Generic placeholder image

Current Neurovascular Research

Editor-in-Chief

ISSN (Print): 1567-2026
ISSN (Online): 1875-5739

Research Article

Association Between Systemic Immune-Inflammation Index and Symptomatic Intracranial Hemorrhage in Acute Ischemic Stroke Patients Undergoing Endovascular Treatment

Author(s): Yuan Yang, Ting Cui, Xueling Bai, Anmo Wang, Xuening Zhang, Jincheng Wan, Changyi Wang, Kun Lu, Fayun Hu* and Bo Wu*

Volume 19, Issue 1, 2022

Published on: 27 May, 2022

Page: [83 - 91] Pages: 9

DOI: 10.2174/1567202619666220406102429

open access plus

Open Access Journals Promotions 2
Abstract

Background/Objective: Systemic immune-inflammation index (SII) is a novel inflammatory factor, which may be involved in the destruction of the blood-brain barrier (BBB) after acute ischemic stroke (AIS); however, the association between SII and symptomatic intracranial hemorrhage (sICH) in AIS patients undergoing endovascular treatment (EVT) remains unclear.

Methods: Patients with acute ischemic stroke due to large vessel occlusion (AIS-LVO) who underwent EVT were consecutively enrolled. Blood samples were collected in the emergency room and SII was calculated by neutrophils × platelets/lymphocytes. Participants were categorized into tertiles according to admission SII. The main outcome was defined as the occurrence of sICH, following the European Cooperative Acute Stroke Study III (ECASS-III) criteria.

Results: A total of 379 AIS-LVO patients with EVT were enrolled (median age = 71 years, 52.5% males). The median baseline National Institutes of Health Stroke Scale (NIHSS) score was 15 (IQR, 12-18). The median of SII was 820.9 × 109/L (IQR, 473.1-1345.2). Forty-three (11.3%) patients developed sICH. SII was found to be independently associated with sICH after EVT (adjusted odd ratio (OR) = 1.005 (per 10 units increase); 95% confidence interval (CI): 1.002-1.008; p = 0.002). Compared to patients in the lowest SII tertile, patients in the highest tertile had a higher risk of sICH (adj-OR 3.379; 95% CI 1.302-8.768; p = 0.012). The risk of sICH increased with the increase of SII in a dose-dependent manner (p for trend = 0.004). There was no interaction between potential modifiers and SII on sICH.

Conclusion: Admission SII is positively associated with sICH in AIS-LVO patients treated with EVT. These results need to be confirmed in future studies.

Keywords: Systemic immune-inflammation index, acute ischemic stroke, symptomatic intracranial hemorrhage, endovascular treatment, blood-brain barrier, complication.

[1]
Badhiwala JH, Nassiri F, Alhazzani W, et al. Endovascular thrombectomy for acute ischemic stroke: A meta-analysis. JAMA 2015; 314(17): 1832-43.
[http://dx.doi.org/10.1001/jama.2015.13767] [PMID: 26529161]
[2]
Kang DH, Kim BM, Heo JH, et al. Effect of balloon guide catheter utilization on contact aspiration thrombectomy. J Neurosurg 2018. [Epub ahead of print]
[PMID: 30497154]
[3]
van Kranendonk KR, Treurniet KM, Boers AMM, et al. Hemorrhagic transformation is associated with poor functional outcome in pa-tients with acute ischemic stroke due to a large vessel occlusion. J Neurointerv Surg 2019; 11(5): 464-8.
[http://dx.doi.org/10.1136/neurintsurg-2018-014141] [PMID: 30297537]
[4]
Leigh R, Christensen S, Campbell BC, Marks MP, Albers GW, Lansberg MG. Pretreatment blood-brain barrier disruption and post-endovascular intracranial hemorrhage. Neurology 2016; 87(3): 263-9.
[http://dx.doi.org/10.1212/WNL.0000000000002862] [PMID: 27316247]
[5]
Qiu YM, Zhang CL, Chen AQ, et al. Immune cells in the BBB disruption after acute ischemic stroke: Targets for immune therapy? Front Immunol 2021; 12: 678744.
[http://dx.doi.org/10.3389/fimmu.2021.678744] [PMID: 34248961]
[6]
Trifan G, Testai FD. Systemic Immune-Inflammation (SII) index predicts poor outcome after spontaneous supratentorial intracerebral hemorrhage. J Stroke Cerebrovasc Dis 2020; 29(9): 105057.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2020.105057] [PMID: 32807462]
[7]
Li S, Liu K, Gao Y, et al. Prognostic value of systemic immune-inflammation index in acute/subacute patients with cerebral venous sinus thrombosis. Stroke Vasc Neurol 2020; 5(4): 368-73.
[http://dx.doi.org/10.1136/svn-2020-000362] [PMID: 32586971]
[8]
Hou D, Wang C, Luo Y, et al. Systemic immune-inflammation index (SII) but not platelet-albumin-bilirubin (PALBI) grade is associated with severity of acute ischemic stroke (AIS). Int J Neurosci 2021; 131(12): 1203-8.
[PMID: 32546038]
[9]
Weng Y, Zeng T, Huang H, et al. Systemic immune-inflammation index predicts 3-month functional outcome in acute ischemic stroke patients treated with intravenous thrombolysis. Clin Interv Aging 2021; 16: 877-86.
[http://dx.doi.org/10.2147/CIA.S311047] [PMID: 34040364]
[10]
Yang Y, Han Y, Sun W, Zhang Y. Increased systemic immune-inflammation index predicts hemorrhagic transformation in anterior circu-lation acute ischemic stroke due to large-artery atherosclerotic. Int J Neurosci 2021. [Epub ahead of print]
[http://dx.doi.org/10.1080/00207454.2021.1953021] [PMID: 34233123]
[11]
Tan IY, Demchuk AM, Hopyan J, et al. CT angiography clot burden score and collateral score: Correlation with clinical and radiologic outcomes in acute middle cerebral artery infarct. AJNR Am J Neuroradiol 2009; 30(3): 525-31.
[http://dx.doi.org/10.3174/ajnr.A1408] [PMID: 19147716]
[12]
Hacke W, Kaste M, Bluhmki E, et al. Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N Engl J Med 2008; 359(13): 1317-29.
[http://dx.doi.org/10.1056/NEJMoa0804656] [PMID: 18815396]
[13]
Hu J, Wang L, Fan K, et al. The association between systemic inflammatory markers and post-stroke depression: A prospective stroke cohort. Clin Interv Aging 2021; 16: 1231-9.
[http://dx.doi.org/10.2147/CIA.S314131] [PMID: 34234423]
[14]
Yaghi S, Willey JZ, Cucchiara B, et al. Treatment and Outcome of hemorrhagic transformation after intravenous alteplase in acute ischemic stroke: A scientific statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2017; 48(12): e343-61.
[http://dx.doi.org/10.1161/STR.0000000000000152] [PMID: 29097489]
[15]
Zhang X, Xie Y, Wang H, et al. Symptomatic intracranial hemorrhage after mechanical thrombectomy in Chinese ischemic stroke patients: The ASIAN Score. Stroke 2020; 51(9): 2690-6.
[http://dx.doi.org/10.1161/STROKEAHA.120.030173] [PMID: 32811387]
[16]
Hao Z, Yang C, Xiang L, Wu B, Liu M. Risk factors for intracranial hemorrhage after mechanical thrombectomy: A systematic review and meta-analysis. Expert Rev Neurother 2019; 19(10): 927-35.
[http://dx.doi.org/10.1080/14737175.2019.1632191] [PMID: 31200607]
[17]
Hao Y, Yang D, Wang H, et al. Predictors for symptomatic intracranial hemorrhage after endovascular treatment of acute ischemic stroke. Stroke 2017; 48(5): 1203-9.
[http://dx.doi.org/10.1161/STROKEAHA.116.016368] [PMID: 28373302]
[18]
Mehta RH, Cox M, Smith EE, et al. Race/Ethnic differences in the risk of hemorrhagic complications among patients with ischemic stroke receiving thrombolytic therapy. Stroke 2014; 45(8): 2263-9.
[http://dx.doi.org/10.1161/STROKEAHA.114.005019] [PMID: 25070958]
[19]
van der Willik KD, Fani L, Rizopoulos D, et al. Balance between innate versus adaptive immune system and the risk of dementia: A popu-lation-based cohort study. J Neuroinflammation 2019; 16(1): 68.
[http://dx.doi.org/10.1186/s12974-019-1454-z] [PMID: 30927918]
[20]
Yang C, Hawkins KE, Doré S, Candelario-Jalil E. Neuroinflammatory mechanisms of blood-brain barrier damage in ischemic stroke. Am J Physiol Cell Physiol 2019; 316(2): C135-53.
[http://dx.doi.org/10.1152/ajpcell.00136.2018] [PMID: 30379577]
[21]
Louka AM, Sagris D, Ntaios G. Ιmmunity, vascular aging, and stroke. Curr Med Chem 2022. [Epub ahead of print].
[http://dx.doi.org/10.2174/0929867329666220103101700 ] [PMID: 34979888]
[22]
Fest J, Ruiter R, Ikram MA, Voortman T, van Eijck CHJ, Stricker BH. Reference values for white blood-cell-based inflammatory markers in the Rotterdam Study: A population-based prospective cohort study. Sci Rep 2018; 8(1): 10566.
[http://dx.doi.org/10.1038/s41598-018-28646-w] [PMID: 30002404]
[23]
Luo H, He L, Zhang G, et al. Normal reference intervals of neutrophil-to-lymphocyte ratio, platelet-to-lymphocyte ratio, lymphocyte-to-monocyte ratio, and systemic immune inflammation index in healthy adults: A large multi-center study from Western China. Clin Lab 2019; 65(3): 255-65.
[http://dx.doi.org/10.7754/Clin.Lab.2018.180715] [PMID: 30868857]
[24]
Yi HJ, Sung JH, Lee DH. Systemic inflammation response index and systemic immune-inflammation index are associated with clinical outcomes in patients treated with mechanical thrombectomy for large artery occlusion. World Neurosurg 2021; 153: e282-9.
[http://dx.doi.org/10.1016/j.wneu.2021.06.113] [PMID: 34217857]
[25]
Topcuoglu MA, Pektezel MY, Yilmaz E, Arsava EM. Systemic inflammation indices in patients with acute ischemic stroke treated with intravenous tissue plasminogen activator: Clinical yield and utility. Angiology 2021; 72(3): 279-84.
[http://dx.doi.org/10.1177/0003319720969997] [PMID: 33153275]
[26]
Chen SH, Scott XO, Ferrer Marcelo Y, et al. Netosis and inflammasomes in large vessel occlusion thrombi. Front Pharmacol 2021; 11: 607287.
[http://dx.doi.org/10.3389/fphar.2020.607287] [PMID: 33569001]
[27]
Khatri R, McKinney AM, Swenson B, Janardhan V. Blood-brain barrier, reperfusion injury, and hemorrhagic transformation in acute is-chemic stroke. Neurology 2012; 79(13)(Suppl. 1): S52-7.
[http://dx.doi.org/10.1212/WNL.0b013e3182697e70] [PMID: 23008413]
[28]
Lambertsen KL, Finsen B, Clausen BH. Post-stroke inflammation-target or tool for therapy? Acta Neuropathol 2019; 137(5): 693-714.
[http://dx.doi.org/10.1007/s00401-018-1930-z] [PMID: 30483945]
[29]
Shi J, Yang Y, Yin N, et al. Engineering CXCL12 biomimetic decoy-integrated versatile immunosuppressive nanoparticle for ischemic stroke therapy with management of overactivated brain immune microenvironment. Small Methods 2022; 6(1): e2101158.
[http://dx.doi.org/10.1002/smtd.202101158] [PMID: 35041278]
[30]
Ma Y, Yang S, He Q, Zhang D, Chang J. The role of immune cells in post-stroke angiogenesis and neuronal remodeling: The known and the unknown. Front Immunol 2021; 12: 784098.
[http://dx.doi.org/10.3389/fimmu.2021.784098] [PMID: 34975872]
[31]
Cai W, Liu S, Hu M, et al. Functional dynamics of neutrophils after ischemic stroke. Transl Stroke Res 2020; 11(1): 108-21.
[http://dx.doi.org/10.1007/s12975-019-00694-y] [PMID: 30847778]
[32]
Stegner D, Klaus V, Nieswandt B. Platelets as modulators of cerebral ischemia/reperfusion injury. Front Immunol 2019; 10: 2505.
[http://dx.doi.org/10.3389/fimmu.2019.02505] [PMID: 31736950]
[33]
García-Culebras A, Durán-Laforet V, Peña-Martínez C, et al. Myeloid cells as therapeutic targets in neuroinflammation after stroke: Spe-cific roles of neutrophils and neutrophil-platelet interactions. J Cereb Blood Flow Metab 2018; 38(12): 2150-64.
[http://dx.doi.org/10.1177/0271678X18795789] [PMID: 30129391]
[34]
Müller F, Mutch NJ, Schenk WA, et al. Platelet polyphosphates are proinflammatory and procoagulant mediators in vivo. Cell 2009; 139(6): 1143-56.
[http://dx.doi.org/10.1016/j.cell.2009.11.001] [PMID: 20005807]
[35]
Meisel C, Schwab JM, Prass K, Meisel A, Dirnagl U. Central nervous system injury-induced immune deficiency syndrome. Nat Rev Neurosci 2005; 6(10): 775-86.
[http://dx.doi.org/10.1038/nrn1765] [PMID: 16163382]
[36]
Li N, Wang X, Sun C, et al. Change of intestinal microbiota in cerebral ischemic stroke patients. BMC Microbiol 2019; 19(1): 191.
[http://dx.doi.org/10.1186/s12866-019-1552-1] [PMID: 31426765]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy