Review Article

唑类衍生物作为抗菌和抗真菌药物的研究进展

卷 30, 期 2, 2023

发表于: 07 September, 2022

页: [220 - 249] 页: 30

弟呕挨: 10.2174/0929867329666220407094430

价格: $65

摘要

背景:唑类化合物因其活性范围广、疗效高、耐受性好、可口服等特点,已成为制药行业中广泛应用的支架药物。此外,唑类衍生物作为有效的抗菌药物已引起人们的关注。 导论:本文综述了2016-2020年报道的具有抗菌活性的主要唑类支架药物的药理方面,包括咪唑、苯并咪唑、三唑和四唑,以及我们在该领域的所有出版物。此外,我们还讨论了唑类衍生物的结构与活性的关系以及分子对接研究,为合成具有良好生物活性的新型唑类化合物提供了重要特征和有价值的信息。本综述中提出的结构已经对几种细菌和真菌进行了测试,如大肠杆菌和白色念珠菌,这些细菌和真菌在所有这些研究中都很常见。 结果:对所测化合物的MIC进行比较,发现氟康唑基结构的抗真菌活性最强,而三唑类含硝基苯和香豆素基团的衍生物抑菌活性最强。 结论:与苯并咪唑、四唑等其他唑类衍生物相比,三唑、咪唑类支架对抗菌化合物的设计更为重要。所有活性最高的化合物都符合利平斯基规则。

关键词: 唑,抗菌,分子对接,SAR, MIC, Lipinski规则

« Previous
[1]
Zhang, H-Z.; Gan, L-L.; Wang, H.; Zhou, C-H. New progress in azole compounds as antimicrobial agents. Mini Rev. Med. Chem., 2017, 17(2), 122-166.
[http://dx.doi.org/10.2174/1389557516666160630120725] [PMID: 27484625]
[2]
Peng, X-M.; Cai, G-X.; Zhou, C-H. Recent developments in azole compounds as antibacterial and antifungal agents. Curr. Top. Med. Chem., 2013, 13(16), 1963-2010.
[http://dx.doi.org/10.2174/15680266113139990125] [PMID: 23895097]
[3]
Bhambra, A.S.; Edgar, M.; Elsegood, M.R.; Horsburgh, L.; Kryštof, V.; Lucas, P.D.; Mojally, M.; Teat, S.J.; Warwick, T.G.; Weaver, G.W.; Zeinali, F. Novel fluorinated benzimidazole-based scaffolds and their anticancer activity in vitro. J. Fluor. Chem., 2016, 188, 99-109.
[http://dx.doi.org/10.1016/j.jfluchem.2016.06.009]
[4]
Khabnadideh, S.; Rezaei, Z.; Pakshir, K.; Zomorodian, K.; Ghafari, N. Synthesis and antifungal activity of benzimidazole, benzotriazole and aminothiazole derivatives. Res. Pharm. Sci., 2012, 7(2), 65-72.
[PMID: 23181082]
[5]
Shaikh, I.N.; Hosamani, K.M.; Kurjogi, M.M. Design, synthesis, and evaluation of new α-aminonitrile-based benzimidazole biomolecules as potent antimicrobial and antitubercular agents. Arch. Pharm. (Weinheim), 2018, 351(2), 1700205.
[http://dx.doi.org/10.1002/ardp.201700205] [PMID: 29356105]
[6]
Byrappa, S.; Harsha Raj, M.; Kungyal, T.; Kudva N, N.U.; Salimath, B.P.; Lokanatha Rai, K.M. Synthesis and biological evaluation of novel isoxazolines linked via piperazine to 2- benzoisothiazoles as potent apoptotic agents. Eur. J. Med. Chem., 2017, 126, 218-224.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.094] [PMID: 27821324]
[7]
Rezaei, Z.; Khabnadideh, S.; Zomorodian, K.; Pakshir, K.; Kashi, G.; Sanagoei, N.; Gholami, S. Design, synthesis and antifungal activity of some new imidazole and triazole derivatives. Arch. Pharm. (Weinheim), 2011, 344(10), 658-665.
[http://dx.doi.org/10.1002/ardp.201000357] [PMID: 21984016]
[8]
Sadeghpour, H.; Khabnadideh, S.; Zomorodian, K.; Pakshir, K.; Hoseinpour, K.; Javid, N.; Faghih-Mirzaei, E.; Rezaei, Z. Design, synthesis, and biological activity of new triazole and nitro-triazole derivatives as antifungal agents. Molecules, 2017, 22(7), 1150.
[http://dx.doi.org/10.3390/molecules22071150] [PMID: 28698522]
[9]
Khabnadideh, S.; Rezaei, Z.; Ghasemi, Y.; Montazeri-Najafabady, N. Antibacterial activity of some new azole compounds. Antiinfect. Agents, 2012, 10(1), 26-33.
[10]
Bello-Vieda, N.J.; Pastrana, H.F.; Garavito, M.F.; Ávila, A.G.; Celis, A.M.; Muñoz-Castro, A.; Restrepo, S.; Hurtado, J.J. Antibacterial activities of azole complexes combined with silver nanoparticles. Molecules, 2018, 23(2), 361.
[http://dx.doi.org/10.3390/molecules23020361] [PMID: 29419803]
[11]
Gomha, S.M.; Muhammad, Z.A.; Abdel-aziz, H.M.; El-Arab, E.E. Synthesis of new azoles and azolopyrimidines incorporating morpholine moiety as potent anti-tumor agents. Croat. Chem. Acta, 2018, 91(1), 43-52.
[http://dx.doi.org/10.5562/cca3279]
[12]
Schenone, S.; Brullo, C.; Bruno, O.; Bondavalli, F.; Ranise, A.; Filippelli, W.; Rinaldi, B.; Capuano, A.; Falcone, G. New 1,3,4-thiadiazole derivatives endowed with analgesic and anti-inflammatory activities. Bioorg. Med. Chem., 2006, 14(6), 1698-1705.
[http://dx.doi.org/10.1016/j.bmc.2005.10.064] [PMID: 16310359]
[13]
Kini, S.G.; Bhat, A.R.; Bryant, B.; Williamson, J.S.; Dayan, F.E. Synthesis, antitubercular activity and docking study of novel cyclic azole substituted diphenyl ether derivatives. Eur. J. Med. Chem., 2009, 44(2), 492-500.
[http://dx.doi.org/10.1016/j.ejmech.2008.04.013] [PMID: 18538450]
[14]
Mir, F.; Shafi, S.; Zaman, M.S.; Kalia, N.P.; Rajput, V.S.; Mulakayala, C.; Mulakayala, N.; Khan, I.A.; Alam, M.S. Sulfur rich 2-mercaptobenzothiazole and 1,2,3-triazole conjugates as novel antitubercular agents. Eur. J. Med. Chem., 2014, 76, 274-283.
[http://dx.doi.org/10.1016/j.ejmech.2014.02.017] [PMID: 24589483]
[15]
Sari, S.; Karakurt, A.; Uslu, H.; Kaynak, F.B.; Çalış, Ü.; Dalkara, S. New (arylalkyl)azole derivatives showing anticonvulsant effects could have VGSC and/or GABAAR affinity according to molecular modeling studies. Eur. J. Med. Chem., 2016, 124, 407-416.
[http://dx.doi.org/10.1016/j.ejmech.2016.08.032] [PMID: 27597416]
[16]
Sari, S.; Kaynak, F.B.; Dalkara, S. Synthesis and anticonvulsant screening of 1,2,4-triazole derivatives. Pharmacol. Rep., 2018, 70(6), 1116-1123.
[http://dx.doi.org/10.1016/j.pharep.2018.06.007] [PMID: 30316046]
[17]
Roussos, P.; Lewis, R.E.; Kontoyiannis, D.P. Azoles and antidepressants: A mini-review of the tolerability of co-administration. Mycoses, 2009, 52(5), 433-439.
[http://dx.doi.org/10.1111/j.1439-0507.2008.01677.x] [PMID: 19207836]
[18]
Wu, W.; Chen, Q.; Tai, A.; Jiang, G.; Ouyang, G. Synthesis and antiviral activity of 2-substituted methylthio-5-(4-amino-2-methylpyrimidin-5-yl)-1,3,4-oxadiazole derivatives. Bioorg. Med. Chem. Lett., 2015, 25(10), 2243-2246.
[http://dx.doi.org/10.1016/j.bmcl.2015.02.069] [PMID: 25900217]
[19]
Ding, Z.; Ni, T.; Xie, F.; Hao, Y.; Yu, S.; Chai, X.; Jin, Y.; Wang, T.; Jiang, Y.; Zhang, D. Design, synthesis, and structure-activity relationship studies of novel triazole agents with strong antifungal activity against Aspergillus fumigatus. Bioorg. Med. Chem. Lett., 2020, 30(4), 126951.
[http://dx.doi.org/10.1016/j.bmcl.2020.126951] [PMID: 31926784]
[20]
Mahmoudi, Y.; Badali, H.; Hashemi, S.M.; Ansari, M.; Fakhim, H.; Fallah, M.; Shokrzadeh, M.; Emami, S. New potent antifungal triazole alcohols containing N-benzylpiperazine carbodithioate moiety: Synthesis, in vitro evaluation and in silico study. Bioorg. Chem., 2019, 90, 103060.
[http://dx.doi.org/10.1016/j.bioorg.2019.103060] [PMID: 31229796]
[21]
Wani, M.Y.; Ahmad, A.; Aqlan, F.M.; Al-Bogami, A.S. Azole based acetohydrazide derivatives of cinnamaldehyde target and kill Candida albicans by causing cellular apoptosis. ACS Med. Chem. Lett., 2020, 11(4), 566-574.
[http://dx.doi.org/10.1021/acsmedchemlett.0c00030] [PMID: 32292565]
[22]
Osmaniye, D.; Kaya Çavuşoğlu, B.; Sağlık, B.N.; Levent, S.; Acar Çevik, U.; Atlı, Ö.; Özkay, Y.; Kaplancıklı, Z.A. Synthesis and anticandidal activity of new imidazole-chalcones. Molecules, 2018, 23(4), 831.
[http://dx.doi.org/10.3390/molecules23040831] [PMID: 29617329]
[23]
Xu, K.; Huang, L.; Xu, Z.; Wang, Y.; Bai, G.; Wu, Q.; Wang, X.; Yu, S.; Jiang, Y. Design, synthesis, and antifungal activities of novel triazole derivatives containing the benzyl group. Drug Des. Devel. Ther., 2015, 9, 1459-1467.
[PMID: 25792806]
[24]
Montoir, D.; Guillon, R.; Gazzola, S.; Ourliac-Garnier, I.; Soklou, K.E.; Tonnerre, A.; Picot, C.; Planchat, A.; Pagniez, F.; Le Pape, P.; Logé, C. New azole antifungals with a fused triazinone scaffold. Eur. J. Med. Chem., 2020, 189, 112082.
[http://dx.doi.org/10.1016/j.ejmech.2020.112082] [PMID: 32000050]
[25]
Sari, S.; Kart, D.; Öztürk, N.; Kaynak, F.B.; Gencel, M.; Taşkor, G.; Karakurt, A.; Saraç, S.; Eşsiz, Ş.; Dalkara, S. Discovery of new azoles with potent activity against Candida spp. and Candida albicans biofilms through virtual screening. Eur. J. Med. Chem., 2019, 179, 634-648.
[http://dx.doi.org/10.1016/j.ejmech.2019.06.083] [PMID: 31279296]
[26]
Sari, S.; Kart, D.; Sabuncuoğlu, S.; Doğan, İ.S.; Özdemir, Z.; Bozbey, İ.; Gencel, M.; Eşsiz, Ş.; Reynisson, J.; Karakurt, A.; Saraç, S.; Dalkara, S. Antifungal screening and in silico mechanistic studies of an in-house azole library. Chem. Biol. Drug Des., 2019, 94(5), 1944-1955.
[http://dx.doi.org/10.1111/cbdd.13587] [PMID: 31260179]
[27]
Elias, R.; Benhamou, R.I.; Jaber, Q.Z.; Dorot, O.; Zada, S.L.; Oved, K.; Pichinuk, E.; Fridman, M. Antifungal activity, mode of action variability, and subcellular distribution of coumarin-based antifungal azoles. Eur. J. Med. Chem., 2019, 179, 779-790.
[http://dx.doi.org/10.1016/j.ejmech.2019.07.003] [PMID: 31288127]
[28]
Hachem, R.; Gomes, M.Z.R.; El Helou, G.; El Zakhem, A.; Kassis, C.; Ramos, E.; Jiang, Y.; Chaftari, A.M.; Raad, I.I. Invasive aspergillosis caused by Aspergillus terreus: An emerging opportunistic infection with poor outcome independent of azole therapy. J. Antimicrob. Chemother., 2014, 69(11), 3148-3155.
[http://dx.doi.org/10.1093/jac/dku241] [PMID: 25006241]
[29]
Shafiei, M.; Peyton, L.; Hashemzadeh, M.; Foroumadi, A. History of the development of antifungal azoles: A review on structures, SAR, and mechanism of action. Bioorg. Chem., 2020, 104, 104240.
[http://dx.doi.org/10.1016/j.bioorg.2020.104240] [PMID: 32906036]
[30]
Dvorak, Z. Drug-drug interactions by azole antifungals: Beyond a dogma of CYP3A4 enzyme activity inhibition. Toxicol. Lett., 2011, 202(2), 129-132.
[http://dx.doi.org/10.1016/j.toxlet.2011.01.027] [PMID: 21333771]
[31]
Marzi, M.; Farjam, M.; Kazeminejad, Z.; Shiroudi, A.; Kouhpayeh, A.; Zarenezhad, E. A recent overview of 1,2,3-triazole-containing hybrids as novel antifungal agents: Focusing on synthesis, mechanism of action, and Structure-Activity Relationship (SAR). J. Chem., 2022, 2022, 7884316.
[http://dx.doi.org/10.1155/2022/7884316]
[32]
Allen, D.; Wilson, D.; Drew, R.; Perfect, J. Azole antifungals: 35 years of invasive fungal infection management. Expert Rev. Anti Infect. Ther., 2015, 13(6), 787-798.
[http://dx.doi.org/10.1586/14787210.2015.1032939] [PMID: 25843556]
[33]
Bouchal, B.; Abrigach, F.; Takfaoui, A.; Elidrissi Errahhali, M.; Elidrissi Errahhali, M.; Dixneuf, P.H.; Doucet, H.; Touzani, R.; Bellaoui, M. Identification of novel antifungal agents: Antimicrobial evaluation, SAR, ADME- Tox and molecular docking studies of a series of imidazole derivatives. BMC Chem., 2019, 13(1), 100.
[http://dx.doi.org/10.1186/s13065-019-0623-6] [PMID: 31410411]
[34]
Castillo, K.F.; Bello-Vieda, N.J.; Nuñez-Dallos, N.G.; Pastrana, H.F.; Celis, A.M.; Restrepo, S.; Hurtado, J.J.; Ávila, A.G. Metal complex derivatives of azole: A study on their synthesis, characterization, and antibacterial and antifungal activities. J. Braz. Chem. Soc., 2016, 27(12), 2334-2347.
[http://dx.doi.org/10.5935/0103-5053.20160130]
[35]
Fang, B.; Zhou, C-H.; Rao, X-C. Synthesis and biological activities of novel amine-derived bis-azoles as potential antibacterial and antifungal agents. Eur. J. Med. Chem., 2010, 45(9), 4388-4398.
[http://dx.doi.org/10.1016/j.ejmech.2010.06.012] [PMID: 20598399]
[36]
Khalilullah, H.; Khan, S.; Nomani, M.S.; Ahmed, B. Synthesis, characterization and antimicrobial activity of benzodioxane ring containing 1, 3, 4-oxadiazole derivatives. Arab. J. Chem., 2016, 9, S1029-S35.
[http://dx.doi.org/10.1016/j.arabjc.2011.11.009]
[37]
Doğan, İ.S.; Saraç, S.; Sari, S.; Kart, D.; Eşsiz Gökhan, Ş.; Vural, İ.; Dalkara, S. New azole derivatives showing antimicrobial effects and their mechanism of antifungal activity by molecular modeling studies. Eur. J. Med. Chem., 2017, 130, 124-138.
[http://dx.doi.org/10.1016/j.ejmech.2017.02.035] [PMID: 28242548]
[38]
Li, B.; Zhang, D.; Zhang, Y.; Jiang, D.; Li, S.; Lei, W. Synthesis and evaluation of novel benzene-ethanol bearing 1, 2, 4-triazole derivatives as potential antimicrobial agents. Med. Chem. Res., 2017, 26(1), 44-51.
[http://dx.doi.org/10.1007/s00044-016-1724-6]
[39]
Plech, T.; Kaproń, B.; Paneth, A.; Kosikowska, U.; Malm, A.; Strzelczyk, A.; Stączek, P.; Świątek, Ł.; Rajtar, B.; Polz-Dacewicz, M. Search for factors affecting antibacterial activity and toxicity of 1,2,4-triazole-ciprofloxacin hybrids. Eur. J. Med. Chem., 2015, 97, 94-103.
[http://dx.doi.org/10.1016/j.ejmech.2015.04.058] [PMID: 25951434]
[40]
Ramírez-Prada, J.; Robledo, S.M.; Vélez, I.D.; Crespo, M.D.P.; Quiroga, J.; Abonia, R.; Montoya, A.; Svetaz, L.; Zacchino, S.; Insuasty, B. Synthesis of novel quinoline-based 4,5-dihydro-1H-pyrazoles as potential anticancer, antifungal, antibacterial and antiprotozoal agents. Eur. J. Med. Chem., 2017, 131, 237-254.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.016] [PMID: 28329730]
[41]
Shankar, B.; Jalapathi, P.; Saikrishna, B.; Perugu, S.; Manga, V. Synthesis, anti-microbial activity, cytotoxicity of some novel substituted (5-(3-(1H-benzo[d]imidazol-2-yl)-4-hydroxybenzyl)benzofuran-2-yl)(phenyl) methanone analogs. Chem. Cent. J., 2018, 12(1), 1.
[http://dx.doi.org/10.1186/s13065-017-0364-3] [PMID: 29318401]
[42]
Janas, A.; Przybylski, P. 14- and 15-membered lactone macrolides and their analogues and hybrids: Structure, molecular mechanism of action and biological activity. Eur. J. Med. Chem., 2019, 182, 111662.
[http://dx.doi.org/10.1016/j.ejmech.2019.111662] [PMID: 31499358]
[43]
Kathiravan, M.K.; Salake, A.B.; Chothe, A.S.; Dudhe, P.B.; Watode, R.P.; Mukta, M.S.; Gadhwe, S. The biology and chemistry of antifungal agents: A review. Bioorg. Med. Chem., 2012, 20(19), 5678-5698.
[http://dx.doi.org/10.1016/j.bmc.2012.04.045] [PMID: 22902032]
[44]
Wald, A.; Leisenring, W.; van Burik, J-A.; Bowden, R.A. Epidemiology of Aspergillus infections in a large cohort of patients undergoing bone marrow transplantation. J. Infect. Dis., 1997, 175(6), 1459-1466.
[http://dx.doi.org/10.1086/516480] [PMID: 9180187]
[45]
Thamban Chandrika, N.; Dennis, E.K.; Shrestha, S.K.; Ngo, H.X.; Green, K.D.; Kwiatkowski, S.; Deaciuc, A.G.; Dwoskin, L.P.; Watt, D.S.; Garneau-Tsodikova, S. N,N′- diaryl-bishydrazones in a biphenyl platform: Broad spectrum antifungal agents. Eur. J. Med. Chem., 2019, 164, 273-281.
[http://dx.doi.org/10.1016/j.ejmech.2018.12.042] [PMID: 30597328]
[46]
Khabnadideh, S.; Rezaei, Z.; Khalafi-Nezhad, A.; Bahrinajafi, R.; Mohamadi, R.; Farrokhroz, A.A. Synthesis of N-alkylated derivatives of imidazole as antibacterial agents. Bioorg. Med. Chem. Lett., 2003, 13(17), 2863-2865.
[http://dx.doi.org/10.1016/S0960-894X(03)00591-2] [PMID: 14611845]
[47]
Khabnadideh, S.; Rezaei, Z.; Khalafinezhad, A.; Pakshir, K.; Heiran, M.J.; Shobeiri, H. Design and synthesis of 2-methyl and 2-methyl-4-nitro imidazole derivatives as antifungal agents. Iran. J. Pharm. Sci., 2009, 5(1), 31-36.
[48]
Khabnadideh, S.; Rezaei, Z.; Khalafi-Nezhad, A.; Pakshir, K.; Roosta, A.; Baratzadeh, Z. Design and Synthesis of imidazole and benzimidazole derivatives as antifungal agents. Antiinfect. Agents, 2008, 7(3), 215-218.
[49]
Pyta, K.; Blecha, M.; Janas, A.; Klich, K.; Pecyna, P.; Gajecka, M.; Przybylski, P. Synthesis, structure and antimicrobial evaluation of a new gossypol triazole conjugates functionalized with aliphatic chains and benzyloxy groups. Bioorg. Med. Chem. Lett., 2016, 26(17), 4322-4326.
[http://dx.doi.org/10.1016/j.bmcl.2016.07.033] [PMID: 27469129]
[50]
Abrigach, F.; Rokni, Y.; Takfaoui, A.; Khoutoul, M.; Doucet, H.; Asehraou, A.; Touzani, R. In vitro screening, homology modeling and molecular docking studies of some pyrazole and imidazole derivatives. Biomed. Pharmacother., 2018, 103, 653-661.
[http://dx.doi.org/10.1016/j.biopha.2018.04.061] [PMID: 29679907]
[51]
Xu, H.; Su, X.; Guo, M.B.; An, R.; Mou, Y.H.; Hou, Z.; Guo, C. Design, synthesis, and biological evaluation of novel miconazole analogues containing selenium as potent antifungal agents. Eur. J. Med. Chem., 2020, 198, 112360.
[http://dx.doi.org/10.1016/j.ejmech.2020.112360] [PMID: 32403018]
[52]
Hu, Y.; Shen, Y.; Wu, X.; Tu, X.; Wang, G-X. Synthesis and biological evaluation of coumarin derivatives containing imidazole skeleton as potential antibacterial agents. Eur. J. Med. Chem., 2018, 143, 958-969.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.100] [PMID: 29232586]
[53]
Sharma, S.; Sharma, V.; Singh, G.; Kaur, H.; Srivastava, S.; Ishar, M.P.S. 2-(chromon-3-yl)imidazole derivatives as potential antimicrobial agents: Synthesis, biological evaluation and molecular docking studies. J. Chem. Biol., 2016, 10(1), 35-44.
[http://dx.doi.org/10.1007/s12154-016-0162-8] [PMID: 28101253]
[54]
Al-Wabli, R.I.; Al-Ghamdi, A.R.; Ghabbour, H.A.; Al-Agamy, M.H.; Attia, M.I. Synthesis, single crystal X-ray analysis, and antifungal profiling of certain new oximino ethers bearing imidazole nuclei. Molecules, 2017, 22(11), 1895.
[http://dx.doi.org/10.3390/molecules22111895] [PMID: 29099797]
[55]
Zhao, D.; Zhao, S.; Zhao, L.; Zhang, X.; Wei, P.; Liu, C.; Hao, C.; Sun, B.; Su, X.; Cheng, M. Discovery of biphenyl imidazole derivatives as potent antifungal agents: Design, synthesis, and structure-activity relationship studies. Bioorg. Med. Chem., 2017, 25(2), 750-758.
[http://dx.doi.org/10.1016/j.bmc.2016.11.051] [PMID: 27955926]
[56]
Zhao, L.; Sun, N.; Tian, L.; Sun, Y.; Chen, Y.; Wang, X.; Zhao, S.; Su, X.; Zhao, D.; Cheng, M. Combating fluconazole-resistant fungi with novel β-azole-phenylacetone derivatives. Eur. J. Med. Chem., 2019, 183, 111689.
[http://dx.doi.org/10.1016/j.ejmech.2019.111689] [PMID: 31541871]
[57]
Zhao, S.; Zhao, L.; Zhang, X.; Wei, P.; Wu, M.; Su, X.; Sun, B.; Zhao, D.; Cheng, M. Design, synthesis and evaluation of biphenyl imidazole analogues as potent antifungal agents. Bioorg. Med. Chem. Lett., 2019, 29(17), 2448-2451.
[http://dx.doi.org/10.1016/j.bmcl.2019.07.037] [PMID: 31358467]
[58]
Nelson, G.L.; Williams, M.J.; Jonnalagadda, S.; Alam, M.A.; Mereddy, G.; Johnson, J.L.; Jonnalagadda, S.K. Synthesis and evaluation of baylis-hillman reaction derived imidazole and triazole cinnamates as antifungal agents. Int. J. Med. Chem., 2018, 2018, 5758076.
[http://dx.doi.org/10.1155/2018/5758076] [PMID: 30410798]
[59]
Khalafi-Nezhad, A.; Soltani Rad, M.N.; Mohabatkar, H.; Asrari, Z.; Hemmateenejad, B. Design, synthesis, antibacterial and QSAR studies of benzimidazole and imidazole chloroaryloxyalkyl derivatives. Bioorg. Med. Chem., 2005, 13(6), 1931-1938.
[http://dx.doi.org/10.1016/j.bmc.2005.01.014] [PMID: 15727849]
[60]
Zomorodian, K.; Khabnadideh, S.; Zamani, L.; Pakshir, K.; Tajaddod, M. Evaluation of antifungal and antibacterial activity of some new benzimidazole derivatives. Lat. Am. Res. Rev., 2018, 48, 125-129.
[61]
Zamani, L.; Faghih, Z.; Zomorodian, K.; Mirjalili, B.B.F.; Jalilian, A.; Khabnadideh, S. Nano-SnCl4.SiO2 an efficient catalyst for synthesis of benzimidazole drivatives as antifungal and cytotoxic agents. Res. Pharm. Sci., 2019, 14(6), 496-503.
[http://dx.doi.org/10.4103/1735-5362.272536] [PMID: 32038729]
[62]
Chandrika, N.T.; Shrestha, S.K.; Ngo, H.X.; Garneau-Tsodikova, S. Synthesis and investigation of novel benzimidazole derivatives as antifungal agents. Bioorg. Med. Chem., 2016, 24(16), 3680-3686.
[http://dx.doi.org/10.1016/j.bmc.2016.06.010] [PMID: 27301676]
[63]
Zhang, H-Z.; He, S-C.; Peng, Y-J.; Zhang, H-J.; Gopala, L.; Tangadanchu, V.K.R.; Gan, L.L.; Zhou, C.H. Design, synthesis and antimicrobial evaluation of novel benzimidazole-incorporated sulfonamide analogues. Eur. J. Med. Chem., 2017, 136, 165-183.
[http://dx.doi.org/10.1016/j.ejmech.2017.04.077] [PMID: 28494254]
[64]
El-Gohary, N.S.; Shaaban, M.I. Synthesis, antimicrobial, antiquorum-sensing and antitumor activities of new benzimidazole analogs. Eur. J. Med. Chem., 2017, 137, 439-449.
[http://dx.doi.org/10.1016/j.ejmech.2017.05.064] [PMID: 28623814]
[65]
Jeyakkumar, P.; Zhang, L.; Avula, S.R.; Zhou, C-H. Design, synthesis and biological evaluation of berberine-benzimidazole hybrids as new type of potentially DNA-targeting antimicrobial agents. Eur. J. Med. Chem., 2016, 122, 205-215.
[http://dx.doi.org/10.1016/j.ejmech.2016.06.031] [PMID: 27371924]
[66]
Singh, L.R.; Avula, S.R.; Raj, S.; Srivastava, A.; Palnati, G.R.; Tripathi, C.K.M.; Pasupuleti, M.; Sashidhara, K.V. Coumarin-benzimidazole hybrids as a potent antimicrobial agent: Synthesis and biological elevation. J. Antibiot. (Tokyo), 2017, 70(9), 954-961.
[http://dx.doi.org/10.1038/ja.2017.70] [PMID: 28634338]
[67]
Wang, Y.N.; Bheemanaboina, R.R.Y.; Gao, W.W.; Kang, J.; Cai, G.X.; Zhou, C.H. Discovery of benzimidazole-quinolone hybrids as new cleaving agents toward drug-resistant pseudomonas aeruginosa DNA. ChemMedChem, 2018, 13(10), 1004-1017.
[http://dx.doi.org/10.1002/cmdc.201700739] [PMID: 29512892]
[68]
Morcoss, M.M.; Abdelhafez, E.S.M.N.; Ibrahem, R.A.; Abdel-Rahman, H.M.; Abdel-Aziz, M.; Abou El-Ella, D.A. Design, synthesis, mechanistic studies and in silico ADME predictions of benzimidazole derivatives as novel antifungal agents. Bioorg. Chem., 2020, 101, 103956.
[http://dx.doi.org/10.1016/j.bioorg.2020.103956] [PMID: 32512267]
[69]
Djuidje, E.N.; Durini, E.; Sciabica, S.; Serra, E.; Balzarini, J.; Liekens, S.; Manfredini, S.; Vertuani, S.; Baldisserotto, A. Skin damages-structure activity relationship of benzimidazole derivatives bearing a 5-membered ring system. Molecules, 2020, 25(18), 4324.
[http://dx.doi.org/10.3390/molecules25184324] [PMID: 32967192]
[70]
Pyta, K.; Janas, A.; Skrzypczak, N.; Schilf, W.; Wicher, B.; Gdaniec, M.; Bartl, F.; Przybylski, P. Specific interactions between rifamycin antibiotics and water influencing ability to overcome natural cell barriers and the range of antibacterial potency. ACS Infect. Dis., 2019, 5(10), 1754-1763.
[http://dx.doi.org/10.1021/acsinfecdis.9b00176] [PMID: 31461259]
[71]
Fischer, J.; Ganellin, C.R.; Ganesan, A.; Proudfoot, J. Analogue-based drug discovery; Wiley-VCH Mörlenbach: Germany, 2010.
[72]
Cha, R.; Sobel, J.D. Fluconazole for the treatment of candidiasis: 15 years experience. Expert Rev. Anti Infect. Ther., 2004, 2(3), 357-366.
[http://dx.doi.org/10.1586/14787210.2.3.357] [PMID: 15482201]
[73]
Anaissie, E.J.; Darouiche, R.O.; Abi-Said, D.; Uzun, O.; Mera, J.; Gentry, L.O.; Williams, T.; Kontoyiannis, D.P.; Karl, C.L.; Bodey, G.P. Management of invasive candidal infections: Results of a prospective, randomized, multicenter study of fluconazole versus amphotericin B and review of the literature. Clin. Infect. Dis., 1996, 23(5), 964-972.
[http://dx.doi.org/10.1093/clinids/23.5.964] [PMID: 8922787]
[74]
Rezaei, Z.; Khabnadideh, S.; Pakshir, K.; Hossaini, Z.; Amiri, F.; Assadpour, E. Design, synthesis, and antifungal activity of triazole and benzotriazole derivatives. Eur. J. Med. Chem., 2009, 44(7), 3064-3067.
[http://dx.doi.org/10.1016/j.ejmech.2008.07.012] [PMID: 18760508]
[75]
Thamban Chandrika, N.; Shrestha, S.K.; Ngo, H.X.; Tsodikov, O.V.; Howard, K.C.; Garneau-Tsodikova, S. Alkylated piperazines and piperazine-azole hybrids as antifungal agents. J. Med. Chem., 2018, 61(1), 158-173.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01138] [PMID: 29256601]
[76]
Wu, J.; Ni, T.; Chai, X.; Wang, T.; Wang, H.; Chen, J.; Jin, Y.; Zhang, D.; Yu, S.; Jiang, Y. Molecular docking, design, synthesis and antifungal activity study of novel triazole derivatives. Eur. J. Med. Chem., 2018, 143, 1840-1846.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.081] [PMID: 29133044]
[77]
Pagniez, F.; Lebouvier, N.; Na, Y.M.; Ourliac-Garnier, I.; Picot, C.; Le Borgne, M.; Le Pape, P. Biological exploration of a novel 1,2,4-triazole-indole hybrid molecule as antifungal agent. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 398-403.
[http://dx.doi.org/10.1080/14756366.2019.1705292] [PMID: 31899979]
[78]
Lebouvier, N.; Pagniez, F.; Na, Y.M.; Shi, D.; Pinson, P.; Marchivie, M.; Guillon, J.; Hakki, T.; Bernhardt, R.; Yee, S.W.; Simons, C.; Lézé, M.P.; Hartmann, R.W.; Mularoni, A.; Le Baut, G.; Krimm, I.; Abagyan, R.; Le Pape, P.; Le Borgne, M. Synthesis, optimization, antifungal activity, selectivity, and CYP51 binding of new 2-Aryl-3-azolyl-1-indolyl-propan-2-ols. Pharmaceuticals (Basel), 2020, 13(8), 186.
[http://dx.doi.org/10.3390/ph13080186] [PMID: 32784450]
[79]
Han, X.; Wang, S.; Zhang, N.; Ren, L.; Sun, X.; Song, Y.; Wang, J.; Xiao, B. Novel triazole derivatives containing different ester skeleton: Design, synthesis, biological evaluation and molecular docking. Chem. Pharm. Bull. (Tokyo), 2020, 68(1), 64-69.
[http://dx.doi.org/10.1248/cpb.c19-00624] [PMID: 31708557]
[80]
Lu, R.Y.; Ni, T.J.; Wu, J.; Yan, L.; Lv, Q.Z.; Li, L.P.; Zhang, D.Z.; Jiang, Y.Y. New triazole NT-a9 has potent antifungal efficacy against cryptococcus neoformans in vitro and in vivo. Antimicrob. Agents Chemother., 2020, 64(2), e01628-19.
[http://dx.doi.org/10.1128/AAC.01628-19] [PMID: 31791946]
[81]
Xie, F.; Ni, T.; Ding, Z.; Hao, Y.; Wang, R.; Wang, R.; Wang, T.; Chai, X.; Yu, S.; Jin, Y.; Jiang, Y.; Zhang, D. Design, synthesis, and in vitro evaluation of novel triazole analogues featuring isoxazole moieties as antifungal agents. Bioorg. Chem., 2020, 101, 103982.
[http://dx.doi.org/10.1016/j.bioorg.2020.103982] [PMID: 32534348]
[82]
Çavuşoğlu, B.K.; Yurttaş, L.; Cantürk, Z. The synthesis, antifungal and apoptotic effects of triazole-oxadiazoles against Candida species. Eur. J. Med. Chem., 2018, 144, 255-261.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.020] [PMID: 29274492]
[83]
Ramírez-Villalva, A.; González-Calderón, D.; Rojas-García, R.I.; González-Romero, C.; Tamaríz-Mascarúa, J.; Morales-Rodríguez, M.; Zavala-Segovia, N.; Fuentes-Benítes, A. Synthesis and antifungal activity of novel oxazolidin-2-one-linked 1,2,3-triazole derivatives. MedChemComm, 2017, 8(12), 2258-2262.
[http://dx.doi.org/10.1039/C7MD00442G] [PMID: 30108741]
[84]
Beck, K.R.; Telisman, L.; van Koppen, C.J.; Thompson, G.R., III; Odermatt, A. Molecular mechanisms of posaconazole- and itraconazole-induced pseudohyperaldosteronism and assessment of other systemically used azole antifungals. J. Steroid Biochem. Mol. Biol., 2020, 199, 105605.
[http://dx.doi.org/10.1016/j.jsbmb.2020.105605] [PMID: 31982514]
[85]
Faidallah, H.M.; Girgis, A.S.; Tiwari, A.D.; Honkanadavar, H.H.; Thomas, S.J.; Samir, A.; Kalmouch, A.; Alamry, K.A.; Khan, K.A.; Ibrahim, T.S.; Al-Mahmoudy, A.M.M.; Asiri, A.M.; Panda, S.S. Synthesis, antibacterial properties and 2D-QSAR studies of quinolone-triazole conjugates. Eur. J. Med. Chem., 2018, 143, 1524-1534.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.042] [PMID: 29126731]
[86]
Liang, Z.; Xu, H.; Tian, Y.; Guo, M.; Su, X.; Guo, C. Design, synthesis and antifungal activity of novel benzofuran- triazole hybrids. Molecules, 2016, 21(6), 732.
[http://dx.doi.org/10.3390/molecules21060732] [PMID: 27338311]
[87]
Subedi, Y.P.; Alfindee, M.N.; Shrestha, J.P.; Becker, G.; Grilley, M.; Takemoto, J.Y.; Chang, C.T. Synthesis and biological activity investigation of azole and quinone hybridized phosphonates. Bioorg. Med. Chem. Lett., 2018, 28(18), 3034-3037.
[http://dx.doi.org/10.1016/j.bmcl.2018.08.002] [PMID: 30093296]
[88]
Thanh, N.D.; Hai, D.S.; Ngoc Bich, V.T.; Thu Hien, P.T.; Ky Duyen, N.T.; Mai, N.T.; Dung, T.T.; Toan, V.N.; Kim Van, H.T.; Dang, L.H.; Toan, D.N.; Thanh Van, T.T. Efficient click chemistry towards novel 1H-1,2,3-triazole-tethered 4H-chromene-d-glucose conjugates: Design, synthesis and evaluation of in vitro antibacterial, MRSA and antifungal activities. Eur. J. Med. Chem., 2019, 167, 454-471.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.060] [PMID: 30784879]
[89]
Stingaci, E.; Zveaghinteva, M.; Pogrebnoi, S.; Lupascu, L.; Valica, V.; Uncu, L.; Smetanscaia, A.; Drumea, M.; Petrou, A.; Ciric, A.; Glamoclija, J.; Sokovic, M.; Kravtsov, V.; Geronikaki, A.; Macaev, F. New vinyl-1,2,4-triazole derivatives as antimicrobial agents: Synthesis, biological evaluation and molecular docking studies. Bioorg. Med. Chem. Lett., 2020, 30(17), 127368.
[http://dx.doi.org/10.1016/j.bmcl.2020.127368] [PMID: 32738986]
[90]
Akolkar, S.V.; Nagargoje, A.A.; Shaikh, M.H.; Warshagha, M.Z.A.; Sangshetti, J.N.; Damale, M.G.; Shingate, B.B. New N-phenylacetamide-linked 1,2,3-triazole-tethered coumarin conjugates: Synthesis, bioevaluation, and molecular docking study. Arch. Pharm. (Weinheim), 2020, 353(11), e2000164.
[http://dx.doi.org/10.1002/ardp.202000164] [PMID: 32776355]
[91]
Awolade, P.; Cele, N.; Kerru, N.; Singh, P. Synthesis, antimicrobial evaluation, and in silico studies of quinoline-1 H-1, 2, 3-triazole molecular hybrids. Mol. Divers., 2021, 25(4), 2201-2218.
[http://dx.doi.org/10.1007/s11030-020-10112-3] [PMID: 32507981]
[92]
Phatak, P.S.; Bakale, R.D.; Kulkarni, R.S.; Dhumal, S.T.; Dixit, P.P.; Krishna, V.S.; Sriram, D.; Khedkar, V.M.; Haval, K.P. Design and synthesis of new indanol-1,2,3-triazole derivatives as potent antitubercular and antimicrobial agents. Bioorg. Med. Chem. Lett., 2020, 30(22), 127579.
[http://dx.doi.org/10.1016/j.bmcl.2020.127579] [PMID: 32987135]
[93]
da Silva, N.M.; Gentz, C.B.; Reginatto, P.; Fernandes, T.H.M.; Kaminski, T.F.A.; Lopes, W.; Quatrin, P.M.; Vainstein, M.H.; Abegg, M.A.; Lopes, M.S.; Fuentefria, A.M.; de Andrade, S.F. 8-Hydroxyquinoline 1,2,3-triazole derivatives with promising and selective antifungal activity. Med. Mycol., 2021, 59(5), 431-440.
[http://dx.doi.org/10.1093/mmy/myaa061] [PMID: 32692811]
[94]
Gaspar-Cordeiro, A.; da Silva, S.; Aguiar, M.; Rodrigues-Pousada, C.; Haas, H.; Lima, L.M.P.; Pimentel, C. A copper(II)-binding triazole derivative with ionophore properties is active against Candida spp. Eur. J. Biochem., 2020, 25(8), 1117-1128.
[http://dx.doi.org/10.1007/s00775-020-01828-6] [PMID: 33104887]
[95]
Pyta, K.; Klich, K.; Domagalska, J.; Przybylski, P. Structure and evaluation of antibacterial and antitubercular properties of new basic and heterocyclic 3-formylrifamycin SV derivatives obtained via ‘click chemistry’ approach. Eur. J. Med. Chem., 2014, 84, 651-676.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.066] [PMID: 25063947]
[96]
Domagalska, J.; Janas, A.; Pyta, K.; Pecyna, P.; Ruszkowski, P.; Celewicz, L.; Gajecka, M.; Bartl, F.; Przybylski, P. 16-membered macrolide lactone derivatives bearing a triazole-functionalized arm at the aglycone C13 position as antibacterial and anticancer agents. ChemMedChem, 2016, 11(17), 1886-1891.
[http://dx.doi.org/10.1002/cmdc.201600250] [PMID: 27411730]
[97]
Klich, K.; Pyta, K.; Kubicka, M.M.; Ruszkowski, P.; Celewicz, L.; Gajecka, M.; Przybylski, P. Synthesis, antibacterial, and anticancer evaluation of novel spiramycin-like conjugates containing C (5) triazole arm. J. Med. Chem., 2016, 59(17), 7963-7973.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00764] [PMID: 27501415]
[98]
Nalawade, J.; Shinde, A.; Chavan, A.; Patil, S.; Suryavanshi, M.; Modak, M.; Choudhari, P.; Bobade, V.D.; Mhaske, P.C. Synthesis of new thiazolyl-pyrazolyl-1,2,3- triazole derivatives as potential antimicrobial agents. Eur. J. Med. Chem., 2019, 179, 649-659.
[http://dx.doi.org/10.1016/j.ejmech.2019.06.074] [PMID: 31279297]
[99]
Venugopala, K.N.; Khedr, M.A.; Girish, Y.R.; Bhandary, S.; Chopra, D.; Morsy, M.A.; Aldhubiab, B.E.; Deb, P.K.; Attimarad, M.; Nair, A.B.; Sreeharsha, N.; v, R.; Kandeel, M.; Akrawi, S.H.; Reddy M B, M.; Shashikanth, S.; Alwassil, O.I.; Mohanlall, V. Crystallography, in silico studies, and in vitro antifungal studies of 2, 4, 5 trisubstituted 1, 2, 3-triazole analogues. Antibiotics (Basel), 2020, 9(6), 350.
[http://dx.doi.org/10.3390/antibiotics9060350] [PMID: 32575727]
[100]
Meng, L-H.; Li, X-M.; Liu, Y.; Wang, B-G. Polyoxygenated dihydropyrano [2, 3-c] pyrrole-4, 5-dione derivatives from the marine mangrove-derived endophytic fungus Penicillium brocae MA-231 and their antimicrobial activity. Chin. Chem. Lett., 2015, 26(5), 610-612.
[http://dx.doi.org/10.1016/j.cclet.2015.01.024]
[101]
Silva, L.N.; de Mello, T.P.; de Souza Ramos, L.; Branquinha, M.H.; Dos Santos, A.L.S. New and promising chemotherapeutics for emerging infections involving drug-resistant non-albicans Candida species. Curr. Top. Med. Chem., 2019, 19(28), 2527-2553.
[http://dx.doi.org/10.2174/1568026619666191025152412] [PMID: 31654512]
[102]
Brand, S.R.; Degenhardt, T.P.; Person, K.; Sobel, J.D.; Nyirjesy, P.; Schotzinger, R.J.; Tavakkol, A. A phase 2, randomized, double-blind, placebo-controlled, dose-ranging study to evaluate the efficacy and safety of orally administered VT-1161 in the treatment of recurrent vulvovaginal candidiasis. Am. J. Obstet., 2018, 218(6), 624.e1-624.e9.
[http://dx.doi.org/10.1016/j.ajog.2018.03.001] [PMID: 29534874]
[103]
Khan, F.A.K.; Patil, R.H.; Patil, M.; Arote, R.; Shinde, D.B.; Sangshetti, J.N. Bacterial peptide deformylase inhibition of tetrazole-substituted biaryl acid analogs: Synthesis, biological evaluations, and molecular docking study. Arch. Pharm. (Weinheim), 2016, 349(12), 934-943.
[http://dx.doi.org/10.1002/ardp.201600254] [PMID: 27859538]
[104]
Wiederhold, N.P.; Patterson, H.P.; Tran, B.H.; Yates, C.M.; Schotzinger, R.J.; Garvey, E.P. Fungal-specific Cyp51 inhibitor VT-1598 demonstrates in vitro activity against Candida and Cryptococcus species, endemic fungi, including Coccidioides species, Aspergillus species and Rhizopus arrhizus. J. Antimicrob. Chemother., 2018, 73(2), 404-408.
[http://dx.doi.org/10.1093/jac/dkx410] [PMID: 29190379]
[105]
Warrilow, A.G.; Parker, J.E.; Price, C.L.; Nes, W.D.; Garvey, E.P.; Hoekstra, W.J.; Schotzinger, R.J.; Kelly, D.E.; Kelly, S.L. The investigational drug VT-1129 is a highly potent inhibitor of Cryptococcus species CYP51 but only weakly inhibits the human enzyme. Antimicrob. Agents Chemother., 2016, 60(8), 4530-4538.
[http://dx.doi.org/10.1128/AAC.00349-16] [PMID: 27161631]
[106]
Qian, A.; Zheng, Y.; Wang, R.; Wei, J.; Cui, Y.; Cao, X.; Yang, Y. Design, synthesis, and structure-activity relationship studies of novel tetrazole antifungal agents with potent activity, broad antifungal spectrum and high selectivity. Bioorg. Med. Chem. Lett., 2018, 28(3), 344-350.
[http://dx.doi.org/10.1016/j.bmcl.2017.12.040] [PMID: 29289430]
[107]
Łukowska-Chojnacka, E.; Kowalkowska, A.; Gizińska, M.; Koronkiewicz, M.; Staniszewska, M. Synthesis of tetrazole derivatives bearing pyrrolidine scaffold and evaluation of their antifungal activity against Candida albicans. Eur. J. Med. Chem., 2019, 164, 106-120.
[http://dx.doi.org/10.1016/j.ejmech.2018.12.044] [PMID: 30594027]
[108]
Atef Hatamleh, A.; Al Farraj, D.; Salah Al-Saif, S.; Chidambaram, S.; Radhakrishnan, S.; Akbar, I. Synthesis, cytotoxic analysis, and molecular docking studies of tetrazole derivatives via N-mannich base condensation as potential antimicrobials. Drug Des. Devel. Ther., 2020, 14, 4477-4492.
[http://dx.doi.org/10.2147/DDDT.S270896] [PMID: 33122891]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy