Review Article

基于适体的皮肤癌研究进展

卷 30, 期 8, 2023

发表于: 17 June, 2022

页: [953 - 973] 页: 21

弟呕挨: 10.2174/0929867329666220408112735

价格: $65

摘要

在过去20年里,癌症一直是最大的健康威胁之一。大约9%的诊断癌症是皮肤癌,包括黑色素瘤和非黑色素瘤。在所有癌症病例中,早期诊断对于实现有效治疗至关重要。人们不断寻求快速诊断的新解决方案和先进技术。适体是单链RNA或DNA合成序列或多肽,通过特异性结合选定的分子,即所谓的癌症生物标志物,为这一研究领域提供了新的可能性。目前,它们被广泛用于成像和靶向治疗的诊断探针。在这篇综述中,我们总结了最近在皮肤癌诊断和治疗方面取得的进展,这些进展是通过将适体与基础或现代技术相结合来实现的。

关键词: 皮肤癌,生物标记物,适体,生物物理方法,成像方法,诊断,探针。

[1]
Ritchie, H.; Roser, M. Causes of Death. Our world in data; , 2018. Available from: https://ourworldindata.org/causes-of-death
[2]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[3]
Futreal, P.A.; Coin, L.; Marshall, M.; Down, T.; Hubbard, T.; Wooster, R.; Rahman, N.; Stratton, M.R. A census of human cancer genes. Nat. Rev. Cancer, 2004, 4(3), 177-183.
[http://dx.doi.org/10.1038/nrc1299] [PMID: 14993899]
[4]
Zalewska, A.M.; Sobiepanek, A.; Kobiela, T. Zastosowanie metabolitów pozyskiwanych z mikroalg w biomedycynie, a w szczególności w diagnostyce i terapii chorób nowotworowych. In: Zagadnienia aktualnie poruszane przez młodych naukowców; Creativetime: New York, USA, 2021; pp. 12-17.
[5]
Ferlay, J.; Colombet, M.; Soerjomataram, I.; Mathers, C.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer, 2019, 144(8), 1941-1953.
[http://dx.doi.org/10.1002/ijc.31937] [PMID: 30350310]
[6]
Ichihashi, M.; Ueda, M.; Budiyanto, A.; Bito, T.; Oka, M.; Fukunaga, M.; Tsuru, K.; Horikawa, T. UV-induced skin damage. Toxicology, 2003, 189(1-2), 21-39.
[http://dx.doi.org/10.1016/S0300-483X(03)00150-1] [PMID: 12821280]
[7]
Wölfle, U.; Seelinger, G.; Bauer, G.; Meinke, M.C.; Lademann, J.; Schempp, C.M. Reactive molecule species and antioxidative mechanisms in normal skin and skin aging. Skin Pharmacol. Physiol., 2014, 27(6), 316-332.
[http://dx.doi.org/10.1159/000360092] [PMID: 24994069]
[8]
Hochberg, M.; Kohen, R.; Enk, C.D. Role of antioxidants in prevention of pyrimidine dimer formation in UVB irradiated human HaCaT keratinocytes. Biomed. Pharmacother., 2006, 60(5), 233-237.
[http://dx.doi.org/10.1016/j.biopha.2006.04.008] [PMID: 16765564]
[9]
Sobiepanek, A.; Milner-Krawczyk, M.; Bobecka-Wesołowska, K.; Kobiela, T. The effect of delphinidin on the mechanical properties of keratinocytes exposed to UVB radiation. J. Photochem. Photobiol. B, 2016, 164, 264-270.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.09.038] [PMID: 27716574]
[10]
Farjadmand, F.; Karimpour-Razkenari, E.; Nabavi, S.M.; Ardekani, M.R.S.; Saeedi, M. Plant Polyphenols: Natural and potent UV-Protective agents for the prevention and treatment of skin disorders. Mini Rev. Med. Chem., 2021, 21(5), 576-585.
[http://dx.doi.org/10.2174/1389557520666201109121246] [PMID: 33167833]
[11]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[12]
Sobiepanek, A.; Paone, A.; Cutruzzolà, F.; Kobiela, T. Biophysical characterization of melanoma cell phenotype markers during metastatic progression. Eur. Biophys. J., 2021, 50(3-4), 523-542.
[http://dx.doi.org/10.1007/s00249-021-01514-8] [PMID: 33730175]
[13]
Shanbhag, P.P.; Jog, S.V.; Chogale, M.M.; Gaikwad, S.S. Theranostics for cancer therapy. Curr. Drug Deliv., 2013, 10(3), 357-362.
[http://dx.doi.org/10.2174/1567201811310030013]
[14]
Yarden, Y.; Caldes, C. Basic cancer research: Why it is essential for the future of cancer therapy. Bull. Cancer, 2014, 101(9), E25-E26.
[http://dx.doi.org/10.1684/bdc.2014.2024] [PMID: 25295602]
[15]
Henry, N.L.; Hayes, D.F. Cancer biomarkers. Mol. Oncol., 2012, 6(2), 140-146.
[http://dx.doi.org/10.1016/j.molonc.2012.01.010] [PMID: 22356776]
[16]
Sobiepanek, A.; Kobiela, T. Application of biosensors in cancer research. Rev. Res. Cancer Treat., 2018, 4(1), 4-12.
[17]
Ellington, A.D.; Szostak, J.W. In vitro selection of RNA molecules that bind specific ligands. Nature, 1990, 346(6287), 818-822.
[http://dx.doi.org/10.1038/346818a0] [PMID: 1697402]
[18]
Bragazzi, N.L.; Amicizia, D.; Panatto, D.; Tramalloni, D.; Valle, I.; Gasparini, R. Quartz-Crystal Microbalance (QCM) for public health. In: Advances in Protein Chemistry and Structural Biology; Elsevier, 2015; 101, pp. 149-211.
[http://dx.doi.org/10.1016/bs.apcsb.2015.08.002]
[19]
MacDonald, H.; Bonnet, H.; Van der Heyden, A.; Defrancq, E.; Spinelli, N.; Coche-Guérente, L.; Dejeu, J. Influence of aptamer surface coverage on small target recognition: A SPR and QCM-D comparative study. J. Phys. Chem. C, 2019, 123(22), 13561-13568.
[http://dx.doi.org/10.1021/acs.jpcc.9b00845]
[20]
Devi, S.; Sharma, N.; Ahmed, T.; Huma, Z. I.; Kour, S.; Sahoo, B.; Singh, A. K.; Macesic, N.; Lee, S. J.; Gupta, M. K. Aptamer-based diagnostic and therapeutic approaches in animals: Current potential and challenges. Saudi J. Biol. Sci., 2021, 2021, S1319562X21004009.
[http://dx.doi.org/10.1016/j.sjbs.2021.05.031]
[21]
Jarczewska, M.; Górski, Ł.; Malinowska, E. Application of DNA aptamers as sensing layers for electrochemical detection of potassium ions. Sens. Actuators B Chem., 2016, 226, 37-43.
[http://dx.doi.org/10.1016/j.snb.2015.11.139]
[22]
Graham, H.K.; Eckersley, A.; Ozols, M.; Mellody, K.T.; Sherratt, M.J. Human skin: Composition, structure and visualisation methods. In: Skin Biophysics; Limbert, G., Ed.; Studies in Mechanobiology, Tissue Engineering and Biomaterials; Springer International Publishing: Cham, 2019; 22, pp. 1-18.
[http://dx.doi.org/10.1007/978-3-030-13279-8_1]
[23]
Sobiepanek, A.; Baran, J.; Milner-Krawczyk, M.; Kobiela, T. Different types of surface modification used for improving the adhesion and interactions of skin cells. OAJBS, 2020, 2(1), 000161.
[http://dx.doi.org/10.38125/OAJBS.000161]
[24]
Musolf, P.; Baran, J.; Ścieżyńska, A.; Staniszewska, M.; Sobiepanek, A. Rola mastocytów w nadzorze odpornościowym procesow fizjologicznych i patologicznych skóry. In: Zagadnienia aktualnie poruszane przez młodych naukowców; Creativetime: New York, USA; , 2021; 19, pp. 78-83.
[25]
Boer, M.; Duchnik, E.; Maleszka, R.; Marchlewicz, M. Structural and biophysical characteristics of human skin in maintaining proper epidermal barrier function. Adv. Dermatol. Allergol., 2016, XXXIII(1), 1-5.
[http://dx.doi.org/10.5114/pdia.2015.48037]
[26]
Gallo, R.L. Human skin is the largest epithelial surface for interaction with microbes. J. Invest. Dermatol., 2017, 137(6), 1213-1214.
[http://dx.doi.org/10.1016/j.jid.2016.11.045] [PMID: 28395897]
[27]
Mayer, J.E.; Swetter, S.M.; Fu, T.; Geller, A.C. Screening, early detection, education, and trends for melanoma: Current status (2007-2013) and future directions: Part I. Epidemiology, high-risk groups, clinical strategies, and diagnostic technology. J. Am. Acad. Dermatol., 2014, 71(4), 599.e1-599.e12.
[http://dx.doi.org/10.1016/j.jaad.2014.05.046] [PMID: 25219716]
[28]
Rusetska, N.; Kowalski, K.; Zalewski, K.; Zięba, S.; Bidziński, M.; Goryca, K.; Kotowicz, B.; Fuksiewicz, M.; Kopczynski, J.; Bakuła-Zalewska, E.; Kowalik, A.; Kowalewska, M. CXCR4/ACKR3/CXCL12 axis in the lymphatic metastasis of vulvar squamous cell carcinoma. J. Clin. Pathol., 2021, 2021, jclinpath-2020-206917.
[http://dx.doi.org/10.1136/jclinpath-2020-206917]
[29]
Hasan, Z.; Riffat, F. Epidemiology and aetiology of non-melanoma skin cancer. In: Non-melanoma Skin Cancer of the Head and Neck; Riffat, F.; Palme, C.E.; Veness, M., Eds.; Springer: New Delhi, 2015; pp. 1-9.
[http://dx.doi.org/10.1007/978-81-322-2497-6_1]
[30]
Veness, M.; Howle, J. Merkel cell carcinoma, adnexal carcinoma and basal cell carcinoma. In: Non-melanoma Skin Cancer of the Head and Neck; Riffat, F.; Palme, C.E.; Veness, M., Eds.; Springer: New Delhi, 2015; pp. 67-82.
[http://dx.doi.org/10.1007/978-81-322-2497-6_6]
[31]
Ryan, R.J.H.; Akin, C.; Castells, M.; Wills, M.; Selig, M.K.; Nielsen, G.P.; Ferry, J.A.; Hornick, J.L. Mast cell sarcoma: A rare and potentially under-recognized diagnostic entity with specific therapeutic implications. Mod. Pathol., 2013, 26(4), 533-543.
[http://dx.doi.org/10.1038/modpathol.2012.199] [PMID: 23196796]
[32]
Monnier, J.; Georgin-Lavialle, S.; Canioni, D.; Lhermitte, L.; Soussan, M.; Arock, M.; Bruneau, J.; Dubreuil, P.; Bodemer, C.; Chandesris, M-O.; Lortholary, O.; Hermine, O.; Damaj, G. Mast cell sarcoma: New cases and literature review. Oncotarget, 2016, 7(40), 66299-66309.
[http://dx.doi.org/10.18632/oncotarget.11812] [PMID: 27602777]
[33]
Sobiepanek, A.; Milner-Krawczyk, M.; Lekka, M.; Kobiela, T. AFM and QCM-D as tools for the distinction of melanoma cells with a different metastatic potential. Biosens. Bioelectron., 2017, 93, 274-281.
[http://dx.doi.org/10.1016/j.bios.2016.08.088] [PMID: 27591901]
[34]
Sobiepanek, A.; Kowalska, P.D.; Soszyńska, M.; Kobiela, T.; Ścieżyńska, A. A short guide on the selection of melanocytes and melanoma cells’ isolation procedures for cancer research. Rev. Res. Cancer Treat., 2020, 6(1), 67-78.
[35]
Ścieżyńska, A.; Sobiepanek, A.; Kowalska, P.D.; Soszyńska, M.; Łuszczyński, K.; Grzywa, T.M.; Krześniak, N.; Góźdź, A.; Włodarski, P.K.; Galus, R.; Kobiela, T.; Malejczyk, J. A novel and effective method for human primary skin melanocytes and metastatic melanoma cell isolation. Cancers (Basel), 2021, 13(24), 6244.
[http://dx.doi.org/10.3390/cancers13246244] [PMID: 34944864]
[36]
Forman, S.B.; Ferringer, T.C.; Peckham, S.J.; Dalton, S.R.; Sasaki, G.T.; Libow, L.F.; Elston, D.M. Is superficial spreading melanoma still the most common form of malignant melanoma? J. Am. Acad. Dermatol., 2008, 58(6), 1013-1020.
[http://dx.doi.org/10.1016/j.jaad.2007.10.650] [PMID: 18485983]
[37]
Dummer, R.; Siano, M.; Hunger, R.E.; Lindenblatt, N.; Braun, R.; Michielin, O.; Mihic-Probst, D.; von Moos, R.; Najafi, Y.; Guckenberger, M.; Arnold, A. The updated Swiss guidelines 2016 for the treatment and follow-up of cutaneous melanoma. Swiss Med. Wkly., 2016, 146, w14279.
[http://dx.doi.org/10.4414/smw.2016.14279] [PMID: 26901103]
[38]
Elder, D.E. Melanoma progression. Pathology, 2016, 48(2), 147-154.
[http://dx.doi.org/10.1016/j.pathol.2015.12.002] [PMID: 27020387]
[39]
Clark, W.H., Jr; Elder, D.E.; Guerry, D., IV; Epstein, M.N.; Greene, M.H.; Van Horn, M. A study of tumor progression: The precursor lesions of superficial spreading and nodular melanoma. Hum. Pathol., 1984, 15(12), 1147-1165.
[http://dx.doi.org/10.1016/S0046-8177(84)80310-X] [PMID: 6500548]
[40]
Damsky, W.E.; Theodosakis, N.; Bosenberg, M. Melanoma metastasis: New concepts and evolving paradigms. In: Oncogene; Elsevier, 2014; 33, pp. (19)2413-2422.
[http://dx.doi.org/10.1038/onc.2013.194] [PMID: 23728340]
[41]
Kulms, D.; Meier, F. In vitro models of melanoma.Skin Tissue Models for Regenerative Medicine; Elsevier, 2018, pp. 57-75.
[http://dx.doi.org/10.1016/B978-0-12-810545-0.00003-6]
[42]
Hearing, V.J.; Leong, S.P.L. From melanocytes to melanoma. The progression to malignancy. Melanoma Res., 2006, 16(5), 469-470.
[http://dx.doi.org/10.1097/01.cmr.0000222604.65556.22]
[43]
Bosserhoff, A.; Strizzi, L. Clinicopathologic Overview of Melanoma. In: Melanoma Development; Bosserhoff, A.K., Ed.; Springer International Publishing: Cham, 2017; pp. 1-5.
[http://dx.doi.org/10.1007/978-3-319-41319-8_1]
[44]
Guerry, D.I.V.; Synnestvedt, M.; Elder, D.E.; Schultz, D. Lessons from tumor progression: The invasive radial growth phase of melanoma is common, incapable of metastasis, and indolent. J. Invest. Dermatol., 1993, 100(3), 342S-345S.
[http://dx.doi.org/10.1038/jid.1993.60] [PMID: 8440920]
[45]
McDermott, N.C.; Hayes, D.P.; al-Sader, M.H.; Hogan, J.M.; Walsh, C.B.; Kay, E.W.; Leader, M.B. Identification of vertical growth phase in malignant melanoma. A study of interobserver agreement. Am. J. Clin. Pathol., 1998, 110(6), 753-757.
[http://dx.doi.org/10.1093/ajcp/110.6.753] [PMID: 9844587]
[46]
Hsu, M-Y.; Shih, D-T.; Meier, F.E.; Van Belle, P.; Hsu, J-Y.; Elder, D.E.; Buck, C.A.; Herlyn, M. Adenoviral gene transfer of beta3 integrin subunit induces conversion from radial to vertical growth phase in primary human melanoma. Am. J. Pathol., 1998, 153(5), 1435-1442.
[http://dx.doi.org/10.1016/S0002-9440(10)65730-6] [PMID: 9811334]
[47]
Sandru, A.; Voinea, S.; Panaitescu, E.; Blidaru, A. Survival rates of patients with metastatic malignant melanoma. J. Med. Life, 2014, 7(4), 572-576.
[PMID: 25713625]
[48]
Gajda, M.; Kaminska-Winciorek, G. Do not let to be late: Overview of reasons for melanoma delayed diagnosis. Asian Pac. J. Cancer Prev., 2014, 15(9), 3873-3877.
[http://dx.doi.org/10.7314/APJCP.2014.15.9.3873] [PMID: 24935566]
[49]
Roesch, A.; Volkenandt, M. Melanoma. In: Braun-Falco’s Dermatology; Springer: Heidelberg, 2009; pp. 1416-1432.
[http://dx.doi.org/10.1007/978-3-540-29316-3_99]
[50]
Prieto, V.G.; Shea, C.R. Pathology of Melanoma. In: Genetics of Melanoma; Springer, 2016.
[http://dx.doi.org/10.1007/978-1-4939-3554-3_4]
[51]
Darragh, C.T.; Clayton, A.S. Melanoma in situ. In: A Practical Guide to Skin Cancer; Springer: Cham, 2018; pp. 97-116.
[http://dx.doi.org/10.1007/978-3-319-74903-7_5]
[52]
Ziółkowski, R.; Jarczewska, M.; Górski, Ł.; Malinowska, E. From small molecules toward whole cells detection: Application of electrochemical aptasensors in modern medical diagnostics. Sensors (Basel), 2021, 21(3), 724.
[http://dx.doi.org/10.3390/s21030724] [PMID: 33494499]
[53]
Hori, S.I.; Herrera, A.; Rossi, J.J.; Zhou, J. Current advances in aptamers for cancer diagnosis and therapy. Cancers (Basel), 2018, 10(1), 9.
[http://dx.doi.org/10.3390/cancers10010009] [PMID: 29301363]
[54]
Byun, J. Recent progress and opportunities for nucleic acid aptamers. Life (Basel), 2021, 11(3), 193.
[http://dx.doi.org/10.3390/life11030193] [PMID: 33671039]
[55]
Gold, L.; Janjic, N.; Jarvis, T.; Schneider, D.; Walker, J.J.; Wilcox, S.K.; Zichi, D. Aptamers and the RNA world, past and present. Cold Spring Harb. Perspect. Biol., 2012, 4(3), a003582-a003582.
[http://dx.doi.org/10.1101/cshperspect.a003582] [PMID: 21441582]
[56]
Ruiz Ciancio, D.; Vargas, M.R.; Thiel, W.H.; Bruno, M.A.; Giangrande, P.H.; Mestre, M.B. Aptamers as diagnostic tools in cancer. Pharmaceuticals (Basel), 2018, 11(3), 86.
[http://dx.doi.org/10.3390/ph11030086] [PMID: 30208607]
[57]
Chandola, C.; Kalme, S.; Casteleijn, M.G.; Urtti, A.; Neerathilingam, M. Application of aptamers in diagnostics, drug-delivery and imaging. J. Biosci., 2016, 41(3), 535-561.
[http://dx.doi.org/10.1007/s12038-016-9632-y] [PMID: 27581942]
[58]
Coker-Gurkan, A.; Obakan-Yerlikaya, P.; Arisan, E-D. Applications of aptamers in cancer therapy. In: Cancer Management and Therapy; Hamza, A.; Salem, N., Eds.; InTechOpen, London, UK; , 2018.
[http://dx.doi.org/10.5772/intechopen.75603]
[59]
Marshall, M.L.; Wagstaff, K.M. Internalized functional DNA aptamers as alternative cancer therapies. Front. Pharmacol., 2020, 11, 1115.
[http://dx.doi.org/10.3389/fphar.2020.01115] [PMID: 32848740]
[60]
Ravichandran, G.; Rengan, A.K. Aptamer-mediated nanotheranostics for cancer treatment: A review. ACS Appl. Nano Mater., 2020, 3(10), 9542-9559.
[http://dx.doi.org/10.1021/acsanm.0c01785]
[61]
Tertis, M.; Leva, P.I.; Bogdan, D.; Suciu, M.; Graur, F.; Cristea, C. Impedimetric aptasensor for the label-free and selective detection of Interleukin-6 for colorectal cancer screening. Biosens. Bioelectron., 2019, 137, 123-132.
[http://dx.doi.org/10.1016/j.bios.2019.05.012] [PMID: 31085401]
[62]
Cerchia, L.; de Franciscis, V. Targeting cancer cells with nucleic acid aptamers. Trends Biotechnol., 2010, 28(10), 517-525.
[http://dx.doi.org/10.1016/j.tibtech.2010.07.005] [PMID: 20719399]
[63]
Scarano, S.; Dausse, E.; Crispo, F.; Toulmé, J-J.; Minunni, M. Design of a dual aptamer-based recognition strategy for human matrix metalloproteinase 9 protein by piezoelectric biosensors. Anal. Chim. Acta, 2015, 897, 1-9.
[http://dx.doi.org/10.1016/j.aca.2015.07.009] [PMID: 26514999]
[64]
Senkara-Barwijuk, E.; Kobiela, T.; Lebed, K.; Lekka, M. Reaction pathway and free energy profile determined for specific recognition of oligosaccharide moiety of carboxypeptidase Y. Biosens. Bioelectron., 2012, 36(1), 103-109.
[http://dx.doi.org/10.1016/j.bios.2012.04.014] [PMID: 22541811]
[65]
Formisano, N.; Jolly, P.; Bhalla, N.; Cromhout, M.; Flanagan, S.P.; Fogel, R.; Limson, J.L.; Estrela, P. Optimisation of an electrochemical impedance spectroscopy aptasensor by exploiting quartz crystal microbalance with dissipation signals. Sens. Actuators B Chem., 2015, 220, 369-375.
[http://dx.doi.org/10.1016/j.snb.2015.05.049]
[66]
Dougherty, C.A.; Cai, W.; Hong, H. Applications of aptamers in targeted imaging: State of the art. Curr. Top. Med. Chem., 2015, 15(12), 1138-1152.
[http://dx.doi.org/10.2174/1568026615666150413153400] [PMID: 25866268]
[67]
Sekar, R.B.; Periasamy, A. Fluorescence resonance energy transfer (FRET) microscopy imaging of live cell protein localizations. J. Cell Biol., 2003, 160(5), 629-633.
[http://dx.doi.org/10.1083/jcb.200210140] [PMID: 12615908]
[68]
Tan, W.; Donovan, M.J.; Jiang, J. Aptamers from cell-based selection for bioanalytical applications. Chem. Rev., 2013, 113(4), 2842-2862.
[http://dx.doi.org/10.1021/cr300468w] [PMID: 23509854]
[69]
Hofmann, U.B.; Westphal, J.R.; Van Muijen, G.N.P.; Ruiter, D.J. Matrix metalloproteinases in human melanoma. J. Invest. Dermatol., 2000, 115(3), 337-344.
[http://dx.doi.org/10.1046/j.1523-1747.2000.00068.x] [PMID: 10951266]
[70]
O’Grady, A.; Dunne, C.; O’Kelly, P.; Murphy, G.M.; Leader, M.; Kay, E. Differential expression of matrix metalloproteinase (MMP)-2, MMP-9 and tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2 in non-melanoma skin cancer: Implications for tumour progression. Histopathology, 2007, 51(6), 793-804.
[http://dx.doi.org/10.1111/j.1365-2559.2007.02885.x] [PMID: 18042068]
[71]
Kryza, D.; Debordeaux, F.; Azéma, L.; Hassan, A.; Paurelle, O.; Schulz, J.; Savona-Baron, C.; Charignon, E.; Bonazza, P.; Taleb, J.; Fernandez, P.; Janier, M.; Toulmé, J.J. Ex vivo and in vivo imaging and biodistribution of aptamers targeting the human matrix metalloprotease-9 in melanomas. PLoS One, 2016, 11(2), e0149387.
[http://dx.doi.org/10.1371/journal.pone.0149387] [PMID: 26901393]
[72]
Hoejberg, L.; Bastholt, L.; Johansen, J.S.; Christensen, I.J.; Gehl, J.; Schmidt, H. Serum interleukin-6 as a prognostic biomarker in patients with metastatic melanoma. Melanoma Res., 2012, 22(4), 287-293.
[http://dx.doi.org/10.1097/CMR.0b013e3283550aa5] [PMID: 22617301]
[73]
Roy, D.; Pascher, A.; Juratli, M.A.; Sporn, J.C. The potential of aptamer-mediated liquid biopsy for early detection of cancer. Int. J. Mol. Sci., 2021, 22(11), 5601.
[http://dx.doi.org/10.3390/ijms22115601] [PMID: 34070509]
[74]
Zamay, A.S.; Zamay, G.S.; Kolovskaya, O.S.; Zamay, T.N.; Berezovski, M.V. Aptamer-based methods for detection of circulating tumor cells and their potential for personalized diagnostics. In: Isolation and Molecular Characterization of Circulating Tumor Cells; Magbanua, M.J.M.; Park, J.W., Eds.; Advances in Experimental Medicine and Biology;; Springer International Publishing: Cham, 2017; 994, pp. 67-81.
[http://dx.doi.org/10.1007/978-3-319-55947-6_3]
[75]
Kim, J-H.; Kim, E.; Lee, M.Y. Exosomes as diagnostic biomarkers in cancer. Mol. Cell. Toxicol., 2018, 14(2), 113-122.
[http://dx.doi.org/10.1007/s13273-018-0014-4]
[76]
Kashefi-Kheyrabadi, L.; Kim, J.; Chakravarty, S.; Park, S.; Gwak, H.; Kim, S-I.; Mohammadniaei, M.; Lee, M-H.; Hyun, K-A.; Jung, H-I. Detachable microfluidic device implemented with electrochemical aptasensor (DeMEA) for sequential analysis of cancerous exosomes. Biosens. Bioelectron., 2020, 169, 112622.
[http://dx.doi.org/10.1016/j.bios.2020.112622] [PMID: 32977087]
[77]
Musumeci, D.; Platella, C.; Riccardi, C.; Moccia, F.; Montesarchio, D. Fluorescence sensing using DNA aptamers in cancer research and clinical diagnostics. Cancers (Basel), 2017, 9(12), 174.
[http://dx.doi.org/10.3390/cancers9120174] [PMID: 29261171]
[78]
Wang, Y-M.; Wu, Z.; Liu, S-J.; Chu, X. Structure-switching aptamer triggering hybridization chain reaction on the cell surface for activatable theranostics. Anal. Chem., 2015, 87(13), 6470-6474.
[http://dx.doi.org/10.1021/acs.analchem.5b01634] [PMID: 26044187]
[79]
Calzada, V.; Moreno, M.; Newton, J.; González, J.; Fernández, M.; Gambini, J.P.; Ibarra, M.; Chabalgoity, A.; Deutscher, S.; Quinn, T.; Cabral, P.; Cerecetto, H. Development of new PTK7-targeting aptamer-fluorescent and -radiolabelled probes for evaluation as molecular imaging agents: Lymphoma and melanoma in vivo proof of concept. Bioorg. Med. Chem., 2017, 25(3), 1163-1171.
[http://dx.doi.org/10.1016/j.bmc.2016.12.026] [PMID: 28089349]
[80]
Zhao, B.; Wu, P.; Zhang, H.; Cai, C. Designing activatable aptamer probes for simultaneous detection of multiple tumor-related proteins in living cancer cells. Biosens. Bioelectron., 2015, 68, 763-770.
[http://dx.doi.org/10.1016/j.bios.2015.02.004] [PMID: 25682505]
[81]
Wang, X.; Lan, H.; Li, J.; Su, Y.; Xu, L. Muc1 promotes migration and lung metastasis of melanoma cells. Am. J. Cancer Res., 2015, 5(9), 2590-2604.
[PMID: 26609470]
[82]
Marzagalli, M.; Montagnani Marelli, M.; Casati, L.; Fontana, F.; Moretti, R.M.; Limonta, P. Estrogen receptor β in melanoma: From molecular insights to potential clinical utility. Front. Endocrinol. (Lausanne), 2016, 7, 140.
[http://dx.doi.org/10.3389/fendo.2016.00140] [PMID: 27833586]
[83]
Ma, J.; Han, H.; Liu, D.; Li, W.; Feng, H.; Xue, X.; Wu, X.; Niu, G.; Zhang, G.; Zhao, Y.; Liu, C.; Tao, H.; Gao, B. HER2 as a promising target for cytotoxicity T cells in human melanoma therapy. PLoS One, 2013, 8(8), e73261.
[http://dx.doi.org/10.1371/journal.pone.0073261] [PMID: 24015299]
[84]
Ojima, A.; Matsui, T.; Maeda, S.; Takeuchi, M.; Inoue, H.; Higashimoto, Y.; Yamagishi, S. DNA aptamer raised against advanced glycation end products inhibits melanoma growth in nude mice. Lab. Invest., 2014, 94(4), 422-429.
[http://dx.doi.org/10.1038/labinvest.2014.5] [PMID: 24514068]
[85]
Nakamura, N.; Matsui, T.; Nishino, Y.; Sotokawauchi, A.; Higashimoto, Y.; Yamagishi, S.I. Long-term local injection of RAGE-aptamer suppresses the growth of malignant melanoma in nude mice. J. Oncol., 2019, 2019, 7387601.
[http://dx.doi.org/10.1155/2019/7387601] [PMID: 31565056]
[86]
Li, H.; Liu, J.; Xiao, X.; Sun, S.; Zhang, H.; Zhang, Y.; Zhou, W.; Zhang, B.; Roy, M.; Liu, H.; Ye, M.; Wang, Z.; Liu-Smith, F.; Liu, J. A novel aptamer LL4A specifically targets vemurafenib-resistant melanoma through binding to the CD63 protein. Mol. Ther. Nucleic Acids, 2019, 18, 727-738.
[http://dx.doi.org/10.1016/j.omtn.2019.10.005] [PMID: 31726389]
[87]
Chang, P-L.; Harkins, L.; Hsieh, Y-H.; Hicks, P.; Sappayatosok, K.; Yodsanga, S.; Swasdison, S.; Chambers, A.F.; Elmets, C.A.; Ho, K-J. Osteopontin expression in normal skin and non-melanoma skin tumors. J. Histochem. Cytochem., 2008, 56(1), 57-66.
[http://dx.doi.org/10.1369/jhc.7A7325.2007] [PMID: 17938278]
[88]
Safarzadeh Kozani, P.; Safarzadeh Kozani, P.; Malik, M.T. AS1411-functionalized delivery nanosystems for targeted cancer therapy. Explor. Med., 2021, 2, 146-166.
[http://dx.doi.org/10.37349/emed.2021.00039]
[89]
Lopes-Nunes, J.; Lifante, J.; Shen, Y.; Ximendes, E.C.; Jaque, D.; Iglesias-de la Cruz, M.C.; Cruz, C. Biological studies of an ICG-tagged aptamer as drug delivery system for malignant melanoma. Eur. J. Pharm. Biopharm., 2020, 154, 228-235.
[http://dx.doi.org/10.1016/j.ejpb.2020.07.018] [PMID: 32707287]
[90]
Powell Gray, B.; Song, X.; Hsu, D.S.; Kratschmer, C.; Levy, M.; Barry, A.P.; Sullenger, B.A. An aptamer for broad cancer targeting and therapy. Cancers (Basel), 2020, 12(11), 3217.
[http://dx.doi.org/10.3390/cancers12113217] [PMID: 33142831]
[91]
Zhang, S.; Gupta, S.; Fitzgerald, T.J.; Bogdanov, A.A. Jr Dual radiosensitization and anti-STAT3 anti-proliferative strategy based on delivery of gold nanoparticle - oligonucleotide nanoconstructs to head and neck cancer cells. Nanotheranostics, 2018, 2(1), 1-11.
[http://dx.doi.org/10.7150/ntno.22335] [PMID: 29291159]
[92]
Zeng, Y.B.; Yu, Z.C.; He, Y.N.; Zhang, T.; Du, L.B.; Dong, Y.M.; Chen, H.W.; Zhang, Y.Y.; Wang, W.Q. Salinomycin-loaded lipid-polymer nanoparticles with anti-CD20 aptamers selectively suppress human CD20+ melanoma stem cells. Acta Pharmacol. Sin., 2018, 39(2), 261-274.
[http://dx.doi.org/10.1038/aps.2017.166] [PMID: 29388568]
[93]
Kolovskaya, O.S.; Zamay, T.N.; Belyanina, I.V.; Karlova, E.; Garanzha, I.; Aleksandrovsky, A.S.; Kirichenko, A.; Dubynina, A.V.; Sokolov, A.E.; Zamay, G.S.; Glazyrin, Y.E.; Zamay, S.; Ivanchenko, T.; Chanchikova, N.; Tokarev, N.; Shepelevich, N.; Ozerskaya, A.; Badrin, E.; Belugin, K.; Belkin, S.; Zabluda, V.; Gargaun, A.; Berezovski, M.V.; Kichkailo, A.S. Aptamer-targeted plasmonic photothermal therapy of cancer. Mol. Ther. Nucleic Acids, 2017, 9, 12-21.
[http://dx.doi.org/10.1016/j.omtn.2017.08.007] [PMID: 29246290]
[94]
Viraka Nellore, B.P.; Pramanik, A.; Chavva, S.R.; Sinha, S.S.; Robinson, C.; Fan, Z.; Kanchanapally, R.; Grennell, J.; Weaver, I.; Hamme, A.T.; Ray, P.C. Aptamer-conjugated theranostic hybrid graphene oxide with highly selective biosensing and combined therapy capability. Faraday Discuss., 2014, 175, 257-271.
[http://dx.doi.org/10.1039/C4FD00074A] [PMID: 25277344]
[95]
Kalinowska, D.; Grabowska-Jadach, I.; Liwinska, M.; Drozd, M.; Pietrzak, M.; Dybko, A.; Brzozka, Z. Studies on effectiveness of PTT on 3D tumor model under microfluidic conditions using aptamer-modified nanoshells. Biosens. Bioelectron., 2019, 126, 214-221.
[http://dx.doi.org/10.1016/j.bios.2018.10.069] [PMID: 30423478]
[96]
Li, L.; Hou, J.; Liu, X.; Guo, Y.; Wu, Y.; Zhang, L.; Yang, Z. Nucleolin-targeting liposomes guided by aptamer AS1411 for the delivery of siRNA for the treatment of malignant melanomas. Biomaterials, 2014, 35(12), 3840-3850.
[http://dx.doi.org/10.1016/j.biomaterials.2014.01.019] [PMID: 24486214]
[97]
Ara, M.N.; Matsuda, T.; Hyodo, M.; Sakurai, Y.; Ohga, N.; Hida, K.; Harashima, H. Construction of an aptamer modified liposomal system targeted to tumor endothelial cells. Biol. Pharm. Bull., 2014, 37(11), 1742-1749.
[http://dx.doi.org/10.1248/bpb.b14-00338] [PMID: 25366480]
[98]
Sobiepanek, A.; Galus, R.; Kobiela, T. Application of the tape stripping method in the research on the skin condition and its diseases. Rev. Res. Cancer Treat., 2019, 5, 4-14.
[99]
Préat, V.; Dujardin, N. Topical delivery of nucleic acids in the skin. STP Pharm. Sci., 2001, 11(1), 57-68.
[100]
Lenn, J.D.; Neil, J.; Donahue, C.; Demock, K.; Tibbetts, C.V.; Cote-Sierra, J.; Smith, S.H.; Rubenstein, D.; Therrien, J-P.; Pendergrast, P.S.; Killough, J.; Brown, M.B.; Williams, A.C. RNA aptamer delivery through intact human skin. J. Invest. Dermatol., 2018, 138(2), 282-290.
[http://dx.doi.org/10.1016/j.jid.2017.07.851] [PMID: 28942363]
[101]
Cadinoiu, A.N.; Rata, D.M.; Atanase, L.I.; Daraba, O.M.; Gherghel, D.; Vochita, G.; Popa, M. Aptamer-functionalized liposomes as a potential treatment for basal cell carcinoma. Polymers (Basel), 2019, 11(9), 1515.
[http://dx.doi.org/10.3390/polym11091515] [PMID: 31540426]
[102]
Cadinoiu, A.N.; Rata, D.M.; Atanase, L.I.; Mihai, C.T.; Bacaita, S.E.; Popa, M. Formulations based on drug loaded aptamer-conjugated liposomes as a viable strategy for the topical treatment of basal cell carcinoma-in vitro tests. Pharmaceutics, 2021, 13(6), 866.
[http://dx.doi.org/10.3390/pharmaceutics13060866] [PMID: 34208362]
[103]
Rata, D.M.; Cadinoiu, A.N.; Atanase, L.I.; Popa, M.; Mihai, C-T.; Solcan, C.; Ochiuz, L.; Vochita, G. Topical formulations containing aptamer-functionalized nanocapsules loaded with 5-fluorouracil - An innovative concept for the skin cancer therapy. Mater. Sci. Eng. C, 2021, 119, 111591.
[http://dx.doi.org/10.1016/j.msec.2020.111591] [PMID: 33321636]
[104]
Quirico, L.; Orso, F.; Esposito, C.L.; Bertone, S.; Coppo, R.; Conti, L.; Catuogno, S.; Cavallo, F.; de Franciscis, V.; Taverna, D. Axl-148b chimeric aptamers inhibit breast cancer and melanoma progression. Int. J. Biol. Sci., 2020, 16(7), 1238-1251.
[http://dx.doi.org/10.7150/ijbs.39768] [PMID: 32174798]
[105]
Taghdisi, S.M.; Danesh, N.M.; Lavaee, P.; Emrani, A.S.; Hassanabad, K.Y.; Ramezani, M.; Abnous, K. Double targeting, controlled release and reversible delivery of daunorubicin to cancer cells by polyvalent aptamers-modified gold nanoparticles. Mater. Sci. Eng. C, 2016, 61, 753-761.
[http://dx.doi.org/10.1016/j.msec.2016.01.009] [PMID: 26838906]
[106]
Zhou, J.; Rossi, J. Aptamers as targeted therapeutics: Current potential and challenges. Nat. Rev. Drug Discov., 2017, 16(3), 181-202.
[http://dx.doi.org/10.1038/nrd.2016.199] [PMID: 27807347]
[107]
Ali, M.H.; Elsherbiny, M.E.; Emara, M. Updates on aptamer research. Int. J. Mol. Sci., 2019, 20(10), 2511.
[http://dx.doi.org/10.3390/ijms20102511] [PMID: 31117311]
[108]
Chandola, C.; Neerathilingam, M. Aptamers for Targeted Delivery: Current Challenges and Future Opportunities. In: Role of Novel Drug Delivery Vehicles in Nanobiomedicine; Tyagi, R.; Garg, N.; Shukla, R.; Singh Bisen, P., Eds.; InTechOpen, London, UK , 2020.
[http://dx.doi.org/10.5772/intechopen.84217]
[109]
Hidding, J. Therapeutic battle: Antibodies vs. aptamers. Nanoscience master programe, 2016, NS109, 1-20.
[110]
Yoon, S.; Rossi, J.J. Future strategies for the discovery of therapeutic aptamers. Expert Opin. Drug Discov., 2017, 12(4), 317-319.
[http://dx.doi.org/10.1080/17460441.2017.1290077] [PMID: 28276706]
[111]
Kumar Kulabhusan, P.; Hussain, B.; Yüce, M. Current perspectives on aptamers as diagnostic tools and therapeutic agents. Pharmaceutics, 2020, 12(7), 646.
[http://dx.doi.org/10.3390/pharmaceutics12070646] [PMID: 32659966]
[112]
Zhang, Y.; Lai, B.S.; Juhas, M. Recent advances in aptamer discovery and applications. Molecules, 2019, 24(5), 941.
[http://dx.doi.org/10.3390/molecules24050941] [PMID: 30866536]
[113]
Wu, Y.; Belmonte, I.; Sykes, K.S.; Xiao, Y.; White, R.J. Perspective on the future role of aptamers in analytical chemistry. Anal. Chem., 2019, 91(24), 15335-15344.
[http://dx.doi.org/10.1021/acs.analchem.9b03853] [PMID: 31714748]
[114]
Hu, M.; Zhang, K. The application of aptamers in cancer research: An up-to-date review. Future Oncol., 2013, 9(3), 369-376.
[http://dx.doi.org/10.2217/fon.12.201] [PMID: 23469972]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy