SR, et al. Early-life factors contributing to type 1 diabetes. Diabetologia 2019; 62(10): 1823-34.
[http://dx.doi.org/10.1007/s00125-019-4942-x] [PMID: 31451871]
[8]
Pociot F, Lernmark Å. Genetic risk factors for type 1 diabetes. Lancet 2016; 387(10035): 2331-9.
[http://dx.doi.org/10.1016/S0140-6736(16)30582-7] [PMID: 27302272]
[9]
Poddighe D, Rebuffi C, Silvestri AD, Capittini C. Carrier frequency of HLA-DQB1*02 allele in patients affected with celiac disease: A systematic review assessing the potential rationale of a targeted allelic genotyping as a first-line screening. World J Gastroenterol 2020; 26(12): 1365-81.
[http://dx.doi.org/10.3748/wjg.v26.i12.1365] [PMID: 32256023]
[10]
Moheb-Alian A, Forouzesh F, Sadeghi A, et al. Contribution of HLA-DQ2/DQ8 haplotypes in type one diabetes patients with/without celiac disease. J Diabetes Complications 2019; 33(1): 59-62.
[http://dx.doi.org/10.1016/j.jdiacomp.2018.10.001] [PMID: 30415877]
[11]
Smigoc SD, Mendez A, Kunilo JS, et al. High-risk genotypes HLA-DR3-DQ2/DR3-DQ2 and DR3-DQ2/DR4-DQ8 in co-occurrence of type 1 diabetes and celiac disease. Autoimmunity 2016; 49(4): 240-7.
[http://dx.doi.org/10.3109/08916934.2016.1164144] [PMID: 27138053]
[12]
Katsarou A, Gudbjörnsdottir S, Rawshani A, et al. Type 1 diabetes mellitus. Nat Rev Dis Primers 2017; 3(1): 17016.
[http://dx.doi.org/10.1038/nrdp.2017.16] [PMID: 28358037]
[13]
Siljander H, Honkanen J, Knip M. Microbiome and type 1 diabetes. Exp Biol Med 2019; 46: 512-21.
[http://dx.doi.org/10.1016/j.ebiom.2019.06.031] [PMID: 31257149]
[14]
Flores MGV, Islam H, Puttagunta SM, et al. Association between type 1 diabetes mellitus and celiac disease: Autoimmune disorders with a shared genetic background. Cureus 2022; 14(3): e22912.
[http://dx.doi.org/10.7759/cureus.22912] [PMID: 35399440]
[15]
Frommer L, Kahaly GJ. Type 1 diabetes and autoimmune thyroid disease-the genetic link. Front Endocrinol 2021; 12: 618213.
[http://dx.doi.org/10.3389/fendo.2021.618213] [PMID: 33776915]
[16]
Quinn LM, Wong FS, Narendran P. Environmental determinants of type 1 Diabetes: From association to proving causality. Front Immunol 2021; 12: 737964.
[http://dx.doi.org/10.3389/fimmu.2021.737964] [PMID: 34659229]
[17]
Johnson RK, Vanderlinden LA, Dong F, et al. Longitudinal DNA methylation differences precede type 1 diabetes. Sci Rep 2020; 10(1): 3721.
[http://dx.doi.org/10.1038/s41598-020-60758-0] [PMID: 32111940]
[18]
Lee HS, Hwang JS. Genetic aspects of type 1 diabetes. Ann Pediatr Endocrinol Metab 2019; 24(3): 143-8.
[http://dx.doi.org/10.6065/apem.2019.24.3.143] [PMID: 31607106]
[19]
Nyaga DM, Vickers MH, Jefferies C, Perry JK, O’Sullivan JM. Type 1 diabetes mellitus-associated genetic variants contribute to overlap-ping immune regulatory networks. Front Genet 2018; 9: 535.
[http://dx.doi.org/10.3389/fgene.2018.00535] [PMID: 30524468]
[20]
Chiarelli F, Giannini C, Primavera M. Prediction and prevention of type 1 diabetes in children. Clin Pediatr Endocrinol 2019; 28(3): 43-57.
[http://dx.doi.org/10.1297/cpe.28.43] [PMID: 31384096]
[21]
Newby BN, Mathews CE. Type I interferon is a catastrophic feature of the diabetic islet microenvironment. Front Endocrinol 2017; 8: 232.
[http://dx.doi.org/10.3389/fendo.2017.00232] [PMID: 28959234]
[22]
Vana DR, Adapa D, Prasad VSS, Choudhury A, Choudhury A, Ahuja G. Diabetes mellitus types: Key genetic determinants and risk as-sessment. Genet Mol Res 2019; 18(2): gmr16039952.
[23]
Onengut-Gumuscu S, Chen WM, Burren O, et al. Fine mapping of type 1 diabetes susceptibility loci and evidence for colocalization of causal variants with lymphoid gene enhancers. Nat Genet 2015; 47(4): 381-6.
[http://dx.doi.org/10.1038/ng.3245] [PMID: 25751624]
[24]
Trowsdale J, Knight JC. Major histocompatibility complex genomics and human disease. Annu Rev Genomics Hum Genet 2013; 14(1): 301-23.
[http://dx.doi.org/10.1146/annurev-genom-091212-153455] [PMID: 23875801]
[25]
Stankov K, Benc D, Draskovic D. Genetic and epigenetic factors in etiology of diabetes mellitus type 1. Pediatrics 2013; 132(6): 1112-22.
[http://dx.doi.org/10.1542/peds.2013-1652] [PMID: 24190679]
[26]
Fendler W, Klich I, Cieślik-Heinrich A, Wyka K, Szadkowska A, Młynarski W. Increased risk of type 1 diabetes in polish children - association with INS-IGF2 5'VNTR and lack of association with HLA haplotype. Endokrynol Pol 2011; 62(5): 436-42.
[PMID: 22069105]
[27]
Zhao LP, Alshiekh S, Zhao M, et al. Next-generation sequencing reveals that HLA-DRB3, -DRB4, and -DRB5 may be associated with islet autoantibodies and risk for childhood type 1 diabetes. Diabetes 2016; 65(3): 710-8.
[http://dx.doi.org/10.2337/db15-1115] [PMID: 26740600]
[28]
Pugliese A, Boulware D, Yu L, et al. HLA-DRB1*15:01-DQA1*01:02-DQB1*06:02 Haplotype protects autoantibody-positive relatives from type 1 diabetes throughout the stages of disease progression. Diabetes 2016; 65(4): 1109-19.
[http://dx.doi.org/10.2337/db15-1105] [PMID: 26822082]
[29]
Ilonen J, Lempainen J, Hammais A, et al. Primary islet autoantibody at initial seroconversion and autoantibodies at diagnosis of type 1 diabetes as markers of disease heterogeneity. Pediatr Diabetes 2018; 19(2): 284-92.
[http://dx.doi.org/10.1111/pedi.12545] [PMID: 28597949]
[30]
Rich SS. Genetics and its potential to improve type 1 diabetes care. Curr Opin Endocrinol Diabetes Obes 2017; 24(4): 279-84.
[http://dx.doi.org/10.1097/MED.0000000000000347] [PMID: 28509690]
[31]
Cerosaletti K, Buckner JH. Protein tyrosine phosphatases and type 1 diabetes: Genetic and functional implications of PTPN2 and PTPN22. Rev Diabet Stud 2012; 9(4): 188-200.
[http://dx.doi.org/10.1900/RDS.2012.9.188] [PMID: 23804260]
[32]
Wiede F, Ziegler A, Zehn D, Tiganis T. PTPN2 restrains CD8+ T cell responses after antigen cross-presentation for the maintenance of peripheral tolerance in mice. J Autoimmun 2014; 53: 105-14.
[http://dx.doi.org/10.1016/j.jaut.2014.05.008] [PMID: 24997008]
[33]
Walker LSK. Treg and CTLA-4: Two intertwining pathways to immune tolerance. J Autoimmun 2013; 45(100): 49-57.
[http://dx.doi.org/10.1016/j.jaut.2013.06.006] [PMID: 23849743]
[34]
Garg G, Tyler JR, Yang JHM, et al. Type 1 diabetes-associated IL-2RA variation lowers IL-2 signaling and contributes to diminished CD4+CD25+ regulatory T cell function. J Immunol 2012; 188(9): 4644-53.
[http://dx.doi.org/10.4049/jimmunol.1100272] [PMID: 22461703]
[35]
Galvani G, Fousteri G. PTPN22 and islet-specific autoimmunity: What have the mouse models taught us? World J Diabetes 2017; 8(7): 330-6.
[http://dx.doi.org/10.4239/wjd.v8.i7.330] [PMID: 28751955]
[36]
Santin I, Moore F, Colli ML, et al. PTPN2, a candidate gene for type 1 diabetes, modulates pancreatic β-cell apoptosis via regulation of the BH3-only protein bim. Diabetes 2011; 60(12): 3279-88.
[http://dx.doi.org/10.2337/db11-0758] [PMID: 21984578]
[37]
Xi Y, Liu S, Bettaieb A, et al. Pancreatic T cell protein–tyrosine phosphatase deficiency affects beta cell function in mice. Diabetologia 2015; 58(1): 122-31.
[http://dx.doi.org/10.1007/s00125-014-3413-7] [PMID: 25338551]
[38]
Chan DV, Gibson HM, Aufiero BM, et al. Differential CTLA-4 expression in human CD4+ versus CD8+ T cells is associated with in-creased NFAT1 and inhibition of CD4+ proliferation. Genes Immun 2014; 15(1): 25-32.
[http://dx.doi.org/10.1038/gene.2013.57] [PMID: 24173147]
[39]
Tai X, Laethem VF, Pobezinsky L, et al. Basis of CTLA-4 function in regulatory and conventional CD4+ T cells. Blood 2012; 119(22): 5155-63.
[http://dx.doi.org/10.1182/blood-2011-11-388918] [PMID: 22403258]
[40]
Walker LSK. CTLA-4 and autoimmunity: New twists in the tale. Trends Immunol 2015; 36(12): 760-2.
[http://dx.doi.org/10.1016/j.it.2015.11.002] [PMID: 26596798]
[41]
Chen Y, Chen S, Gu Y, et al. CTLA-4 +49 G/A, a functional T1D risk SNP, affects CTLA-4 level in treg subsets and IA-2A positivity, but not beta-cell function. Sci Rep 2018; 8(1): 10074.
[http://dx.doi.org/10.1038/s41598-018-28423-9] [PMID: 29973665]
[42]
Gunavathy N, Asirvatham A, Chitra A, Jayalakshmi M. Association of CTLA-4 and CD28 gene polymorphisms with type 1 diabetes in south Indian population. Immunol Invest 2019; 48(6): 659-71.
[http://dx.doi.org/10.1080/08820139.2019.1590395] [PMID: 31094250]
[43]
Hulme MA, Wasserfall CH, Atkinson MA, Brusko TM. Central role for interleukin-2 in type 1 diabetes. Diabetes 2012; 61(1): 14-22.
[http://dx.doi.org/10.2337/db11-1213] [PMID: 22187370]
[44]
Atkinson MA. The pathogenesis and natural history of type 1 diabetes. Cold Spring Harb Perspect Med 2012; 2(11): a007641.
[http://dx.doi.org/10.1101/cshperspect.a007641] [PMID: 23125199]
[45]
Tang W, Cui D, Jiang L, et al. Association of common polymorphisms in the IL 2 RA gene with type 1 diabetes: Evidence of 32,646 indi-viduals from 10 independent studies. J Cell Mol Med 2015; 19(10): 2481-8.
[http://dx.doi.org/10.1111/jcmm.12642] [PMID: 26249556]
[46]
Juusola M, Parkkola A, Härkönen T, et al. Positivity for zinc transporter 8 autoantibodies at diagnosis is subsequently associated with reduced β-cell function and higher exogenous insulin requirement in children and adolescents with type 1 diabetes. Diabetes Care 2016; 39(1): 118-21.
[http://dx.doi.org/10.2337/dc15-1027] [PMID: 26519333]
[47]
Li Z, Zhou M, Cai Z, et al. RNA-binding protein DDX1 is responsible for fatty acid-mediated repression of insulin translation. Nucleic Acids Res 2018; 46(22): 12052-66.
[http://dx.doi.org/10.1093/nar/gky867] [PMID: 30295850]
[48]
Alvelos MI, Juan-Mateu J, Colli ML, Turatsinze JV, Eizirik DL. When one becomes many alternative splicing in β-cell function and fail-ure. Diabetes Obes Metab 2018; 20 (Suppl. 2): 77-87.
[http://dx.doi.org/10.1111/dom.13388] [PMID: 30230174]
[49]
Juan-Mateu J, Alvelos MI, Turatsinze JV, et al. SRp55 regulates a splicing network that controls human pancreatic β-cell function and survival. Diabetes 2018; 67(3): 423-36.
[http://dx.doi.org/10.2337/db17-0736] [PMID: 29246973]
[50]
Wen X, Yang Y. Emerging roles of GLIS3 in neonatal diabetes, type 1 and type 2 diabetes. J Mol Endocrinol 2017; 58(2): R73-85.
[http://dx.doi.org/10.1530/JME-16-0232] [PMID: 27899417]
[51]
Amin S, Cook B, Zhou T, et al. Discovery of a drug candidate for GLIS3-associated diabetes. Nat Commun 2018; 9(1): 2681.
[http://dx.doi.org/10.1038/s41467-018-04918-x] [PMID: 29992946]
[52]
Pozzilli P, Signore A. The reconstructed natural history of type 1 diabetes mellitus. Nat Rev Endocrinol 2019; 15(5): 256-7.
[http://dx.doi.org/10.1038/s41574-019-0192-8] [PMID: 30858529]
[53]
Insel RA, Dunne JL, Atkinson MA, et al. Staging presymptomatic type 1 diabetes: A scientific statement of JDRF, the Endocrine Society, and the American Diabetes Association. Diabetes Care 2015; 38(10): 1964-74.
[http://dx.doi.org/10.2337/dc15-1419] [PMID: 26404926]
[54]
Bosi E, Boulware DC, Becker DJ, et al. Impact of age and antibody type on progression from single to multiple autoantibodies in type 1 diabetes relatives. J Clin Endocrinol Metab 2017; 102(8): 2881-6.
[http://dx.doi.org/10.1210/jc.2017-00569] [PMID: 28531305]
[55]
Leighton E, Sainsbury CAR, Jones GC. A practical review of C-peptide testing in diabetes. Diabetes Ther 2017; 8(3): 475-87.
[http://dx.doi.org/10.1007/s13300-017-0265-4] [PMID: 28484968]
[56]
Shields BM, McDonald TJ, Oram R, et al. C-Peptide decline in type 1 diabetes has two phases: An initial exponential fall and a subsequent stable phase. Diabetes Care 2018; 41(7): 1486-92.
[http://dx.doi.org/10.2337/dc18-0465] [PMID: 29880650]
[57]
Pugliese A. Insulitis in the pathogenesis of type 1 diabetes. Pediatr Diabetes 2016; 17 (Suppl. 22): 31-6.
[http://dx.doi.org/10.1111/pedi.12388] [PMID: 27411434]
[58]
Kahaly GJ, Hansen MP. Type 1 diabetes associated autoimmunity. Autoimmun Rev 2016; 15(7): 644-8.
[http://dx.doi.org/10.1016/j.autrev.2016.02.017] [PMID: 26903475]
[59]
Knip M, Siljander H, Ilonen J, Simell O, Veijola R. Role of humoral beta-cell autoimmunity in type 1 diabetes. Pediatr Diabetes 2016; 17 (Suppl. 22): 17-24.
[http://dx.doi.org/10.1111/pedi.12386] [PMID: 27411432]
[60]
Li M, Song LJ, Qin XY. Advances in the cellular immunological pathogenesis of type 1 diabetes. J Cell Mol Med 2014; 18(5): 749-58.
[http://dx.doi.org/10.1111/jcmm.12270] [PMID: 24629100]
[61]
Burrack AL, Martinov T, Fife BT. Cell-mediated beta cell destruction: Autoimmunity and autoimmunity in the context of type 1 diabetes. Front Endocrinol 2017; 8: 343.
[http://dx.doi.org/10.3389/fendo.2017.00343] [PMID: 29259578]
[62]
Liepe J, Ovaa H, Mishto M. Why do proteases mess up with antigen presentation by re-shuffling antigen sequences? Curr Opin Immunol 2018; 52: 81-6.
[http://dx.doi.org/10.1016/j.coi.2018.04.016] [PMID: 29723668]
[63]
Passos GA, Mendes-da-Cruz DA, Oliveira EH. The thymic orchestration involving aire, miRNAs, and cell-cell interactions during the induction of central tolerance. Front Immunol 2015; 6: 352.
[http://dx.doi.org/10.3389/fimmu.2015.00352] [PMID: 26236310]
[64]
Lee T, Sprouse ML, Banerjee P, Bettini M, Bettini ML. Ectopic expression of self-antigen drives regulatory T cell development and not deletion of autoimmune T cells. J Immunol 2017; 199(7): 2270-8.
[http://dx.doi.org/10.4049/jimmunol.1700207] [PMID: 28835461]
[65]
Unanue ER. Antigen presentation in the autoimmune diabetes of the NOD mouse. Annu Rev Immunol 2014; 32(1): 579-608.
[http://dx.doi.org/10.1146/annurev-immunol-032712-095941] [PMID: 24499272]
[66]
Yang J, Chow IT, Sosinowski T, et al. Autoreactive T cells specific for insulin B:11-23 recognize a low-affinity peptide register in human subjects with autoimmune diabetes. Proc Natl Acad Sci 2014; 111(41): 14840-5.
[http://dx.doi.org/10.1073/pnas.1416864111] [PMID: 25267644]
[67]
Bulek AM, Cole DK, Skowera A, et al. Structural basis for the killing of human beta cells by CD8+ T cells in type 1 diabetes. Nat Immunol 2012; 13(3): 283-9.
[http://dx.doi.org/10.1038/ni.2206] [PMID: 22245737]
[68]
Öling V, Reijonen H, Simell O, Knip M, Ilonen J. Autoantigen-specific memory CD4+ T cells are prevalent early in progression to Type 1 diabetes. Cell Immunol 2012; 273(2): 133-9.
[http://dx.doi.org/10.1016/j.cellimm.2011.12.008] [PMID: 22270037]
[69]
Visperas A, Vignali DAA. Are tregs defective in type 1 diabetes and can we fix them? J Immunol 2016; 197(10): 3762-70.
[http://dx.doi.org/10.4049/jimmunol.1601118] [PMID: 27815439]
[70]
Ilonen J, Lempainen J, Veijola R. The heterogeneous pathogenesis of type 1 diabetes mellitus. Nat Rev Endocrinol 2019; 15(11): 635-50.
[http://dx.doi.org/10.1038/s41574-019-0254-y] [PMID: 31534209]
[71]
Szablewski L. Role of immune system in type 1 diabetes mellitus pathogenesis. Int Immunopharmacol 2014; 22(1): 182-91.
[http://dx.doi.org/10.1016/j.intimp.2014.06.033] [PMID: 24993340]
[72]
Clark M, Kroger CJ, Tisch RM. Type 1 Diabetes: A chronic anti-self-inflammatory response. Front Immunol 2017; 8: 1898.
[http://dx.doi.org/10.3389/fimmu.2017.01898] [PMID: 29312356]
[73]
Martinov T, Fife BT. Type 1 diabetes pathogenesis and the role of inhibitory receptors in islet tolerance. Ann N Y Acad Sci 2020; 1461(1): 73-103.
[http://dx.doi.org/10.1111/nyas.14106] [PMID: 31025378]
[74]
Maggi J, Schafer C, Ubilla-Olguín G, Catalán D, Schinnerling K, Aguillón JC. Therapeutic potential of hyporesponsive CD4+ T cells in autoimmunity. Front Immunol 2015; 6: 488.
[http://dx.doi.org/10.3389/fimmu.2015.00488] [PMID: 26441992]
[75]
Wållberg M, Cooke A. Immune mechanisms in type 1 diabetes. Trends Immunol 2013; 34(12): 583-91.
[http://dx.doi.org/10.1016/j.it.2013.08.005] [PMID: 24054837]
[76]
Beeck OA, Eizirik DL, Eizirik DL. Viral infections in type 1 diabetes mellitus. Why the β cells? Nat Rev Endocrinol 2016; 12(5): 263-73.
[http://dx.doi.org/10.1038/nrendo.2016.30] [PMID: 27020257]
[77]
Principi N, Berioli MG, Bianchini S, Esposito S. Type 1 diabetes and viral infections: What is the relationship? J Clin Virol 2017; 96: 26-31.
[http://dx.doi.org/10.1016/j.jcv.2017.09.003] [PMID: 28934695]
[78]
Domsgen E, Lind K, Kong L, et al. An IFIH1 gene polymorphism associated with risk for autoimmunity regulates canonical antiviral de-fence pathways in Coxsackievirus infected human pancreatic islets. Sci Rep 2016; 6(1): 39378.
[http://dx.doi.org/10.1038/srep39378] [PMID: 28000722]
[79]
Eizirik DL, Sammeth M, Bouckenooghe T, et al. The human pancreatic islet transcriptome: Expression of candidate genes for type 1 dia-betes and the impact of pro-inflammatory cytokines. PLoS Genet 2012; 8(3): e1002552.
[http://dx.doi.org/10.1371/journal.pgen.1002552] [PMID: 22412385]
[80]
Asmat U, Abad K, Ismail K. Diabetes mellitus and oxidative stress- A concise review. Saudi Pharm J 2016; 24(5): 547-53.
[http://dx.doi.org/10.1016/j.jsps.2015.03.013] [PMID: 27752226]
[81]
Rojas J, Bermudez V, Palmar J, et al. Pancreatic beta cell death: Novel potential mechanisms in diabetes therapy. J Diabetes Res 2018; 2018: 9601801.
[http://dx.doi.org/10.1155/2018/9601801] [PMID: 29670917]
[82]
Cianciaruso C, Phelps EA, Pasquier M, et al. Primary human and rat β-cells release the intracellular autoantigens GAD65, IA-2, and proin-sulin in exosomes together with cytokine-induced enhancers of immunity. Diabetes 2017; 66(2): 460-73.
[http://dx.doi.org/10.2337/db16-0671] [PMID: 27872147]
[83]
Pugliese A. Autoreactive T cells in type 1 diabetes. J Clin Invest 2017; 127(8): 2881-91.
[http://dx.doi.org/10.1172/JCI94549] [PMID: 28762987]
[84]
Arneth B. Activation of CD4+ and CD8+ T-lymphocytes by insulin and GAD in patients with type 1 or 2 diabetes mellitus. Endocr Connect 2017; 6(8): 758-65.
[http://dx.doi.org/10.1530/EC-17-0230] [PMID: 28986401]
[85]
Knight RR, Kronenberg D, Zhao M, et al. Human β-cell killing by autoreactive preproinsulin-specific CD8 T cells is predominantly gran-ule-mediated with the potency dependent upon T-cell receptor avidity. Diabetes 2013; 62(1): 205-13.
[http://dx.doi.org/10.2337/db12-0315] [PMID: 22936177]
[86]
Faridi P, Li C, Ramarathinam SH, et al. A subset of HLA-I peptides are not genomically templated: Evidence for cis- and trans-spliced peptide ligands. Sci Immunol 2018; 3(28): eaar3947.
[http://dx.doi.org/10.1126/sciimmunol.aar3947] [PMID: 30315122]
[87]
Jamison B, Neef T, Miller SD, Haskins K. Induction of antigen-specific tolerance with hybrid insulin peptides in the NOD mouse model of autoimmune diabetes. J Immunol 2017; 198: 58-68.
[88]
Baker RL, Jamison BL, Haskins K. Hybrid insulin peptides are neo-epitopes for CD4 T cells in autoimmune diabetes. Curr Opin Endocrinol Diabetes Obes 2019; 26(4): 195-200.
[http://dx.doi.org/10.1097/MED.0000000000000490] [PMID: 31166225]
[89]
Berkers CR, de Jong A, Ovaa H, Rodenko B. Transpeptidation and reverse proteolysis and their consequences for immunity. Int J Biochem Cell Biol 2009; 41(1): 66-71.
[http://dx.doi.org/10.1016/j.biocel.2008.08.036] [PMID: 18817889]
[90]
Marro BS, Legrain S, Ware BC, Oldstone MBA. Macrophage IFN-I signaling promotes autoreactive T cell infiltration into islets in type 1 diabetes model. JCI Insight 2019; 4(2): e125067.
[http://dx.doi.org/10.1172/jci.insight.125067] [PMID: 30674713]
[91]
Drexhage HA, Dik WA, Leenen PJM, Versnel MA. The immune pathogenesis of type 1 diabetes: Not only thinking outside the cell but also outside the islet and out of the box. Diabetes 2016; 65(8): 2130-3.
[http://dx.doi.org/10.2337/dbi16-0030] [PMID: 27456621]
[92]
Phillips BE, Garciafigueroa Y, Engman C, et al. Arrest in the progression of type 1 diabetes at the mid-stage of insulitic autoimmunity using an autoantigen-decorated all-trans retinoic acid and transforming growth factor beta-1 single microparticle formulation. Front Immunol 2021; 12: 586220.
[http://dx.doi.org/10.3389/fimmu.2021.586220] [PMID: 33763059]
[93]
Ma Q, Li Y, Wang J, et al. Investigation of gut microbiome changes in type 1 diabetic mellitus rats based on high-throughput sequencing. Biomed Pharmacother 2020; 124: 109873.
[http://dx.doi.org/10.1016/j.biopha.2020.109873] [PMID: 31986412]
[94]
Skowera A, Ladell K, McLaren JE, et al. β-cell-specific CD8 T cell phenotype in type 1 diabetes reflects chronic autoantigen exposure. Diabetes 2015; 64(3): 916-25.
[http://dx.doi.org/10.2337/db14-0332] [PMID: 25249579]
[95]
Laban S, Suwandi JS, van Unen V, et al. Heterogeneity of circulating CD8 T-cells specific to islet, neo-antigen and virus in patients with type 1 diabetes mellitus. PLoS One 2018; 13(8): e0200818.
[http://dx.doi.org/10.1371/journal.pone.0200818] [PMID: 30089176]
[96]
Kuric E, Seiron P, Krogvold L, et al. Demonstration of tissue resident memory CD8 T cells in insulitic lesions in adult patients with re-cent-onset type 1 diabetes. Am J Pathol 2017; 187(3): 581-8.
[http://dx.doi.org/10.1016/j.ajpath.2016.11.002] [PMID: 28212742]
[97]
Richardson SJ, Rodriguez-Calvo T, Gerling IC, et al. Islet cell hyperexpression of HLA class I antigens: A defining feature in type 1 diabe-tes. Diabetologia 2016; 59(11): 2448-58.
[http://dx.doi.org/10.1007/s00125-016-4067-4] [PMID: 27506584]
[98]
Yeo L, Woodwyk A, Sood S, et al. Autoreactive T effector memory differentiation mirrors β cell function in type 1 diabetes. J Clin Invest 2018; 128(8): 3460-74.
[http://dx.doi.org/10.1172/JCI120555] [PMID: 29851415]
[99]
Ehlers MR. Immune interventions to preserve β cell function in type 1 diabetes. J Investig Med 2016; 64(1): 7-13.
[http://dx.doi.org/10.1097/JIM.0000000000000227] [PMID: 26225763]
[100]
Yeo L, Pujol-Autonell I, Baptista R, et al. Circulating β cell-specific CD8+ T cells restricted by high-risk HLA class I molecules show anti-gen experience in children with and at risk of type 1 diabetes. Clin Exp Immunol 2020; 199(3): 263-77.
[http://dx.doi.org/10.1111/cei.13391] [PMID: 31660582]
[101]
Knoop J, Gavrisan A, Kuehn D, et al. GM-CSF producing autoreactive CD4+ T cells in type 1 diabetes. Clin Immunol 2018; 188: 23-30.
[http://dx.doi.org/10.1016/j.clim.2017.12.002] [PMID: 29229565]
[102]
Berner A, Bachmann M, Bender C, Pfeilschifter J, Christen U, Mühl H. Though active on RINm5F insulinoma cells and cultured pancreatic islets, recombinant IL-22 fails to modulate cytotoxicity and disease in a protocol of streptozotocin-induced experimental diabetes. Front Pharmacol 2016; 6: 317.
[http://dx.doi.org/10.3389/fphar.2015.00317] [PMID: 26793108]
[103]
Bachmann M, Ulziibat S, Härdle L, Pfeilschifter J, Mühl H. IFNα converts IL-22 into a cytokine efficiently activating STAT1 and its downstream targets. Biochem Pharmacol 2013; 85(3): 396-403.
[http://dx.doi.org/10.1016/j.bcp.2012.11.004] [PMID: 23153456]
[104]
Delong T, Wiles TA, Baker RL, et al. Pathogenic CD4 T cells in type 1 diabetes recognize epitopes formed by peptide fusion. Science 2016; 351(6274): 711-4.
[http://dx.doi.org/10.1126/science.aad2791] [PMID: 26912858]
[105]
Wiles TA, Delong T. HIPs and HIP-reactive T cells. Clin Exp Immunol 2019; 198(3): 306-13.
[http://dx.doi.org/10.1111/cei.13335] [PMID: 31132145]
[106]
Perri V, Russo B, Crinò A, et al. Expression of PD-1 molecule on regulatory T lymphocytes in patients with insulin-dependent diabetes mellitus. Int J Mol Sci 2015; 16(9): 22584-605.
[http://dx.doi.org/10.3390/ijms160922584] [PMID: 26393578]
[107]
Jin HT, Ahmed R, Okazaki T. Role of PD-1 in regulating T-cell immunity. Curr Top Microbiol Immunol 2010; 350: 17-37.
[http://dx.doi.org/10.1007/82_2010_116] [PMID: 21061197]
[108]
Pellegrino M, Crinò A, Rosado MM, Fierabracci A. Identification and functional characterization of CD8+ T regulatory cells in type 1 dia-betes patients. PLoS One 2019; 14(1): e0210839.
[http://dx.doi.org/10.1371/journal.pone.0210839] [PMID: 30650147]
[109]
MacGillivray DM, Kollmann TR. The role of environmental factors in modulating immune responses in early life. Front Immunol 2014; 5: 434.
[http://dx.doi.org/10.3389/fimmu.2014.00434] [PMID: 25309535]
[110]
Miyazaki Y, Tsumiyama K, Yamane T, Ito M, Shiozawa S. Expansion of PD-1-positive effector CD4 T cells in an experimental model of SLE: Contribution to the self-organized criticality theory. Kobe J Med Sci 2013; 59(2): E64-71.
[PMID: 23756664]
[111]
Bach JF. The hygiene hypothesis in autoimmunity: The role of pathogens and commensals. Nat Rev Immunol 2018; 18(2): 105-20.
[http://dx.doi.org/10.1038/nri.2017.111] [PMID: 29034905]
[112]
Rewers M, Ludvigsson J. Environmental risk factors for type 1 diabetes. Lancet 2016; 387(10035): 2340-8.
[http://dx.doi.org/10.1016/S0140-6736(16)30507-4] [PMID: 27302273]
[113]
Chapman NM, Coppieters K, von Herrath M, Tracy S. The microbiology of human hygiene and its impact on type 1 diabetes. Islets 2012; 4(4): 253-61.
[http://dx.doi.org/10.4161/isl.21570] [PMID: 22996796]
[114]
Paun A, Yau C, Danska JS. Immune recognition and response to the intestinal microbiome in type 1 diabetes. J Autoimmun 2016; 71: 10-8.
[http://dx.doi.org/10.1016/j.jaut.2016.02.004] [PMID: 26908163]
[115]
Rodriguez-Calvo T. Enterovirus infection and type 1 diabetes: Unraveling the crime scene. Clin Exp Immunol 2018; 195(1): 15-24.
[http://dx.doi.org/10.1111/cei.13223] [PMID: 30307605]
[116]
Pearson JA, Wong FS, Wen L. The importance of the Non Obese Diabetic (NOD) mouse model in autoimmune diabetes. J Autoimmun 2016; 66: 76-88.
[http://dx.doi.org/10.1016/j.jaut.2015.08.019] [PMID: 26403950]
[117]
Knip M, Siljander H. The role of the intestinal microbiota in type 1 diabetes mellitus. Nat Rev Endocrinol 2016; 12(3): 154-67.
[http://dx.doi.org/10.1038/nrendo.2015.218] [PMID: 26729037]
[118]
Murri M, Leiva I, Gomez-Zumaquero JM, et al. Gut microbiota in children with type 1 diabetes differs from that in healthy children: A case-control study. BMC Med 2013; 11(1): 46.
[http://dx.doi.org/10.1186/1741-7015-11-46] [PMID: 23433344]
[119]
Leiva-Gea I, Sánchez-Alcoholado L, Martín-Tejedor B, et al. Gut microbiota differs in composition and functionality between children with type 1 diabetes and MODY2 and healthy control subjects: A case-control study. Diabetes Care 2018; 41(11): 2385-95.
[http://dx.doi.org/10.2337/dc18-0253] [PMID: 30224347]
[120]
Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 2009; 9(5): 313-23.
[http://dx.doi.org/10.1038/nri2515] [PMID: 19343057]
[121]
Wesemann DR, Portuguese AJ, Meyers RM, et al. Microbial colonization influences early B-lineage development in the gut lamina propria. Nature 2013; 501(7465): 112-5.
[http://dx.doi.org/10.1038/nature12496] [PMID: 23965619]
[122]
Zheng P, Li Z, Zhou Z. Gut microbiome in type 1 diabetes: A comprehensive review. Diabetes Metab Res Rev 2018; 34(7): e3043.
[http://dx.doi.org/10.1002/dmrr.3043] [PMID: 29929213]
[123]
Han H, Li Y, Fang J, et al. Gut microbiota and type 1 diabetes. Int J Mol Sci 2018; 19(4): 995.
[http://dx.doi.org/10.3390/ijms19040995] [PMID: 29584630]
[124]
Jamshidi P, Hasanzadeh S, Tahvildari A, et al. Is there any association between gut microbiota and type 1 diabetes? A systematic review. Gut Pathog 2019; 11(1): 49.
[http://dx.doi.org/10.1186/s13099-019-0332-7] [PMID: 31636716]
[125]
Durazzo M, Ferro A, Gruden G. Gastrointestinal microbiota and type 1 diabetes ellitus: The state of art. J Clin Med 2019; 8(11): 1843.
[http://dx.doi.org/10.3390/jcm8111843] [PMID: 31684011]
[126]
Wu C, Pan LL, Niu W, et al. Modulation of gut microbiota by low methoxyl pectin attenuates type 1 diabetes in non-obese diabetic mice. Front Immunol 2019; 10: 1733.
[http://dx.doi.org/10.3389/fimmu.2019.01733] [PMID: 31417546]
[127]
Busse N, Paroni F, Richardson SJ, et al. Detection and localization of viral infection in the pancreas of patients with type 1 diabetes using short fluorescently-labelled oligonucleotide probes. Oncotarget 2017; 8(8): 12620-36.
[http://dx.doi.org/10.18632/oncotarget.14896] [PMID: 28147344]
[128]
Precechtelova J, Borsanyiova M, Sarmirova S, Bopegamage S. Type I diabetes mellitus: Genetic factors and presumptive enteroviral etiol-ogy or protection. J Pathogens 2014; 2014: 1-21.
[http://dx.doi.org/10.1155/2014/738512] [PMID: 25574400]
[129]
Looney BM, Xia CQ, Concannon P, Ostrov DA, Clare-Salzler MJ. Effects of type 1 diabetes-associated IFIH1 polymorphisms on MDA5 function and expression. Curr Diab Rep 2015; 15(11): 96.
[http://dx.doi.org/10.1007/s11892-015-0656-8] [PMID: 26385483]
[130]
Santin I, Eizirik DL. Candidate genes for type 1 diabetes modulate pancreatic islet inflammation and β -cell apoptosis. Diabetes Obes Metab 2013; 15 (Suppl. 3): 71-81.
[http://dx.doi.org/10.1111/dom.12162] [PMID: 24003923]
[131]
Jean-Baptiste VSE, Xia CQ, Clare-Salzler MJ, Horwitz MS. Type 1 diabetes and type 1 interferonopathies: Localization of a type 1 com-mon thread of virus infection in the pancreas. Exp Biol Med 2017; 22: 10-7.
[http://dx.doi.org/10.1016/j.ebiom.2017.06.014] [PMID: 28663145]
[132]
Alidjinou EK, Engelmann I, Bossu J, et al. Persistence of coxsackievirus B4 in pancreatic ductal-like cells results in cellular and viral changes. Virulence 2017; 8(7): 1229-44.
[http://dx.doi.org/10.1080/21505594.2017.1284735] [PMID: 28112573]
[133]
Lietzén N, Hirvonen K, Honkimaa A, et al. Coxsackievirus B persistence modifies the proteome and the secretome of pancreatic ductal cells. iScience 2019; 19: 340-57.
[http://dx.doi.org/10.1016/j.isci.2019.07.040] [PMID: 31404834]
[134]
Vehik K, Lynch KF, Wong MC, et al. Prospective virome analyses in young children at increased genetic risk for type 1 diabetes. Nat Med 2019; 25(12): 1865-72.
[http://dx.doi.org/10.1038/s41591-019-0667-0] [PMID: 31792456]
[135]
Raut S, Yadav K, Verma AK, Tak Y, Waiker P, Sahi C. Co-evolution of spliceosomal disassembly interologs: Crowning J-protein compo-nent with moonlighting RNA-binding activity. Curr Genet 2019; 65(2): 561-73.
[http://dx.doi.org/10.1007/s00294-018-0906-9] [PMID: 30467716]
[136]
Oliveto S, Mancino M, Manfrini N, Biffo S. Role of microRNAs in translation regulation and cancer. World J Biol Chem 2017; 8(1): 45-56.
[http://dx.doi.org/10.4331/wjbc.v8.i1.45] [PMID: 28289518]
[137]
Cavalli G, Heard E. Advances in epigenetics link genetics to the environment and disease. Nature 2019; 571(7766): 489-99.
[http://dx.doi.org/10.1038/s41586-019-1411-0] [PMID: 31341302]
[138]
Feinberg AP. The key role of epigenetics in human disease prevention and mitigation. N Engl J Med 2018; 378(14): 1323-34.
[http://dx.doi.org/10.1056/NEJMra1402513] [PMID: 29617578]
[139]
Vogt G. Facilitation of environmental adaptation and evolution by epigenetic phenotype variation: Insights from clonal, invasive, poly-ploid, and domesticated animals. Environ Epigenet 2017; 3(1): dvx002.
[http://dx.doi.org/10.1093/eep/dvx002] [PMID: 29492304]
[140]
Loscalzo J, Handy DE. Epigenetic modifications: Basic mechanisms and role in cardiovascular disease (2013 Grover Conference series). Pulm Circ 2014; 4(2): 169-74.
[http://dx.doi.org/10.1086/675979] [PMID: 25006435]
[141]
Shamsi MB, Firoz AS, Imam SN, Alzaman N, Samman MA. Epigenetics of human diseases and scope in future therapeutics. J Taibah Univ Med Sci 2017; 12(3): 205-11.
[http://dx.doi.org/10.1016/j.jtumed.2017.04.003] [PMID: 31435241]
[142]
Tian Y, Xu J, Du X, Fu X. The interplay between noncoding RNAs and insulin in diabetes. Cancer Lett 2018; 419: 53-63.
[http://dx.doi.org/10.1016/j.canlet.2018.01.038] [PMID: 29371021]
[143]
Mehta A, Baltimore D. MicroRNAs as regulatory elements in immune system logic. Nat Rev Immunol 2016; 16(5): 279-94.
[http://dx.doi.org/10.1038/nri.2016.40] [PMID: 27121651]
[144]
Fabian MR, Sonenberg N, Filipowicz W. Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem 2010; 79(1): 351-79.
[http://dx.doi.org/10.1146/annurev-biochem-060308-103103] [PMID: 20533884]
[145]
Bianchi M, Renzini A, Adamo S, Moresi V. Coordinated actions of microRNAs with other epigenetic factors regulate skeletal muscle de-velopment and adaptation. Int J Mol Sci 2017; 18(4): 840.
[http://dx.doi.org/10.3390/ijms18040840] [PMID: 28420141]
[146]
Zheng Y, Wang Z, Zhou Z. miRNAs: Novel regulators of autoimmunity-mediated pancreatic β-cell destruction in type 1 diabetes. Cell Mol Immunol 2017; 14(6): 488-96.
[http://dx.doi.org/10.1038/cmi.2017.7] [PMID: 28317889]
[147]
Scherm MG, Serr I, Kaestner KH, Daniel C. The role of T cell miRNAs for regulatory T cell induction in islet autoimmunity. Mol Metab 2019; 27: S122-8.
[http://dx.doi.org/10.1016/j.molmet.2019.06.009] [PMID: 31500823]
[148]
Vasu S, Kumano K, Darden CM, Rahman I, Lawrence MC, Naziruddin B. MicroRNA signatures as future biomarkers for diagnosis of diabetes states. Cells 2019; 8(12): 1533.
[http://dx.doi.org/10.3390/cells8121533] [PMID: 31795194]
[149]
Beltrami C, Angelini TG, Emanueli C. Noncoding RNAs in diabetes vascular complications. J Mol Cell Cardiol 2015; 89(Pt A): 42-50.
[http://dx.doi.org/10.1016/j.yjmcc.2014.12.014] [PMID: 25536178]
[150]
Hezova R, Slaby O, Faltejskova P, et al. microRNA-342, microRNA-191 and microRNA-510 are differentially expressed in T regulatory cells of type 1 diabetic patients. Cell Immunol 2010; 260(2): 70-4.
[http://dx.doi.org/10.1016/j.cellimm.2009.10.012] [PMID: 19954774]
[151]
Patel P, Chatterjee S. Peroxiredoxin6 in endothelial signaling. Antioxidants 2019; 8(3): 63.
[http://dx.doi.org/10.3390/antiox8030063] [PMID: 30871234]
[152]
Abuhatzira L, Xu H, Tahhan G, Boulougoura A, Schäffer AA, Notkins AL. Multiple microRNAs within the 14q32 cluster target the mRNAs of major type 1 diabetes autoantigens IA‐2, IA‐2β, and GAD65. FASEB J 2015; 29(10): 4374-83.
[http://dx.doi.org/10.1096/fj.15-273649] [PMID: 26148972]
[153]
Lee N, Kim D, Kim WU. Role of NFAT5 in the immune system and pathogenesis of autoimmune diseases. Front Immunol 2019; 10: 270.
[http://dx.doi.org/10.3389/fimmu.2019.00270] [PMID: 30873159]
[154]
Wang G, Gu Y, Xu N, Zhang M, Yang T. Decreased expression of miR-150, miR146a and miR424 in type 1 diabetic patients: Association with ongoing islet autoimmunity. Biochem Biophys Res Commun 2018; 498(3): 382-7.
[http://dx.doi.org/10.1016/j.bbrc.2017.06.196] [PMID: 28733034]
[155]
Tard C, Rouxel O, Lehuen A. Regulatory role of natural killer T cells in diabetes. Biomed J 2015; 38(6): 484-95.
[http://dx.doi.org/10.1016/j.bj.2015.04.001] [PMID: 27013448]
[156]
Shekhar R, Priyanka P, Kumar P, et al. The microRNAs miR-449a and miR-424 suppress osteosarcoma by targeting cyclin A2 expression. J Biol Chem 2019; 294(12): 4381-400.
[http://dx.doi.org/10.1074/jbc.RA118.005778] [PMID: 30679313]
[157]
Cao YL, Liu DJ, Zhang HG. MiR-7 regulates the PI3K/AKT/] VEGF pathway of retinal capillary endothelial cell and retinal pericytes in diabetic rat model through IRS-1 and inhibits cell proliferation. Eur Rev Med Pharmacol Sci 2018; 22(14): 4427-30.
[PMID: 30058674]
[158]
Zhang Y, Feng ZP, Naselli G, et al. MicroRNAs in CD4 + T cell subsets are markers of disease risk and T cell dysfunction in individuals at risk for type 1 diabetes. J Autoimmun 2016; 68: 52-61.
[http://dx.doi.org/10.1016/j.jaut.2015.12.006] [PMID: 26786119]
[159]
Riquelme P, Haarer J, Kammler A, et al. TIGIT+ iTregs elicited by human regulatory macrophages control T cell immunity. Nat Commun 2018; 9(1): 2858.
[http://dx.doi.org/10.1038/s41467-018-05167-8] [PMID: 30030423]
[160]
Jong VM, Slik AR, Laban S, et al. Survival of autoreactive T lymphocytes by microRNA-mediated regulation of apoptosis through TRAIL and Fas in type 1 diabetes. Genes Immun 2016; 17(6): 342-8.
[http://dx.doi.org/10.1038/gene.2016.29] [PMID: 27467285]
[161]
Roggli E, Britan A, Gattesco S, et al. Involvement of microRNAs in the cytotoxic effects exerted by proinflammatory cytokines on pancre-atic beta-cells. Diabetes 2010; 59(4): 978-86.
[http://dx.doi.org/10.2337/db09-0881] [PMID: 20086228]
[162]
Backe MB, Novotny GW, Christensen DP, Grunnet LG, Mandrup-Poulsen T. Altering β-cell number through stable alteration of miR-21 and miR-34a expression. Islets 2014; 6(1): e27754.
[http://dx.doi.org/10.4161/isl.27754] [PMID: 25483877]
[163]
Lakhter AJ, Pratt RE, Moore RE, et al. Beta cell extracellular vesicle miR-21-5p cargo is increased in response to inflammatory cytokines and serves as a biomarker of type 1 diabetes. Diabetologia 2018; 61(5): 1124-34.
[http://dx.doi.org/10.1007/s00125-018-4559-5] [PMID: 29445851]
[164]
Santos AS, Cunha Neto E, Fukui RT, Ferreira LRP, Silva MER. Increased expression of circulating microRNA 101-3p in type 1 diabetes patients: New insights into miRNA-regulated pathophysiological pathways for type 1 diabetes. Front Immunol 2019; 10: 1637.
[http://dx.doi.org/10.3389/fimmu.2019.01637] [PMID: 31396209]
[165]
Liu S, Li X, Wu Y, et al. Effects of vaspin on pancreatic β cell secretion via PI3K/Akt and NF-κB signaling pathways. PLoS One 2017; 12(12): e0189722.
[http://dx.doi.org/10.1371/journal.pone.0189722] [PMID: 29240812]
[166]
Yang L, Zhu Y, Kong D, et al. EGF suppresses the expression of miR-124a in pancreatic β cell lines via ETS2 activation through the MEK and PI3K signaling pathways. Int J Biol Sci 2019; 15(12): 2561-75.
[http://dx.doi.org/10.7150/ijbs.34985] [PMID: 31754329]
[167]
Sebastiani G, Ventriglia G, Stabilini A, et al. Regulatory T-cells from pancreatic lymphnodes of patients with type-1 diabetes express in-creased levels of microRNA miR-125a-5p that limits CCR2 expression. Sci Rep 2017; 7(1): 6897.
[http://dx.doi.org/10.1038/s41598-017-07172-1] [PMID: 28761107]
[168]
Faraoni I, Antonetti FR, Cardone J, Bonmassar E. miR-155 gene: A typical multifunctional microRNA. Biochim Biophys Acta Mol Basis Dis 2009; 1792(6): 497-505.
[http://dx.doi.org/10.1016/j.bbadis.2009.02.013] [PMID: 19268705]
[169]
Wang P, Hou J, Lin L, et al. Inducible microRNA-155 feedback promotes type I IFN signaling in antiviral innate immunity by targeting suppressor of cytokine signaling 1. J Immunol 2010; 185(10): 6226-33.
[http://dx.doi.org/10.4049/jimmunol.1000491] [PMID: 20937844]
[170]
Gracias DT, Stelekati E, Hope JL, et al. The microRNA miR-155 controls CD8+ T cell responses by regulating interferon signaling. Nat Immunol 2013; 14(6): 593-602.
[http://dx.doi.org/10.1038/ni.2576] [PMID: 23603793]
[171]
Yao R, Ma YL, Liang W, et al. MicroRNA-155 modulates Treg and Th17 cells differentiation and Th17 cell function by targeting SOCS1. PLoS One 2012; 7(10): e46082.
[http://dx.doi.org/10.1371/journal.pone.0046082] [PMID: 23091595]
[172]
Alivernini S, Gremese E, McSharry C, et al. MicroRNA-155-at the critical interface of innate and adaptive immunity in arthritis. Front Immunol 2018; 8: 1932.
[http://dx.doi.org/10.3389/fimmu.2017.01932] [PMID: 29354135]
[173]
Mostahfezian M, Azhir Z, Dehghanian F, Hojati Z. Expression pattern of microRNAs, miR-21, miR-155 and miR-338 in patients with type 1 diabetes. Arch Med Res 2019; 50(3): 79-85.
[http://dx.doi.org/10.1016/j.arcmed.2019.07.002] [PMID: 31495393]
[174]
Dou L, Wang S, Sun L, et al. Mir-338-3p mediates TNF-α induced hepatic insulin resistance by argeting PP4r1 to regulate PP4 expression. Cell Physiol Biochem 2017; 41(6): 2419-31.
[http://dx.doi.org/10.1159/000475912] [PMID: 28467989]
[175]
Jacovetti C, Jimenez V, Ayuso E, et al. Contribution of intronic miR-338–3p and its hosting gene AATK to compensatory β-cell mass expansion. Mol Endocrinol 2015; 29(5): 693-702.
[http://dx.doi.org/10.1210/me.2014-1299] [PMID: 25751313]
[176]
Santos-Bezerra DP, Santos AS, Guimarães GC, et al. Micro-RNAs 518d-3p and 618 are upregulated in individuals with type 1 diabetes with multiple microvascular complications. Front Endocrinol 2019; 10: 385.
[http://dx.doi.org/10.3389/fendo.2019.00385] [PMID: 31249556]
[177]
Moran E, Ding L, Wang Z, et al. Protective and antioxidant effects of PPARα in the ischemic retina. Invest Ophthalmol Vis Sci 2014; 55(7): 4568-76.
[http://dx.doi.org/10.1167/iovs.13-13127] [PMID: 24825105]
[178]
Chen Q, Qiu F, Zhou K, et al. Pathogenic role of microRNA-21 in diabetic retinopathy through downregulation of PPARα. Diabetes 2017; 66(6): 1671-82.
[http://dx.doi.org/10.2337/db16-1246] [PMID: 28270521]
[179]
Dhiman G, Srivastava N, Goyal M, et al. Metadherin: A therapeutic target in multiple cancers. Front Oncol 2019; 9: 349.
[http://dx.doi.org/10.3389/fonc.2019.00349] [PMID: 31131259]
[180]
Li B, Zhao J, Zhao Q, et al. MicroRNA-618 directly targets metadherin mRNA to suppress the malignant phenotype of osteosarcoma cells by reducing PTEN-AKT pathway output. OncoTargets Ther 2019; 12: 9795-807.
[http://dx.doi.org/10.2147/OTT.S219440] [PMID: 31814737]
[181]
Suryavanshi SV, Kulkarni YA. NF-κβ: A Potential target in the management of vascular complications of diabetes. Front Pharmacol 2017; 8: 798.
[http://dx.doi.org/10.3389/fphar.2017.00798] [PMID: 29163178]
[182]
Xu G, Thielen LA, Chen J, et al. Serum miR-204 is an early biomarker of type 1 diabetes-associated pancreatic beta-cell loss. Am J Physiol Endocrinol Metab 2019; 317(4): E723-30.
[http://dx.doi.org/10.1152/ajpendo.00122.2019] [PMID: 31408375]
[183]
DiStefano JK. The emerging role of long noncoding RNAs in human disease. Meth Mol Biol 2018; 1706: 91-110.
[http://dx.doi.org/10.1007/978-1-4939-7471-9_6] [PMID: 29423795]
[184]
Nam JW, Choi SW, You BH. Incredible RNA: Dual functions of coding and noncoding. Mol Cells 2016; 39(5): 367-74.
[http://dx.doi.org/10.14348/molcells.2016.0039] [PMID: 27137091]
[185]
Fernandes J, Acuña S, Aoki J, Floeter-Winter L, Muxel S. Long non-coding RNAs in the regulation of gene expression: Physiology and disease. Noncoding RNA 2019; 5(1): 17.
[http://dx.doi.org/10.3390/ncrna5010017] [PMID: 30781588]
[186]
Li Z, Zhao W, Wang M, Zhou X. The role of long noncoding RNAs in gene expression regulation, gene expression profiling in cancer, dimitrios vlachakis. IntechOpen 2019; 81(1): 73.
[187]
Moore JBIV, Uchida S. Functional characterization of long noncoding RNAs. Curr Opin Cardiol 2020; 35(3): 199-206.
[http://dx.doi.org/10.1097/HCO.0000000000000725] [PMID: 32068613]
[188]
Mirza AH, Kaur S, Pociot F. Long non-coding RNAs as novel players in β cell function and type 1 diabetes. Hum Genomics 2017; 11(1): 17.
[http://dx.doi.org/10.1186/s40246-017-0113-7] [PMID: 28738846]
[189]
Wong WKM, Sørensen AE, Joglekar MV, Hardikar AA, Dalgaard LT. Non-coding RNA in pancreas and β-cell development. Noncoding RNA 2018; 4(4): 41.
[http://dx.doi.org/10.3390/ncrna4040041] [PMID: 30551650]
[190]
Yin D, Zhang E, You L, et al. Downregulation of lncRNA TUG1 affects apoptosis and insulin secretion in mouse pancreatic β cells. Cell Physiol Biochem 2015; 35(5): 1892-904.
[http://dx.doi.org/10.1159/000373999] [PMID: 25871529]
[191]
Cui C, Ye X, Chopp M, et al. miR-145 Regulates diabetes-bone marrow stromal cell-induced neurorestorative effects in diabetes stroke rats. Stem Cells Transl Med 2016; 5(12): 1656-67.
[http://dx.doi.org/10.5966/sctm.2015-0349] [PMID: 27460851]
[192]
Wang F, Gao X, Zhang R, Zhao P, Sun Y, Li C. LncRNA TUG1 ameliorates diabetic nephropathy by inhibiting miR-21 to promote TIMP3-expression. Int J Clin Exp Pathol 2019; 12(3): 717-29.
[PMID: 31933879]
[193]
Arnes L, Akerman I, Balderes DA, Ferrer J, Sussel L. βlinc1 encodes a long noncoding RNA that regulates islet β-cell formation and func-tion. Genes Dev 2016; 30(5): 502-7.
[http://dx.doi.org/10.1101/gad.273821.115] [PMID: 26944677]
[194]
Liu JY, Yao J, Li XM, et al. Pathogenic role of lncRNA-MALAT1 in endothelial cell dysfunction in diabetes mellitus. Cell Death Dis 2014; 5(10): e1506.
[http://dx.doi.org/10.1038/cddis.2014.466] [PMID: 25356875]
[195]
Biswas S, Thomas AA, Chen S, et al. MALAT1: An epigenetic regulator of inflammation in diabetic retinopathy. Sci Rep 2018; 8(1): 6526.
[196]
Vo JN, Cieslik M, Zhang Y, et al. The landscape of circular RNA in cancer. Cell 2019; 176(4): 869-881.e13.
[http://dx.doi.org/10.1016/j.cell.2018.12.021] [PMID: 30735636]
[197]
Fang Y. Circular RNAs as novel biomarkers with regulatory potency in human diseases. Future Sci OA 2018; 4(7): FSO314.
[http://dx.doi.org/10.4155/fsoa-2018-0036] [PMID: 30112184]
[198]
Kaur S, Mirza A, Pociot F. Cell type-selective expression of circular RNAs in human pancreatic islets. Noncoding RNA 2018; 4(4): 38.
[http://dx.doi.org/10.3390/ncrna4040038] [PMID: 30486482]
[199]
Stoll L, Sobel J, Rodriguez-Trejo A, et al. Circular RNAs as novel regulators of β-cell functions in normal and disease conditions. Mol Metab 2018; 9: 69-83.
[http://dx.doi.org/10.1016/j.molmet.2018.01.010] [PMID: 29396373]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy