Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Research Article

Molecular Characterization of Primary and Metastatic Colon Cancer Cells to Identify Therapeutic Targets with Natural Compounds

Author(s): Ganesan Jothimani, Harsha Ganesan, Surajit Pathak and Antara Banerjee*

Volume 22, Issue 31, 2022

Published on: 23 May, 2022

Page: [2598 - 2615] Pages: 18

DOI: 10.2174/1568026622666220401161511

Price: $65

Abstract

Background: Metastasis is the world's leading cause of colon cancer morbidity. Due to its heterogeneity, it has been challenging to understand primary to metastatic colon cancer progression and find a molecular target for colon cancer treatment.

Objectives: The current investigation aimed to characterize the immune and genotypic profiles of primary and metastatic colon cancer cell lines and identify a molecular target for colon cancer treatment.

Methods: Colony-forming potential, migration and invasion potential, cytokine profiling, miRNA, and mRNA expression were examined. Molecular docking for the Wnt signaling proteins with various plant compounds was performed.

Results: Colony formation, migration, and invasion potential were significantly higher in metastatic cells. The primary and metastatic cells' local immune and genetic status revealed TGF β-1, IL-8, MIP-1b, I-TAC, GM-CSF, and MCP-1 were highly expressed in all cancer cells. RANTES, IL-4, IL- 6, IFNγ, and G-CSF were less expressed in cancer cell lines. mRNA expression analysis displayed significant overexpression of proliferation, cell cycle, and oncogenes, whereas apoptosis cascade and tumor suppressor genes were significantly down-regulated in metastatic cells more evidently. Most importantly, the results of molecular docking with dysregulated Wnt signaling proteins shows that peptide AGAP and coronaridine had maximum hydrogen bonds to β-catenin and GSK3β with a better binding affinity.

Conclusion: This study emphasized genotypic differences between the primary and metastatic colon cancer cells, delineating the intricate mechanisms to understand the primary to metastatic advancement. The molecular docking aided in understanding the future molecular targets for bioactive- based colon cancer therapeutic interventions.

Keywords: Colon cancer, Oncogene, Invasion, Metastasis, Cytokine, miRNA, Natural compounds.

« Previous
Graphical Abstract
[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Parkin, D.M.; Bray, F.; Ferlay, J.; Pisani, P. Global cancer statistics, 2002. CA Cancer J. Clin., 2005, 55(2), 74-108.
[http://dx.doi.org/10.3322/canjclin.55.2.74] [PMID: 15761078]
[3]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin., 2020, 70(1), 7-30.
[http://dx.doi.org/10.3322/caac.21590] [PMID: 31912902]
[4]
Markowitz, S.D.; Bertagnolli, M.M. Molecular origins of cancer: Molecular basis of colorectal cancer. N. Engl. J. Med., 2009, 361(25), 2449-2460.
[http://dx.doi.org/10.1056/NEJMra0804588] [PMID: 20018966]
[5]
Hanahan, D.; Weinberg, R.A. The hallmarks of cancer. Cell, 2000, 100(1), 57-70.
[6]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144(5), 646-674.
[7]
Grady, W.M.; Carethers, J.M. Genomic and epigenetic instability in colorectal cancer pathogenesis. Gastroenterology, 2008, 135(4), 1079-1099.
[http://dx.doi.org/10.1053/j.gastro.2008.07.076] [PMID: 18773902]
[8]
Colussi, D.; Brandi, G.; Bazzoli, F.; Ricciardiello, L. Molecular pathways involved in colorectal cancer: Implications for disease behavior and prevention. Int. J. Mol. Sci., 2013, 14(8), 16365-16385.
[http://dx.doi.org/10.3390/ijms140816365] [PMID: 23965959]
[9]
Fearon, ER; Vogelstein, B. A genetic model for colorectal tumorigenesis. Cell, 1990, 61(5), 759-767.
[10]
Pishvaian, M.J.; Byers, S.W. Biomarkers of WNT signaling. Cancer Biomark., 2007, 3(4-5), 263-274.
[http://dx.doi.org/10.3233/CBM-2007-34-510] [PMID: 17917155]
[11]
Sharma, M.; Pandey, A.; Pandey, G.K. β-catenin in plants and animals: Common players but different pathways. Front. Plant Sci., 2014, 5, 143.
[http://dx.doi.org/10.3389/fpls.2014.00143] [PMID: 24782881]
[12]
Jothimani, G.; Sriramulu, S.; Chabria, Y.; Sun, X.F.; Banerjee, A.; Pathak, S. A review on theragnostic applications of microRNAs and long non-coding RNAs in colorectal cancer. Curr. Top. Med. Chem., 2018, 18(30), 2614-2629.
[http://dx.doi.org/10.2174/1568026619666181221165344] [PMID: 30582478]
[13]
Evert, J.; Pathak, S.; Sun, X.F.; Zhang, H. A study on effect of oxaliplatin in MicroRNA expression in human colon cancer. J. Cancer, 2018, 9(11), 2046-2053.
[http://dx.doi.org/10.7150/jca.24474] [PMID: 29896290]
[14]
Meng, W.J.; Pathak, S.; Zhang, X.; Adell, G.; Jarlsfelt, I.; Holmlund, B.; Wang, Z.Q.; Zhang, A.S.; Zhang, H.; Zhou, Z.G.; Sun, X.F. Expressions of miR-302a, miR-105, and miR-888 play critical roles in pathogenesis, radiotherapy, and prognosis on rectal cancer patients: A study from rectal cancer patients in a swedish rectal cancer trial of preoperative radiotherapy to big database analyses. Front. Oncol., 2020, 10, 567042.
[http://dx.doi.org/10.3389/fonc.2020.567042] [PMID: 33123477]
[15]
Malayaperumal, S.; Sriramulu, S.; Jothimani, G.; Banerjee, A.; Pathak, S. A Review of AEG-1 Oncogene regulating microRNA expression in colon cancer progression. Endocr. Metab. Immune Disord. Drug Targets, 2021, 21(1), 27-34.
[16]
van der Geest, L.G.; Lam-Boer, J.; Koopman, M.; Verhoef, C.; Elferink, M.A.; de Wilt, J.H. Nationwide trends in incidence, treatment and survival of colorectal cancer patients with synchronous metastases. Clin. Exp. Metastasis, 2015, 32(5), 457-465.
[http://dx.doi.org/10.1007/s10585-015-9719-0] [PMID: 25899064]
[17]
Kuipers, E.J.; Grady, W.M.; Lieberman, D.; Seufferlein, T.; Sung, J.J.; Boelens, P.G.; van de Velde, C.J.; Watanabe, T. Colorectal cancer. Nat. Rev. Dis. Primers, 2015, 1(1), 15065.
[http://dx.doi.org/10.1038/nrdp.2015.65] [PMID: 27189416]
[18]
Greten, F.R.; Grivennikov, S.I. Inflammation and cancer: Triggers, mechanisms, and consequences. Immunity, 2019, 51(1), 27-41.
[http://dx.doi.org/10.1016/j.immuni.2019.06.025] [PMID: 31315034]
[19]
Coussens, L.M.; Zitvogel, L.; Palucka, A.K. Neutralizing tumor-promoting chronic inflammation: A magic bullet? Science, 2013, 339(6117), 286-291.
[http://dx.doi.org/10.1126/science.1232227] [PMID: 23329041]
[20]
Lin, Y.; Cheng, L.; Liu, Y.; Wang, Y.; Wang, Q.; Wang, H.L.; Shi, G.; Li, J.S.; Wang, Q.N.; Yang, Q.M.; Chen, S.; Su, X.L.; Yang, Y.; Jiang, M.; Hu, X.; Fan, P.; Fang, C.; Zhou, Z.G.; Dai, L.; Deng, H.X. Intestinal epithelium-derived BATF3 promotes colitis-associated colon cancer through facilitating CXCL5-mediated neutrophils recruitment. Mucosal Immunol., 2021, 14(1), 187-198.
[http://dx.doi.org/10.1038/s41385-020-0297-3] [PMID: 32467604]
[21]
Fujimoto, J.; Aoki, I.; Toyoki, H.; Khatun, S.; Tamaya, T. Clinical implications of expression of ETS-1 related to angiogenesis in uterine cervical cancers. Ann. Oncol., 2002, 13(10), 1598-1604.
[http://dx.doi.org/10.1093/annonc/mdf248] [PMID: 12377648]
[22]
Kirchberger, S.; Royston, D.J.; Boulard, O.; Thornton, E.; Franchini, F.; Szabady, R.L.; Harrison, O.; Powrie, F. Innate lymphoid cells sustain colon cancer through production of interleukin-22 in a mouse model. J. Exp. Med., 2013, 210(5), 917-931.
[http://dx.doi.org/10.1084/jem.20122308] [PMID: 23589566]
[23]
Kryczek, I.; Lin, Y.; Nagarsheth, N.; Peng, D.; Zhao, L.; Zhao, E.; Vatan, L.; Szeliga, W.; Dou, Y.; Owens, S.; Zgodzinski, W.; Majewski, M.; Wallner, G.; Fang, J.; Huang, E.; Zou, W. IL-22(+)CD4(+) T cells promote colorectal cancer stemness via STAT3 transcription factor activation and induction of the methyltransferase DOT1L. Immunity, 2014, 40(5), 772-784.
[http://dx.doi.org/10.1016/j.immuni.2014.03.010] [PMID: 24816405]
[24]
Zepp, J.A.; Zhao, J.; Liu, C.; Bulek, K.; Wu, L.; Chen, X.; Hao, Y.; Wang, Z.; Wang, X.; Ouyang, W.; Kalady, M.F.; Carman, J.; Yang, W.P.; Zhu, J.; Blackburn, C.; Huang, Y.H.; Hamilton, T.A.; Su, B.; Li, X. IL-17A–induced PLET1 expression contributes to tissue repair and colon tumorigenesis. J. Immunol., 2017, 199(11), 3849-3857.
[http://dx.doi.org/10.4049/jimmunol.1601540] [PMID: 29070673]
[25]
Liao, Y.; Zhao, J.; Bulek, K.; Tang, F.; Chen, X.; Cai, G.; Jia, S.; Fox, P.L.; Huang, E.; Pizarro, T.T.; Kalady, M.F.; Jackson, M.W.; Bao, S.; Sen, G.C.; Stark, G.R.; Chang, C.J.; Li, X. Inflammation mobilizes copper metabolism to promote colon tumorigenesis via an IL-17-STEAP4-XIAP axis. Nat. Commun., 2020, 11(1), 900.
[http://dx.doi.org/10.1038/s41467-020-14698-y] [PMID: 32060280]
[26]
Jonkman, J.E.; Cathcart, J.A.; Xu, F.; Bartolini, M.E.; Amon, J.E.; Stevens, K.M.; Colarusso, P. An introduction to the wound healing assay using live-cell microscopy. Cell Adhes. Migr., 2014, 8(5), 440-451.
[http://dx.doi.org/10.4161/cam.36224] [PMID: 25482647]
[27]
Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera--a visualization system for exploratory research and analysis. J. Comput. Chem., 2004, 25(13), 1605-1612.
[http://dx.doi.org/10.1002/jcc.20084] [PMID: 15264254]
[28]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791.
[http://dx.doi.org/10.1002/jcc.21256] [PMID: 19399780]
[29]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[PMID: 19499576]
[30]
Figeac, N.; Zammit, P.S. Coordinated action of Axin1 and Axin2 suppresses β-catenin to regulate muscle stem cell function. Cell. Signal., 2015, 27(8), 1652-1665.
[http://dx.doi.org/10.1016/j.cellsig.2015.03.025] [PMID: 25866367]
[31]
Bloch-Zupan, A.; Sedano, H.; Scully, C. Dento/oro/craniofacial anomalies and genetics; Amsterdam, Elsevier, 2012.
[32]
You, S.; Zhou, J.; Chen, S.; Zhou, P.; Lv, J.; Han, X.; Sun, Y. PTCH1, a receptor of Hedgehog signaling pathway, is correlated with metastatic potential of colorectal cancer. Ups. J. Med. Sci., 2010, 115(3), 169-175.
[http://dx.doi.org/10.3109/03009731003668316] [PMID: 20230186]
[33]
Wang, Y.; Li, Z.; Zhao, X.; Zuo, X.; Peng, Z. miR-10b promotes invasion by targeting HOXD10 in colorectal cancer. Oncol. Lett., 2016, 12(1), 488-494.
[http://dx.doi.org/10.3892/ol.2016.4628] [PMID: 27347170]
[34]
Valastyan, S.; Weinberg, R.A. Tumor metastasis: Molecular insights and evolving paradigms. Cell, 2011, 147(2), 275-292.
[http://dx.doi.org/10.1016/j.cell.2011.09.024] [PMID: 22000009]
[35]
Pathak, S.; Meng, W.J.; Nandy, S.K.; Ping, J.; Bisgin, A.; Helmfors, L.; Waldmann, P.; Sun, X.F. Radiation and SN38 treatments modulate the expression of microRNAs, cytokines and chemokines in colon cancer cells in a p53-directed manner. Oncotarget, 2015, 6(42), 44758-44780.
[http://dx.doi.org/10.18632/oncotarget.5815] [PMID: 26556872]
[36]
Srinivasula, S.M.; Ahmad, M.; Fernandes-Alnemri, T.; Alnemri, E.S. Autoactivation of procaspase-9 by Apaf-1-mediated oligomerization. Mol. Cell, 1998, 1(7), 949-957.
[http://dx.doi.org/10.1016/S1097-2765(00)80095-7] [PMID: 9651578]
[37]
Pirnia, F.; Schneider, E.; Betticher, D.C.; Borner, M.M. Mitomycin C induces apoptosis and caspase-8 and -9 processing through a caspase-3 and Fas-independent pathway. Cell Death Differ., 2002, 9(9), 905-914.
[http://dx.doi.org/10.1038/sj.cdd.4401062] [PMID: 12181741]
[38]
Nishida, N.; Yokobori, T.; Mimori, K.; Sudo, T.; Tanaka, F.; Shibata, K.; Ishii, H.; Doki, Y.; Kuwano, H.; Mori, M. MicroRNA miR-125b is a prognostic marker in human colorectal cancer. Int. J. Oncol., 2011, 38(5), 1437-1443.
[PMID: 21399871]
[39]
Xia, Z.; Yang, C.; Yang, X.; Wu, S.; Feng, Z.; Qu, L.; Chen, X.; Liu, L.; Ma, Y. MiR-652 promotes proliferation and migration of uveal melanoma cells by targeting HOXA9. Med. Sci. Monit., 2019, 25, 8722-8732.
[http://dx.doi.org/10.12659/MSM.917099] [PMID: 31740654]
[40]
Nam, R.K.; Benatar, T.; Amemiya, Y.; Wallis, C.J.D.; Romero, J.M.; Tsagaris, M.; Sherman, C.; Sugar, L.; Seth, A. MicroRNA-652 induces NED in LNCaP and EMT in PC3 prostate cancer cells. Oncotarget, 2018, 9(27), 19159-19176.
[http://dx.doi.org/10.18632/oncotarget.24937] [PMID: 29721191]
[41]
Blagodatski, A.; Klimenko, A.; Jia, L.; Katanaev, V.L. Small molecule Wnt pathway modulators from natural sources: History, state of the art and perspectives. Cells, 2020, 9(3), 589.
[http://dx.doi.org/10.3390/cells9030589] [PMID: 32131438]
[42]
Xu, Y.; Pasche, B. TGF-β signaling alterations and susceptibility to colorectal cancer. Hum. Mol. Genet., 2007, 16(Spec No 1), R14-R20.
[http://dx.doi.org/10.1093/hmg/ddl486] [PMID: 17613544]
[43]
Calon, A.; Espinet, E.; Palomo-Ponce, S.; Tauriello, D.V.; Iglesias, M.; Céspedes, M.V.; Sevillano, M.; Nadal, C.; Jung, P.; Zhang, X.H.; Byrom, D.; Riera, A.; Rossell, D.; Mangues, R.; Massagué, J.; Sancho, E.; Batlle, E. Dependency of colorectal cancer on a TGF-β-driven program in stromal cells for metastasis initiation. Cancer Cell, 2012, 22(5), 571-584.
[http://dx.doi.org/10.1016/j.ccr.2012.08.013] [PMID: 23153532]
[44]
Jin, W.J.; Xu, J.M.; Xu, W.L.; Gu, D.H.; Li, P.W. Diagnostic value of interleukin-8 in colorectal cancer: A case-control study and meta-analysis. World J. Gastroenterol., 2014, 20(43), 16334-16342.
[http://dx.doi.org/10.3748/wjg.v20.i43.16334] [PMID: 25473192]
[45]
Dennis, K.L.; Blatner, N.R.; Gounari, F.; Khazaie, K. Current status of interleukin-10 and regulatory T-cells in cancer. Curr. Opin. Oncol., 2013, 25(6), 637-645.
[http://dx.doi.org/10.1097/CCO.0000000000000006] [PMID: 24076584]
[46]
Gu, T.; De Jesus, M.; Gallagher, H.C.; Burris, T.P.; Egilmez, N.K. Oral IL-10 suppresses colon carcinogenesis via elimination of pathogenic CD4+ T-cells and induction of antitumor CD8+ T-cell activity. OncoImmunology, 2017, 6(6), e1319027.
[http://dx.doi.org/10.1080/2162402X.2017.1319027] [PMID: 28680752]
[47]
De la Fuente López, M.; Landskron, G.; Parada, D.; Dubois-Camacho, K.; Simian, D.; Martinez, M.; Romero, D.; Roa, J.C.; Chahuán, I.; Gutiérrez, R.; Lopez-K, F.; Alvarez, K.; Kronberg, U.; López, S.; Sanguinetti, A.; Moreno, N.; Abedrapo, M.; González, M.J.; Quera, R.; Hermoso-R, M.A. The relationship between chemokines CCL2, CCL3, and CCL4 with the tumor microenvironment and tumor-associated macrophage markers in colorectal cancer. Tumour Biol., 2018, 40(11), 1010428318810059.
[http://dx.doi.org/10.1177/1010428318810059] [PMID: 30419802]
[48]
Li, J.W.; Huang, C.Z.; Li, J.H.; Yuan, J.H.; Chen, Q.H.; Zhang, W.F.; Xu, Z.S.; Liu, Y.P.; Li, Y.; Zhan, M.X.; Lu, L.G. Knockdown of metadherin inhibits cell proliferation and migration in colorectal cancer. Oncol. Rep., 2018, 40(4), 2215-2223.
[http://dx.doi.org/10.3892/or.2018.6581] [PMID: 30015962]
[49]
Brooks, P.C. Cell adhesion molecules in angiogenesis. Cancer Metastasis Rev., 1996, 15(2), 187-194.
[http://dx.doi.org/10.1007/BF00437471] [PMID: 8842490]
[50]
Goulart, A.; Ferreira, C.; Rodrigues, A.; Coimbra, B.; Sousa, N.; Leão, P. The correlation between serum vascular endothelial growth factor (VEGF) and tumor VEGF receptor 3 in colorectal cancer. Ann. Surg. Treat. Res., 2019, 97(1), 15-20.
[http://dx.doi.org/10.4174/astr.2019.97.1.15] [PMID: 31297348]
[51]
Gnosa, S.; Shen, Y.M.; Wang, C.J.; Zhang, H.; Stratmann, J.; Arbman, G.; Sun, X.F. Expression of AEG-1 mRNA and protein in colorectal cancer patients and colon cancer cell lines. J. Transl. Med., 2012, 10(1), 109.
[http://dx.doi.org/10.1186/1479-5876-10-109] [PMID: 22643064]
[52]
Li, L.; Liu, Y.D.; Zhan, Y.T.; Zhu, Y.H.; Li, Y.; Xie, D.; Guan, X.Y. High levels of CCL2 or CCL4 in the tumor microenvironment predict unfavorable survival in lung adenocarcinoma. Thorac. Cancer, 2018, 9(7), 775-784.
[http://dx.doi.org/10.1111/1759-7714.12643] [PMID: 29722145]
[53]
Huang, S.; Wu, B.; Li, D.; Zhou, W.; Deng, G.; Zhang, K.; Li, Y. Knockdown of astrocyte elevated gene-1 inhibits tumor growth and modifies microRNAs expression profiles in human colorectal cancer cells. Biochem. Biophys. Res. Commun., 2014, 444(3), 338-345.
[http://dx.doi.org/10.1016/j.bbrc.2014.01.046] [PMID: 24462870]
[54]
Gnosa, S.; Zhang, H.; Brodin, V.P.; Carstensen, J.; Adell, G.; Sun, X.F. AEG-1 expression is an independent prognostic factor in rectal cancer patients with preoperative radiotherapy: A study in a Swedish clinical trial. Br. J. Cancer, 2014, 111(1), 166-173.
[http://dx.doi.org/10.1038/bjc.2014.250] [PMID: 24874474]
[55]
Yu, X.; Li, Z.; Shen, J.; Wu, W.K.; Liang, J.; Weng, X.; Qiu, G. MicroRNA-10b promotes nucleus pulposus cell proliferation through RhoC-Akt pathway by targeting HOXD10 in intervetebral disc degeneration. PLoS One, 2013, 8(12), e83080.
[http://dx.doi.org/10.1371/journal.pone.0083080] [PMID: 24376640]
[56]
Yuan, Y.H.; Wang, H.Y.; Lai, Y.; Zhong, W.; Liang, W.L.; Yan, F.D.; Yu, Z.; Chen, J.K.; Lin, Y. Epigenetic inactivation of HOXD10 is associated with human colon cancer via inhibiting the RHOC/AKT/MAPK signaling pathway. Cell Commun. Signal., 2019, 17(1), 9.
[http://dx.doi.org/10.1186/s12964-018-0316-0] [PMID: 30683109]
[57]
Yang, H.; Zhou, J.; Mi, J.; Ma, K.; Fan, Y.; Ning, J.; Wang, C.; Wei, X.; Zhao, H.; Li, E. HOXD10 acts as a tumor-suppressive factor via inhibition of the RHOC/AKT/MAPK pathway in human cholangiocellular carcinoma. Oncol. Rep., 2015, 34(4), 1681-1691.
[http://dx.doi.org/10.3892/or.2015.4194] [PMID: 26260613]
[58]
Liu, Z.; Zhu, J.; Cao, H.; Ren, H.; Fang, X. miR-10b promotes cell invasion through RhoC-AKT signaling pathway by targeting HOXD10 in gastric cancer. Int. J. Oncol., 2012, 40(5), 1553-1560.
[PMID: 22293682]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy