Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

How Do Abnormalities in the Cerebrospinal Fluid Impact Neuropsychology with Progressing Age?

Author(s): Gargi Joshi, Anna Pick Kiong Ling, Soi Moi Chye and Rhun Yian Koh*

Volume 22, Issue 3, 2023

Published on: 22 June, 2022

Page: [431 - 440] Pages: 10

DOI: 10.2174/1871527321666220408105130

Price: $65

Abstract

The behavior of an individual changes from neonate to elderly due to the development of the central nervous system (CNS). One of the important components of the CNS is the cerebrospinal fluid (CSF), which bathes the brain and spinal cord. CSF has changing properties throughout life, including composition and volume imbalance. However, a specific age group that shows prevailing abnormality- corresponding behavior remains unclear. The objective of this article is to explore how such changes reflect on one’s psychological as well as physical processing. Production of CSF could be affected by many factors, including its flow, absorption, volume, and composition. Prenatally, congenital malformations and infections hold the greatest risk of impacting the child’s physical and mental growth. In adolescents, transmission of external substances like alcohol or drugs in the cerebrospinal fluid is known to impact severe mood changes that potentially result in suicide and depression. In the adult working population, the influence of stress levels on CSF composition causes anxiety and sleep disorders. Finally, the reduced production of CSF was found to be associated with memory deficits and Alzheimer’s disease in the aging group. From the collected evidence, it can be observed that CSF played an important role in behavioral changes and may be associated with neurodegenerations. By linking the CSF abnormalities to the clinical symptoms at different stages of life, it may provide additional information in the diagnosis of diseases that are associated with neuropsychological changes.

Keywords: Cerebrospinal fluid, neuropsychology, behavior, age, central nervous system, abnormalities, brain.

Graphical Abstract
[1]
Telano LN, Baker S. Physiology, Cerebral Spinal Fluid. Treasure Island: StatPearls Publishing 2020; p. 1.
[2]
Cushing H. Studies on the cerebro-spinal fluid: I. Introduction. J Med Res 1914; 31(1): 1-19.
[PMID: 19972189]
[3]
Zappaterra MW, Lehtinen MK. The cerebrospinal fluid: Regulator of neurogenesis, behavior, and beyond. Cell Mol Life Sci 2012; 69(17): 2863-78.
[http://dx.doi.org/10.1007/s00018-012-0957-x] [PMID: 22415326]
[4]
Milhorat TH. Physiology of the cerebrospinal fluid Cerebrospinal fluid and the brain edemas. New York: Neuroscience Society of New York 1987; pp. 39-73.
[5]
Takizawa K, Matsumae M, Hayashi N, et al. The choroid plexus of the lateral ventricle as the origin of CSF pulsation is questionable. Neurol Med Chir (Tokyo) 2018; 58(1): 23-31.
[http://dx.doi.org/10.2176/nmc.oa.2017-0117] [PMID: 29142154]
[6]
Friese S, Hamhaber U, Erb M, Kueker W, Klose U. The influence of pulse and respiration on spinal cerebrospinal fluid pulsation. Invest Radiol 2004; 39(2): 120-30.
[http://dx.doi.org/10.1097/01.rli.0000112089.66448.bd] [PMID: 14734927]
[7]
Reed SM, Andrews FM, Matthews HK, et al. Disorders of the neurologic system Equine Internal Medicine. (2nd ed.). Amsterdam: Elsevier 2003; pp. 533-665.
[8]
Martín C, Bueno D, Alonso MI, et al. FGF2 plays a key role in embryonic cerebrospinal fluid trophic properties over chick embryo neuroepithelial stem cells. Dev Biol 2006; 297(2): 402-16.
[http://dx.doi.org/10.1016/j.ydbio.2006.05.010] [PMID: 16916506]
[9]
Lehtinen MK, Zappaterra MW, Chen X, et al. The cerebrospinal fluid provides a proliferative niche for neural progenitor cells. Neuron 2011; 69(5): 893-905.
[http://dx.doi.org/10.1016/j.neuron.2011.01.023] [PMID: 21382550]
[10]
Huang X, Liu J, Ketova T, et al. Transventricular delivery of Sonic hedgehog is essential to cerebellar ventricular zone development. Proc Natl Acad Sci USA 2010; 107(18): 8422-7.
[http://dx.doi.org/10.1073/pnas.0911838107] [PMID: 20400693]
[11]
Hébert JM, Mishina Y, McConnell SK. BMP signaling is required locally to pattern the dorsal telencephalic midline. Neuron 2002; 35(6): 1029-41.
[http://dx.doi.org/10.1016/S0896-6273(02)00900-5] [PMID: 12354394]
[12]
Lehman M, Silver R. CSF signaling in physiology and behavior. Prog Brain Res 2000; 125: 415-33.
[http://dx.doi.org/10.1016/S0079-6123(00)25029-2] [PMID: 11098676]
[13]
Farb R, Rovira À. Hydrocephalus and CSF disordersDiseases of the Brain, Head and Neck, Spine 2020–2023: Diagnostic Imaging. Cham: Springer 2020; pp. 11-24.
[http://dx.doi.org/10.1007/978-3-030-38490-6_2]
[14]
Welch H, Hasbun R. Lumbar puncture and cerebrospinal fluid analysis. Handb Clin Neurol 2010; 96: 31-49.
[http://dx.doi.org/10.1016/S0072-9752(09)96003-1] [PMID: 20109673]
[15]
Thomson J, Sucharew H, Cruz AT, et al. Pediatric Emergency Medicine Collaborative Research Committee. (PEM CRC) HSV Study Group. Cerebrospinal fluid reference values for young infants undergoing lumbar puncture. Pediatrics 2018; 141(3): e20173405.
[http://dx.doi.org/10.1542/peds.2017-3405] [PMID: 29437883]
[16]
Liu Z, Jia D, Dai J, et al. Age-specific reference values for cerebrospinal fluid protein concentrations in children in southern China. Medicine (Baltimore) 2019; 98(41): e17500.
[http://dx.doi.org/10.1097/MD.0000000000017500] [PMID: 31593118]
[17]
Vasilopoulou VA, Karanika M, Theodoridou K, Katsioulis AT, Theodoridou MN, Hadjichristodoulou CS. Prognostic factors related to sequelae in childhood bacterial meningitis: Data from a Greek meningitis registry. BMC Infect Dis 2011; 11(1): 214.
[http://dx.doi.org/10.1186/1471-2334-11-214] [PMID: 21827712]
[18]
Signorelli M, Tiberti A, Valseriati D, et al. Width of the fetal lateral ventricular atrium between 10 and 12 mm: A simple variation of the norm? Ultrasound Obstet Gynecol 2004; 23(1): 14-8.
[http://dx.doi.org/10.1002/uog.941] [PMID: 14970992]
[19]
Falip C, Blanc N, Maes E, et al. Postnatal clinical and imaging follow-up of infants with prenatal isolated mild ventriculomegaly: A series of 101 cases. Pediatr Radiol 2007; 37(10): 981-9.
[http://dx.doi.org/10.1007/s00247-007-0582-2] [PMID: 17724586]
[20]
Rohanachandra YM, Dahanayake DM, Wijetunge S. Dandy-Walker malformation presenting with psychological manifestations. Case Rep Psychiatry 2016; 2016: 9104306.
[http://dx.doi.org/10.1155/2016/9104306] [PMID: 27493822]
[21]
Donnet A, Schmitt A, Dufour H, Giorgi R, Grisoli F. Differential patterns of cognitive impairment in patients with aqueductal stenosis and normal pressure hydrocephalus. Acta Neurochir (Wien) 2004; 146(12): 1301-8.
[http://dx.doi.org/10.1007/s00701-004-0384-3] [PMID: 15480831]
[22]
Williams H. The venous hypothesis of hydrocephalus. Med Hypotheses 2008; 70(4): 743-7.
[http://dx.doi.org/10.1016/j.mehy.2007.08.013] [PMID: 17919832]
[23]
Nishikawa M, Sakamoto H, Hakuba A, Nakanishi N, Inoue Y. Pathogenesis of Chiari malformation: A morphometric study of the posterior cranial fossa. J Neurosurg 1997; 86(1): 40-7.
[http://dx.doi.org/10.3171/jns.1997.86.1.0040] [PMID: 8988080]
[24]
Inder TE, Perlman JM, Volpe JJ. Preterm intraventricular hemorrhage/posthemorrhagic hydrocephalus. In: Volpe JJ, Inder TE, Darras BT, Eds. Volpe’s Neurology of the Newborn. Amsterdam, The Netherland: Elsevier 2018; pp. 637-98.
[http://dx.doi.org/10.1016/B978-0-323-42876-7.00024-7]
[25]
Olariu TR, Remington JS, Montoya JG. Polymerase chain reaction in cerebrospinal fluid for the diagnosis of congenital toxoplasmosis. Pediatr Infect Dis J 2014; 33(6): 566-70.
[http://dx.doi.org/10.1097/INF.0000000000000256] [PMID: 24445828]
[26]
Flegr J. Effects of toxoplasma on human behavior. Schizophr Bull 2007; 33(3): 757-60.
[http://dx.doi.org/10.1093/schbul/sbl074] [PMID: 17218612]
[27]
Flegr J, Novotná M, Lindová J, Havlícek J. Neurophysiological effect of the Rh factor. Protective role of the RhD molecule against Toxoplasma-induced impairment of reaction times in women. Neuroendocrinol Lett 2008; 29(4): 475-81.
[PMID: 18766148]
[28]
Samojłowicz D, Twarowska-Małczyńska J, Borowska-Solonynko A, Poniatowski ŁA, Sharma N, Olczak M. Presence of Toxoplasma gondii infection in brain as a potential cause of risky behavior: A report of 102 autopsy cases. Eur J Clin Microbiol Infect Dis 2019; 38(2): 305-17.
[http://dx.doi.org/10.1007/s10096-018-3427-z] [PMID: 30470966]
[29]
de Barros JLVM, Barbosa IG, Salem H, et al. Is there any association between Toxoplasma gondii infection and bipolar disorder? A systematic review and meta-analysis. J Affect Disord 2017; 209: 59-65.
[http://dx.doi.org/10.1016/j.jad.2016.11.016] [PMID: 27889597]
[30]
Torrey EF, Bartko JJ, Yolken RH. Toxoplasma gondii and other risk factors for schizophrenia: An update. Schizophr Bull 2012; 38(3): 642-7.
[http://dx.doi.org/10.1093/schbul/sbs043] [PMID: 22446566]
[31]
Fond G, Capdevielle D, Macgregor A, et al. Toxoplasma gondii: A potential role in the genesis of psychiatric disorders. Encephale 2013; 39(1): 38-43.
[http://dx.doi.org/10.1016/j.encep.2012.06.014] [PMID: 23095600]
[32]
Chan M, Amin-Hanjani S. Cerebrospinal fluid and its abnormalities. Hoboken, NJ: Wiley Online Library 2010; p. 1.
[http://dx.doi.org/10.1002/9780470015902.a0002191.pub2]
[33]
Amacher AL, Wellington J. Infantile hydrocephalus: Long-term results of surgical therapy. Childs Brain 1984; 11(4): 217-29.
[http://dx.doi.org/10.1159/000120180] [PMID: 6744985]
[34]
Basu S, Agarwal P, Anupurba S, Shukla R, Kumar A. Elevated plasma and cerebrospinal fluid interleukin-1 beta and tumor necrosis factor-alpha concentration and combined outcome of death or abnormal neuroimaging in preterm neonates with early-onset clinical sepsis. J Perinatol 2015; 35(10): 855-61.
[http://dx.doi.org/10.1038/jp.2015.86] [PMID: 26226245]
[35]
de Groot JC, de Leeuw FE, Oudkerk M, et al. Cerebral white matter lesions and cognitive function: The Rotterdam Scan Study. Ann Neurol 2000; 47(2): 145-51.
[http://dx.doi.org/10.1002/1531-8249(200002)47:2<145::AID-ANA3>3.0.CO;2-P] [PMID: 10665484]
[36]
Goulding DS, Vogel RC, Pandya CD, et al. Neonatal hydrocephalus leads to white matter neuroinflammation and injury in the corpus callosum of Ccdc39 hydrocephalic mice. J Neurosurg Pediatr 2020; 25(5): 1-8.
[http://dx.doi.org/10.3171/2019.12.PEDS19625] [PMID: 32032950]
[37]
Developmental and behavioral pediatrics. Agenesis of the Corpus Callosum. Golisano Children's Hospital. Available from: https://www.urmc.rochester.edu/childrens-hospital/developmental-disabilities/conditions/corpus-callosum.aspx
[38]
Zucconi M, Bruni O. Sleep in children with neurologic disease Sleep in Children. (2nd ed.). Florida: CRC Press 2008; pp. 291-326.
[39]
Barnes GM. Adolescent alcohol abuse and other problem behaviors: Their relationships and common parental influences. J Youth Adolesc 1984; 13(4): 329-48.
[http://dx.doi.org/10.1007/BF02094868] [PMID: 24306739]
[40]
Pletscher A, Bartholini G, Tissot R. Metabolic fate of l-[14C] DOPA in cerebrospinal fluid and blood plasma of humans. Brain Res 1967; 4(1): 106-9.
[http://dx.doi.org/10.1016/0006-8993(67)90154-0] [PMID: 6029941]
[41]
Guldberg HC, Yates CM. Some studies of the effects of chlorpromazine, reserpine and dihydroxyphenylalanine on the concentrations of homovanillic acid, 3,4-dihydroxyphenylacetic acid and 5-hydroxyindol-3-ylacetic acid in ventricular cerebrospinal fluid of the dog using the technique of serial sampling of the cerebrospinal fluid. Br J Pharmacol Chemother 1968; 33(3): 457-71.
[http://dx.doi.org/10.1111/j.1476-5381.1968.tb00494.x] [PMID: 5728318]
[42]
Maas JW, Bowden CL, Miller AL, et al. Schizophrenia, psychosis, and cerebral spinal fluid homovanillic acid concentrations. Schizophr Bull 1997; 23(1): 147-54.
[http://dx.doi.org/10.1093/schbul/23.1.147] [PMID: 9050120]
[43]
Swedo SE, Leonard HL, Kruesi MJ, et al. Cerebrospinal fluid neurochemistry in children and adolescents with obsessive-compulsive disorder. Arch Gen Psychiatry 1992; 49(1): 29-36.
[http://dx.doi.org/10.1001/archpsyc.1992.01820010029004] [PMID: 1370197]
[44]
Insel TR, Mueller EA, Alterman I, Linnoila M, Murphy DL. Obsessive-compulsive disorder and serotonin: Is there a connection? Biol Psychiatry 1985; 20(11): 1174-88.
[http://dx.doi.org/10.1016/0006-3223(85)90176-3] [PMID: 2413912]
[45]
Marcinkiewcz CA, Mazzone CM, D’Agostino G, et al. Serotonin engages an anxiety and fear-promoting circuit in the extended amygdala. Nature 2016; 537(7618): 97-101.
[http://dx.doi.org/10.1038/nature19318] [PMID: 27556938]
[46]
Jokinen J, Nordström AL, Nordström P. Cerebrospinal fluid monoamine metabolites and suicide. Nord J Psychiatry 2009; 63(4): 276-9.
[http://dx.doi.org/10.1080/08039480802571077] [PMID: 19034712]
[47]
Macleod S, Appleton RE. Neurological disorders presenting mainly in adolescence. Arch Dis Child 2007; 92(2): 170-5.
[http://dx.doi.org/10.1136/adc.2005.088070] [PMID: 17264287]
[48]
Rare disease database. Subacute sclerosing panencephalitis. (NORD National Organization for Rare Disorders). Available from: https://rarediseases.org/rare-diseases/subacute-sclerosing-panen-cephalitis/#:~:text=Subacute%20sclerosing%20panencephalitis%20is%20a,jerks
[49]
Garg RK. Subacute sclerosing panencephalitis. J Neurol 2008; 255(12): 1861-71.
[http://dx.doi.org/10.1007/s00415-008-0032-6] [PMID: 18846316]
[50]
Ichiyama T, Siba P, Suarkia D, et al. Analysis of serum and cerebrospinal fluid cytokine levels in subacute sclerosing panencephalitis in Papua New Guinea. Cytokine 2006; 33(1): 17-20.
[http://dx.doi.org/10.1016/j.cyto.2005.11.009] [PMID: 16413199]
[51]
Rammohan KW. Cerebrospinal fluid in multiple sclerosis. Ann Indian Acad Neurol 2009; 12(4): 246-53.
[http://dx.doi.org/10.4103/0972-2327.58282] [PMID: 20182572]
[52]
Yu X, Graner M, Kennedy PGE, Liu Y. The role of antibodies in the pathogenesis of multiple sclerosis. Front Neurol 2020; 11: 533388.
[http://dx.doi.org/10.3389/fneur.2020.533388] [PMID: 33192968]
[53]
Brettschneider J, Petzold A, Süssmuth SD, Ludolph AC, Tumani H. Axonal damage markers in cerebrospinal fluid are increased in ALS. Neurology 2006; 66(6): 852-6.
[http://dx.doi.org/10.1212/01.wnl.0000203120.85850.54] [PMID: 16567701]
[54]
Jongen PJ, Ter Horst AT, Brands AM. Cognitive impairment in multiple sclerosis. Minerva Med 2012; 103(2): 73-96.
[PMID: 22513513]
[55]
Ogawa S, Tsuchimine S, Kunugi H. Cerebrospinal fluid monoamine metabolite concentrations in depressive disorder: A meta-analysis of historic evidence. J Psychiatr Res 2018; 105: 137-46.
[http://dx.doi.org/10.1016/j.jpsychires.2018.08.028] [PMID: 30219563]
[56]
D’Souza RS, Hooten WM. Extrapyramidal Symptoms. Treasure Island: StatPearls Publishing 2020; p. 1.
[57]
Sher L, Oquendo MA, Li S, et al. Lower CSF homovanillic acid levels in depressed patients with a history of alcoholism. Neuropsychopharmacology 2003; 28(9): 1712-9.
[http://dx.doi.org/10.1038/sj.npp.1300231] [PMID: 12825091]
[58]
Brown GL, Ebert MH, Goyer PF, et al. Aggression, suicide, and serotonin: Relationships to CSF amine metabolites. Am J Psychiatry 1982; 139(6): 741-6.
[http://dx.doi.org/10.1176/ajp.139.6.741] [PMID: 6177256]
[59]
Träskman L, Åsberg M, Bertilsson L, Sjöstrand L. Monoamine metabolites in CSF and suicidal behavior. Arch Gen Psychiatry 1981; 38(6): 631-6.
[http://dx.doi.org/10.1001/archpsyc.1981.01780310031002] [PMID: 6166274]
[60]
Thompson RH, Swanson LW. Structural characterization of a hypothalamic visceromotor pattern generator network. Brain Res Brain Res Rev 2003; 41(2-3): 153-202.
[http://dx.doi.org/10.1016/S0165-0173(02)00232-1] [PMID: 12663080]
[61]
Veening JG, de Jong T, Barendregt HP. Oxytocin-messages via the cerebrospinal fluid: Behavioral effects; a review. Physiol Behav 2010; 101(2): 193-210.
[http://dx.doi.org/10.1016/j.physbeh.2010.05.004] [PMID: 20493198]
[62]
Sabzevari S, Rohbani K, Sadat-Shirazi MS, et al. Morphine exposure before conception affects anxiety-like behavior and CRF level (in the CSF and plasma) in the adult male offspring. Brain Res Bull 2019; 144: 122-31.
[http://dx.doi.org/10.1016/j.brainresbull.2018.11.022] [PMID: 30503221]
[63]
Ba M, Yu G, Kong M, Liang H, Yu L. CSF Aβ1-42 level is associated with cognitive decline in early Parkinson’s disease with rapid eye movement sleep behavior disorder. Transl Neurodegener 2018; 7(1): 22.
[http://dx.doi.org/10.1186/s40035-018-0129-5] [PMID: 30338062]
[64]
Stoquart-ElSankari S, Balédent O, Gondry-Jouet C, Makki M, Godefroy O, Meyer ME. Aging effects on cerebral blood and cerebrospinal fluid flows. J Cereb Blood Flow Metab 2007; 27(9): 1563-72.
[http://dx.doi.org/10.1038/sj.jcbfm.9600462] [PMID: 17311079]
[65]
May C, Kaye JA, Atack JR, Schapiro MB, Friedland RP, Rapoport SI. Cerebrospinal fluid production is reduced in healthy aging. Neurology 1990; 40(3 Pt 1): 500-3.
[http://dx.doi.org/10.1212/WNL.40.3_Part_1.500] [PMID: 2314595]
[66]
Rubenstein E. Relationship of senescence of cerebrospinal fluid circulatory system to dementias of the aged. Lancet 1998; 351(9098): 283-5.
[http://dx.doi.org/10.1016/S0140-6736(97)09234-9] [PMID: 9457114]
[67]
Jellinger K. Neuropathological aspects of dementias resulting from abnormal blood and cerebrospinal fluid dynamics. Acta Neurol Belg 1976; 76(2): 83-102.
[PMID: 961375]
[68]
Serot JM, Christmann D, Dubost T, Couturier M. Cerebrospinal fluid transthyretin: Aging and late onset Alzheimer’s disease. J Neurol Neurosurg Psychiatry 1997; 63(4): 506-8.
[http://dx.doi.org/10.1136/jnnp.63.4.506] [PMID: 9343132]
[69]
Bartolini S, Inzitari D, Castagnoli A, Amaducci L. Correlation of isotopic cisternographic patterns in multiple sclerosis with CSF IgG values. Ann Neurol 1982; 12(5): 486-9.
[http://dx.doi.org/10.1002/ana.410120514] [PMID: 6758679]
[70]
Garton MJ, Keir G, Lakshmi MV, Thompson EJ. Age-related changes in cerebrospinal fluid protein concentrations. J Neurol Sci 1991; 104(1): 74-80.
[http://dx.doi.org/10.1016/0022-510X(91)90218-V] [PMID: 1717663]
[71]
Kuiper MA, Mulder C, van Kamp GJ, Scheltens P, Wolters EC. Cerebrospinal fluid ferritin levels of patients with Parkinson’s disease, Alzheimer’s disease, and multiple system atrophy. J Neural Transm Park Dis Dement Sect 1994; 7(2): 109-14.
[http://dx.doi.org/10.1007/BF02260965] [PMID: 7710663]
[72]
Galasko D, Clark C, Chang L, et al. Assessment of CSF levels of tau protein in mildly demented patients with Alzheimer’s disease. Neurology 1997; 48(3): 632-5.
[http://dx.doi.org/10.1212/WNL.48.3.632] [PMID: 9065538]
[73]
Loeffler DA, DeMaggio AJ, Juneau PL, et al. Ceruloplasmin is increased in cerebrospinal fluid in Alzheimer’s disease but not Parkinson’s disease. Alzheimer Dis Assoc Disord 1994; 8(3): 190-7.
[http://dx.doi.org/10.1097/00002093-199408030-00005] [PMID: 7986488]
[74]
Jahn H. Memory loss in Alzheimer’s disease. Dialogues Clin Neurosci 2013; 15(4): 445-54.
[http://dx.doi.org/10.31887/DCNS.2013.15.4/hjahn] [PMID: 24459411]
[75]
Savolainen S, Paljärvi L, Vapalahti M. Prevalence of Alzheimer’s disease in patients investigated for presumed normal pressure hydrocephalus: A clinical and neuropathological study. Acta Neurochir (Wien) 1999; 141(8): 849-53.
[http://dx.doi.org/10.1007/s007010050386] [PMID: 10536721]
[76]
Kazui H. [Cognitive impairment in patients with idiopathic normal pressure hydrocephalus]. Brain Nerve 2008; 60(3): 225-31.
[PMID: 18402069]
[77]
Desmond ME, Jacobson AG. Embryonic brain enlargement requires cerebrospinal fluid pressure. Dev Biol 1977; 57(1): 188-98.
[http://dx.doi.org/10.1016/0012-1606(77)90364-5] [PMID: 863106]
[78]
Gato A, Alonso MI, Martín C, et al. Embryonic cerebrospinal fluid in brain development: Neural progenitor control. Croat Med J 2014; 55(4): 299-305.
[http://dx.doi.org/10.3325/cmj.2014.55.299] [PMID: 25165044]
[79]
Desmond ME, Knepper JE, DiBenedetto AJ, et al. Focal adhesion kinase as a mechanotransducer during rapid brain growth of the chick embryo. Int J Dev Biol 2014; 58(1): 35-43.
[http://dx.doi.org/10.1387/ijdb.130305md] [PMID: 24860993]
[80]
Leen WG, Willemsen MA, Wevers RA, Verbeek MM. Cerebrospinal fluid glucose and lactate: Age-specific reference values and implications for clinical practice. PLoS One 2012; 7(8): e42745.
[http://dx.doi.org/10.1371/journal.pone.0042745] [PMID: 22880096]
[81]
Thwaites G, Fisher M, Hemingway C, Scott G, Solomon T, Innes J. British Infection Society. British infection society guidelines for the diagnosis and treatment of tuberculosis of the central nervous system in adults and children. J Infect 2009; 59(3): 167-87.
[http://dx.doi.org/10.1016/j.jinf.2009.06.011] [PMID: 19643501]
[82]
Wong M, Schlaggar BL, Buller RS, Storch GA, Landt M. Cerebrospinal fluid protein concentration in pediatric patients: Defining clinically relevant reference values. Arch Pediatr Adolesc Med 2000; 154(8): 827-31.
[http://dx.doi.org/10.1001/archpedi.154.8.827] [PMID: 10922281]
[83]
Heine W, Hobusch D, Drescher U. Cerebrospinal fluid protein levels and blood-cerebrospinal fluid ratio of glucose and electrolytes in infants and children. Helv Paediatr Acta 1981; 36(3): 217-27.
[PMID: 7275672]
[84]
Cole DE, Shafai J, Scriver CR. Inorganic sulfate in cerebrospinal fluid from infants and children. Clin Chim Acta 1982; 120(1): 153-9.
[http://dx.doi.org/10.1016/0009-8981(82)90086-9] [PMID: 7067135]
[85]
González-Quevedo A, Peña-Sánchez M, García S. Editorial on “Cerebrospinal fluid total protein reference intervals derived from 20 years of patient data”. J Lab Precis Med 2018; 3: 3-5.
[http://dx.doi.org/10.21037/jlpm.2018.03.12]
[86]
Johnson KS, Sexton DJ. Cerebrospinal fluid: Physiology and utility of an examination in disease states. Available from: https://www.uptodate.com/contents/cerebrospinal-fluid-physiology-and-utility-of-an-examination-in-disease-states
[87]
Dufour-Rainfray D, Beaufils E, Vourc’h P, et al. Total protein level in cerebrospinal fluid is stable in elderly adults. J Am Geriatr Soc 2013; 61(10): 1819-21.
[http://dx.doi.org/10.1111/jgs.12489] [PMID: 24117297]
[88]
Fekete M, Decsi T, Adamovich K, Szasz M. Electrolyte and glucose concentration in plasma and cerebrospinal fluid measured parallel in pathologic newborn infants. Acta Paediatr Hung 1992; 32(4): 291-7.
[PMID: 1304186]
[89]
Schain RJ. Cerebrospinal fluid and serum cation levels. Arch Neurol 1964; 11(3): 330-3.
[http://dx.doi.org/10.1001/archneur.1964.00460210108012] [PMID: 14170639]
[90]
Chabas D, Ness J, Belman A, et al. US Network of Pediatric MS Centers of Excellence. Younger children with MS have a distinct CSF inflammatory profile at disease onset. Neurology 2010; 74(5): 399-405.
[http://dx.doi.org/10.1212/WNL.0b013e3181ce5db0] [PMID: 20124205]
[91]
Busse S, Hoffmann J, Michler E, Hartig R, Frodl T, Busse M. Dementia-associated changes of immune cell composition within the cerebrospinal fluid. Immunity-Health 2021; 14: 100218.
[http://dx.doi.org/10.1016/j.bbih.2021.100218] [PMID: 34589754]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy