Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Mini-Review Article

Vitamin D and its Possible Relationship to Neuroprotection in COVID-19: Evidence in the Literature

Author(s): Saray Quintero-Fabián, Cindy Bandala, Luz Adriana Pichardo-Macías, Itzel Jatziri Contreras-García, Saúl Gómez-Manzo, Beatriz Hernández-Ochoa, José Arturo Martínez-Orozco, Iván Ignacio- Mejía* and Noemí Cárdenas-Rodríguez*

Volume 22, Issue 16, 2022

Published on: 21 April, 2022

Page: [1346 - 1368] Pages: 23

DOI: 10.2174/1568026622666220401140737

Price: $65

Abstract

Vitamin D is a hormone involved in the regulation of important biological processes such as signal transduction, immune response, metabolic regulation and also in the nervous and vascular systems. To date, coronavirus disease 2019 (COVID-19) infection does not have a specific treatment. However, various drugs have been proposed, including those that attenuate the intense inflammatory response, and recently, the use of vitamin D, in clinical trials, as part of the treatment of COVID-19 has provided promising results. It has been observed in some clinical studies that the use of cholecalciferol (vitamin D3) and its two metabolites the circulating form, calcidiol or calcifediol (25-hydroxycalciferol, 25-(OH)-D), and the active form, calcitriol (1,25-(OH)2-D), in different doses, improve the clinical manifestations, prognosis, and survival of patients infected with COVID-19 probably because of its anti-inflammatory, antiviral and lung-protective action. In relation to the central nervous system (CNS) it has been shown, in clinical studies, that vitamin D is beneficial in some neurological and psychiatric conditions because of its anti-inflammatory and antioxidant properties, modulation of neurotransmitters actions, and regulation of calcium homeostasis between other mechanisms. It has been shown that COVID-19 infection induces CNS complications such as headache, anosmia, ageusia, neuropathy, encephalitis, stroke, thrombosis, cerebral hemorrhages, cytotoxic lesions, and psychiatric conditions and it has been proposed that the use of dietary supplements, as vitamin and minerals, can be adjuvants in this disease. In this review, the evidence of the possible role of vitamin D, and its metabolites, as a protector against the neurological manifestations of COVID-19 was summarized.

Keywords: Vitamin D, COVID-19, SARS-CoV-2, Neuroprotection, Neurological manifestations, Clinical studies.

Graphical Abstract
[1]
Varsavsky, M.; Rozas Moreno, P.; Becerra Fernández, A.; Luque Fernández, I.; Quesada Gómez, J.M.; Ávila Rubio, V.; García Martín, A.; Cortés Berdonces, M.; Naf Cortés, S.; Romero Muñoz, M.; Reyes García, R.; Jódar Gimeno, E.; Muñoz Torres, M. Recommended vitamin D levels in the general population. Endocrinol. Diabetes Nutr., 2017, 64(Suppl. 1), 7-14.
[http://dx.doi.org/10.1016/j.endinu.2016.11.002] [PMID: 28440763]
[2]
Valero Zanuy, M.Á.; Hawkins Carranza, F. Metabolism, Endogenous and exogenous sources of vitamin D. Rev. Española Metabolic Bone Diseases, 2007, 16(4), 63-70.
[http://dx.doi.org/10.1016/S1132-8460(07)73506-7]
[3]
Zdrenghea, M.T.; Makrinioti, H.; Bagacean, C.; Bush, A.; Johnston, S.L.; Stanciu, L.A.; Vitamin, D. Vitamin D modulation of innate immune responses to respiratory viral infections. Rev. Med. Virol., 2017, 27(1), 1-12.
[http://dx.doi.org/10.1002/rmv.1909] [PMID: 27714929]
[4]
Tang, J.C.Y.; Jackson, S.; Walsh, N.P.; Greeves, J.; Fraser, W.D.; Ball, N.; Dutton, J.; Nicholls, H.; Piec, I.; Washbourne, C.J. Bioanalytical Facility team. The dynamic relationships between the active and catabolic vitamin D metabolites, their ratios, and associations with PTH. Sci. Rep., 2019, 9(1), 6974.
[http://dx.doi.org/10.1038/s41598-019-43462-6] [PMID: 31061425]
[5]
Ramasamy, I.; Vitamin, D. Vitamin D metabolism and guidelines for vitamin D supplementation. Clin. Biochem. Rev., 2020, 41(3), 103-126.
[http://dx.doi.org/10.33176/AACB-20-00006] [PMID: 33343045]
[6]
Santoro, D.; Caccamo, D.; Lucisano, S.; Buemi, M.; Sebekova, K.; Teta, D.; De Nicola, L. Interplay of vitamin D, erythropoiesis, and the renin-angiotensin system. BioMed Res. Int., 2015, 2015, 145828.
[http://dx.doi.org/10.1155/2015/145828] [PMID: 26000281]
[7]
Amrein, K.; Lasky-Su, J.A.; Dobnig, H.; Christopher, K.B. Metabolomic basis for response to high dose vitamin D in critical illness. Clin. Nutr., 2021, 40(4), 2053-2060.
[http://dx.doi.org/10.1016/j.clnu.2020.09.028] [PMID: 33087250]
[8]
Kunutsor, S.K.; Apekey, T.A.; Steur, M. Vitamin D and risk of future hypertension: Meta-analysis of 283,537 participants. Eur. J. Epidemiol., 2013, 28(3), 205-221.
[http://dx.doi.org/10.1007/s10654-013-9790-2] [PMID: 23456138]
[9]
Tomaschitz, A.; Pilz, S.; Ritz, E.; Grammer, T.; Drechsler, C.; Boehm, B.O.; März, W. Independent association between 1,25-dihydroxyvitamin D, 25-hydroxyvitamin D and the renin-angiotensin system: The Ludwigshafen Risk and Cardiovascular Health (LURIC) study. Clin. Chim. Acta, 2010, 411(17-18), 1354-1360.
[http://dx.doi.org/10.1016/j.cca.2010.05.037] [PMID: 20515678]
[10]
Lee, C. Controversial effects of vitamin D and related genes on viral infections, pathogenesis, and treatment outcomes. Nutrients, 2020, 12(4), 962.
[http://dx.doi.org/10.3390/nu12040962] [PMID: 32235600]
[11]
Gwyer Findlay, E.; Currie, S.M.; Davidson, D.J. Cationic host defence peptides: Potential as antiviral therapeutics. BioDrugs, 2013, 27(5), 479-493.
[http://dx.doi.org/10.1007/s40259-013-0039-0] [PMID: 23649937]
[12]
Campbell, G.R.; Spector, S.A.; Vitamin, D. Vitamin D inhibits human immunodeficiency virus type 1 and Mycobacterium tuberculosis infection in macrophages through the induction of autophagy. PLoS Pathog., 2012, 8(5), e1002689.
[http://dx.doi.org/10.1371/journal.ppat.1002689] [PMID: 22589721]
[13]
Peng, M.Y.; Liu, W.C.; Zheng, J.Q.; Lu, C.L.; Hou, Y.C.; Zheng, C.M.; Song, J.Y.; Lu, K.C.; Chao, Y.C. Immunological aspects of SARS-CoV-2 infection and the putative beneficial role of vitamin-D. Int. J. Mol. Sci., 2021, 22(10), 5251.
[http://dx.doi.org/10.3390/ijms22105251] [PMID: 34065735]
[14]
Greiller, C.L.; Martineau, A.R. Modulation of the immune response to respiratory viruses by vitamin D. Nutrients, 2015, 7(6), 4240-4270.
[http://dx.doi.org/10.3390/nu7064240] [PMID: 26035247]
[15]
Sabetta, J.R.; DePetrillo, P.; Cipriani, R.J.; Smardin, J.; Burns, L.A.; Landry, M.L. Serum 25-hydroxyvitamin d and the incidence of acute viral respiratory tract infections in healthy adults. PLoS One, 2010, 5(6), e11088.
[http://dx.doi.org/10.1371/journal.pone.0011088] [PMID: 20559424]
[16]
World Health Organization. WHO Coronavirus (COVID-19) Dashboard. WHO Coronavirus (COVID-19) dashboard with vaccination data. 2021, 1-5.
[17]
Wang, M.L.; Behrman, P.; Dulin, A.; Baskin, M.L.; Buscemi, J.; Alcaraz, K.I.; Goldstein, C.M.; Carson, T.L.; Shen, M.; Fitzgibbon, M. Addressing inequities in COVID-19 morbidity and mortality: Research and policy recommendations. Transl. Behav. Med., 2020, 10(3), 516-519.
[http://dx.doi.org/10.1093/tbm/ibaa055] [PMID: 32542349]
[18]
Lau, F.H.; Majumder, R.; Torabi, R.; Saeg, F.; Hoffman, R.; Cirillo, J.D.; Greiffenstein, P. Vitamin D insufficiency is prevalent in severe COVID-19. medRxiv, 2020. preprints.
[http://dx.doi.org/10.1101/2020.04.24.20075838]
[19]
De Smet, D.; De Smet, K.; Herroelen, P.; Gryspeerdt, S.; Martens, G.A. Vitamin D deficiency as risk factor for severe COVID-19: A convergence of two pandemics. medRxiv, 2020, 2020.05.01.20079376.
[http://dx.doi.org/10.1101/2020.05.01.20079376]
[20]
D’Avolio, A.; Avataneo, V.; Manca, A.; Cusato, J.; De Nicolò, A.; Lucchini, R.; Keller, F.; Cantù, M.; D’avolio, A.; Avataneo, V.; Manca, A.; Cusato, J.; De Nicolò, A.; Lucchini, R.; Keller, F.; Cantù, M. 25-Hydroxyvitamin D concentrations are lower in patients with positive PCR for SARS-CoV-2. Nutrients, 2020, 12(5), 1-7.
[http://dx.doi.org/10.3390/nu12051359] [PMID: 32397511]
[21]
Hastie, C.E.; Mackay, D.F.; Ho, F.; Celis-Morales, C.A.; Katikireddi, S.V.; Niedzwiedz, C.L.; Jani, B.D.; Welsh, P.; Mair, F.S.; Gray, S.R.; O’Donnell, C.A.; Gill, J.M.; Sattar, N.; Pell, J.P.; Vitamin, D. Vitamin D concentrations and COVID-19 infection in UK Biobank. Diabetes Metab. Syndr., 2020, 14(4), 561-565.
[http://dx.doi.org/10.1016/j.dsx.2020.04.050] [PMID: 32413819]
[22]
Meltzer, D.O.; Best, T.J.; Zhang, H.; Vokes, T.; Arora, V.; Solway, J. Association of Vitamin D status and other clinical characteristics with COVID-19 test results. JAMA Netw. Open, 2020, 3(9), e2019722.
[http://dx.doi.org/10.1001/jamanetworkopen.2020.19722] [PMID: 32880651]
[23]
Zemb, P.; Bergman, P.; Camargo, C.A., Jr; Cavalier, E.; Cormier, C.; Courbebaisse, M.; Hollis, B.; Joulia, F.; Minisola, S.; Pilz, S.; Pludowski, P.; Schmitt, F.; Zdrenghea, M.; Souberbielle, J-C.; Vitamin, D. Vitamin D deficiency and the COVID-19 pandemic. J. Glob. Antimicrob. Resist., 2020, 22(January), 133-134.
[http://dx.doi.org/10.1016/j.jgar.2020.05.006] [PMID: 32474141]
[24]
Xu, J.; Yang, J.; Chen, J.; Luo, Q.; Zhang, Q.; Zhang, H.; Vitamin, D. Vitamin D alleviates lipopolysaccharide induced acute lung injury via regulation of the renin angiotensin system. Mol. Med. Rep., 2017, 16(5), 7432-7438.
[http://dx.doi.org/10.3892/mmr.2017.7546] [PMID: 28944831]
[25]
Touyz, R.M.; Li, H.; Delles, C. ACE2 the Janus-faced protein - from cardiovascular protection to severe acute respiratory syndrome-coronavirus and COVID-19. Clin. Sci. (Lond.), 2020, 134(7), 747-750.
[http://dx.doi.org/10.1042/CS20200363] [PMID: 32255491]
[26]
Lanza, K.; Perez, L.G.; Costa, L.B.; Cordeiro, T.M.; Palmeira, V.A.; Ribeiro, V.T.; Simões, E. Silva, A.C. Covid-19: The renin-angiotensin system imbalance hypothesis. Clin. Sci. (Lond.), 2020, 134(11), 1259-1264.
[http://dx.doi.org/10.1042/CS20200492] [PMID: 32507883]
[27]
Yuan, W.; Pan, W.; Kong, J.; Zheng, W.; Szeto, F.L.; Wong, K.E.; Cohen, R.; Klopot, A.; Zhang, Z.; Li, Y.C.; Yan, C.L. 1,25-dihydroxyvitamin D3 suppresses renin gene transcription by blocking the activity of the cyclic AMP response element in the renin gene promoter. J. Biol. Chem., 2007, 282(41), 29821-29830.
[http://dx.doi.org/10.1074/jbc.M705495200] [PMID: 17690094]
[28]
Tan, C.W.; Ho, L.P.; Kalimuddin, S.; Cherng, B.P.Z.; Teh, Y.E.; Thien, S.Y.; Wong, H.M.; Tern, P.J.W.; Chandran, M.; Chay, J.W.M.; Nagarajan, C.; Sultana, R.; Low, J.G.H.; Ng, H.J. Cohort study to evaluate the effect of vitamin D, magnesium, and vitamin B12 in combination on progression to severe outcomes in older patients with coronavirus (COVID-19). Nutrition, 2020, 79-80(January), 111017.
[http://dx.doi.org/10.1016/j.nut.2020.111017] [PMID: 33039952]
[29]
Cure, E.; Cumhur Cure, M. Comment on “Organ-protective effect of angiotensin-converting enzyme 2 and its effect on the prognosis of COVID-19”. J. Med. Virol., 2020, 92(9), 1423-1424.
[http://dx.doi.org/10.1002/jmv.25848] [PMID: 32266994]
[30]
Spiro, A.; Buttriss, J.L.; Vitamin, D.; Vitamin, D. An overview of vitamin D status and intake in Europe. Nutr. Bull., 2014, 39(4), 322-350.
[http://dx.doi.org/10.1111/nbu.12108] [PMID: 25635171]
[31]
Grant, W.B.; Lahore, H.; McDonnell, S.L.; Baggerly, C.A.; French, C.B.; Aliano, J.L.; Bhattoa, H.P. Evidence that vitamin D supplementation could reduce risk of influenza and COVID-19 infections and deaths. Nutrients, 2020, 12(4), 988.
[http://dx.doi.org/10.3390/nu12040988] [PMID: 32252338]
[32]
Jeong, S-H.; Kim, J-S.; Kim, H-J.; Choi, J-Y.; Koo, J-W.; Choi, K-D.; Park, J-Y.; Lee, S-H.; Choi, S-Y.; Oh, S-Y.; Yang, T-H.; Park, J.H.; Jung, I.; Ahn, S.; Kim, S. Prevention of benign paroxysmal positional vertigo with vitamin D supplementation: A randomized trial. Neurology, 2020, 95(9), e1117-e1125.
[http://dx.doi.org/10.1212/WNL.0000000000010343] [PMID: 32759193]
[33]
Cortese, M.; Munger, K.L.; Martínez-Lapiscina, E.H.; Barro, C.; Edan, G.; Freedman, M.S.; Hartung, H.P.; Montalbán, X.; Foley, F.W.; Penner, I.K.; Hemmer, B.; Fox, E.J.; Schippling, S.; Wicklein, E.M.; Kappos, L.; Kuhle, J.; Ascherio, A.; Vitamin, D. BENEFIT Study Group. Vitamin D, smoking, EBV, and long-term cognitive performance in MS: 11-year follow-up of BENEFIT. Neurology, 2020, 94(18), e1950-e1960.
[http://dx.doi.org/10.1212/WNL.0000000000009371] [PMID: 32300060]
[34]
Schweiger, V.; Secchettin, E.; Castellani, C.; Martini, A.; Mazzocchi, E.; Picelli, A.; Polati, E.; Donadello, K.; Valenti, M.T.; Dalle Carbonare, L. Comparison between acupuncture and nutraceutical treatment with migratens® in patients with fibromyalgia syndrome: A prospective randomized clinical trial. Nutrients, 2020, 12(3), 821.
[http://dx.doi.org/10.3390/nu12030821] [PMID: 32204554]
[35]
Ghorbani, Z.; Rafiee, P.; Fotouhi, A.; Haghighi, S.; Rasekh Magham, R.; Ahmadi, Z.S.; Djalali, M.; Zareei, M.; Razeghi Jahromi, S.; Shahemi, S.; Mahmoudi, M.; Togha, M. The effects of vitamin D supplementation on interictal serum levels of calcitonin gene-related peptide (CGRP) in episodic migraine patients: Post hoc analysis of a randomized double-blind placebo-controlled trial. J. Headache Pain, 2020, 21(1), 22.
[http://dx.doi.org/10.1186/s10194-020-01090-w] [PMID: 32093657]
[36]
Fashanu, O.E.; Zhao, D.; Schneider, A.L.C.; Rawlings, A.M.; Sharrett, A.R.; Lutsey, P.L.; Gottesman, R.F.; Gross, A.L.; Guallar, E.; Alonso, A.; Mosley, T.H.; Michos, E.D. Mid-life serum Vitamin D concentrations were associated with incident dementia but not late-life neuropsychological performance in the Atherosclerosis Risk in Communities (ARIC) Study. BMC Neurol., 2019, 19(1), 244.
[http://dx.doi.org/10.1186/s12883-019-1483-3] [PMID: 31640594]
[37]
Hajimohammadebrahim-Ketabforoush, M.; Shahmohammadi, M.; Khoundabi, B.; Shariatpanahi, Z.V. Effect of vitamin D supplementation on postcraniotomy pain after brain tumor surgery: A randomized clinical trial. World Neurosurg., 2019, 130, e105-e111.
[http://dx.doi.org/10.1016/j.wneu.2019.05.250] [PMID: 31181357]
[38]
Majid, M.S.; Ahmad, H.S.; Bizhan, H.; Hosein, H.Z.M.; Mohammad, A. The effect of vitamin D supplement on the score and quality of sleep in 20-50 year-old people with sleep disorders compared with control group. Nutr. Neurosci., 2018, 21(7), 511-519.
[http://dx.doi.org/10.1080/1028415X.2017.1317395] [PMID: 28475473]
[39]
Saad, K.; Abdel-Rahman, A.A.; Elserogy, Y.M.; Al-Atram, A.A.; Cannell, J.J.; Bjørklund, G.; Abdel-Reheim, M.K.; Othman, H.A.K.; El-Houfey, A.A.; Abd El-Aziz, N.H.R.; Abd El-Baseer, K.A.; Ahmed, A.E.; Ali, A.M.; Vitamin, D. Vitamin D status in autism spectrum disorders and the efficacy of vitamin D supplementation in autistic children. Nutr. Neurosci., 2016, 19(8), 346-351.
[http://dx.doi.org/10.1179/1476830515Y.0000000019] [PMID: 25876214]
[40]
Zhu, X.; Jiao, R.; Tu, M.; Wang, W.; Wen, X.; Song, B. The effect of vitamin D auxiliary rehabilitation therapy in children with cerebral palsy and language dysfunction. Minerva Pediatr., 2019, 71(6), 495-499.
[http://dx.doi.org/10.23736/S0026-4946.17.04375-4] [PMID: 26365823]
[41]
Jia, J.; Hu, J.; Huo, X.; Miao, R.; Zhang, Y.; Ma, F. Effects of vitamin D supplementation on cognitive function and blood Aβ-related biomarkers in older adults with Alzheimer’s disease: A randomised, double-blind, placebo-controlled trial. J. Neurol. Neurosurg. Psychiatry, 2019, 90(12), 1347-1352.
[http://dx.doi.org/10.1136/jnnp-2018-320199] [PMID: 31296588]
[42]
Suzuki, M.; Yoshioka, M.; Hashimoto, M.; Murakami, M.; Noya, M.; Takahashi, D.; Urashima, M. Randomized, double-blind, placebo-controlled trial of vitamin D supplementation in Parkinson disease. Am. J. Clin. Nutr., 2013, 97(5), 1004-1013.
[http://dx.doi.org/10.3945/ajcn.112.051664] [PMID: 23485413]
[43]
McCollum, E.V.; Pitz, W.; Simmonds, N.; Becker, J.E.; Shipley, P.G.; Bunting, R.W. The effect of additions of fluorine to the diet of the rat on the quality of the teeth. 1925. Studies on experimental rickets. XXI. An experimental demonstration of the existence of a vitamin which promotes calcium deposition. 1922. The effect of additions of fluorine to the diet of the rat on the quality of the teeth. 1925. J. Biol. Chem., 2002, 277(19), E8.
[http://dx.doi.org/10.1016/S0021-9258(19)60665-4] [PMID: 11991957]
[44]
Long, W.; Johnson, J.; Kalyaanamoorthy, S.; Light, P. TRPV1 channels as a newly identified target for vitamin D. Channels (Austin), 2021, 15(1), 360-374.
[http://dx.doi.org/10.1080/19336950.2021.1905248] [PMID: 33825665]
[45]
Holick, M.F. Evolution, Biologic functions, and recommended dietary allowances for vitamin D. Vitamin D: Molecular Biology, Physiology, and Clinical Applications; Holick, M.F., Ed.; Humana Press: Totowa, NJ, 1999, pp. 1-16.
[46]
Lang, F.; Ma, K.; Leibrock, C.B. 1,25(OH)2D3 in brain function and neuropsychiatric disease. Neurosignals, 2019, 27(1), 40-49.
[http://dx.doi.org/10.33594/000000182] [PMID: 31769259]
[47]
Pike, J.W.; Meyer, M.B.; Lee, S.M.; Onal, M.; Benkusky, N.A. The vitamin D receptor: Contemporary genomic approaches reveal new basic and translational insights. J. Clin. Invest., 2017, 127(4), 1146-1154.
[http://dx.doi.org/10.1172/JCI88887] [PMID: 28240603]
[48]
Chen, L.; Yang, R.; Qiao, W.; Zhang, W.; Chen, J.; Mao, L.; Goltzman, D.; Miao, D. 1,25-Dihydroxyvitamin D exerts an antiaging role by activation of Nrf2-antioxidant signaling and inactivation of p16/p53-senescence signaling. Aging Cell, 2019, 18(3), e12951.
[http://dx.doi.org/10.1111/acel.12951] [PMID: 30907059]
[49]
Cakici, C.; Yigitbasi, T.; Ayla, S.; Karimkhani, H.; Bayramoglu, F.; Yigit, P.; Kilic, E.; Emekli, N. Dose-dependent effects of vitamin 1,25(OH)2D3 on oxidative stress and apoptosis. J. Basic Clin. Physiol. Pharmacol., 2018, 29(3), 271-279.
[http://dx.doi.org/10.1515/jbcpp-2017-0121] [PMID: 29420306]
[50]
Verlinden, L.; Verstuyf, A.; Convents, R.; Marcelis, S.; Van Camp, M.; Bouillon, R. Action of 1,25(OH)2D3 on the cell cycle genes, cyclin D1, p21 and p27 in MCF-7 cells. Mol. Cell. Endocrinol., 1998, 142(1-2), 57-65.
[http://dx.doi.org/10.1016/S0303-7207(98)00117-8] [PMID: 9783903]
[51]
Rafique, A.; Rejnmark, L.; Heickendorff, L.; Jon, H. 25(OH)D3 and 1.25(OH)2D3 inhibits TNF-α expression in human monocyte derived macrophages. PLoS One, 2019, 14(4), e0215383.
[http://dx.doi.org/10.1371/journal.pone.0215383]
[52]
Zhou, Q.; Qin, S.; Zhang, J.; Zhon, L.; Pen, Z.; Xing, T. 1,25(OH)2D3 induces regulatory T cell differentiation by influencing the VDR/PLC-γ1/TGF-β1/pathway. Mol. Immunol., 2017, 91(100), 156-164.
[http://dx.doi.org/10.1016/j.molimm.2017.09.006] [PMID: 28926770]
[53]
Liu, P.; Li, F.; Xu, X.; Li, S.; Dong, X.; Chen, L.; Bai, B.; Wang, Y.; Qiu, M.; Dong, Y. 1,25(OH)2D3 provides protection against diabetic kidney disease by downregulating the TLR4-MyD88-NF-κB pathway. Exp. Mol. Pathol., 2020, 114, 104434.
[http://dx.doi.org/10.1016/j.yexmp.2020.104434] [PMID: 32240615]
[54]
Lu, C.; Yin, Y.; Cui, Y.; Wang, L.; Bai, Y.; Li, J.; Huang, T.; Reziwanguli, M.; Miao, L. 1,25(OH)2D3 improves blood lipid metabolism, liver function, and atherosclerosis by constraining the TGF-β/Smad signaling pathway in rats with hyperlipidemia. Cell Cycle, 2019, 18(22), 3111-3124.
[http://dx.doi.org/10.1080/15384101.2019.1669389] [PMID: 31544583]
[55]
Zeng, N.; Zhou, Y.; Zhang, S.; Singh, Y.; Shi, B.; Salker, M.S.; Lang, F. 1α,25(OH) 2D3 sensitive cytosolic ph regulation and glycolytic flux in human endometrial ishikawa cells. Cell. Physiol. Biochem., 2017, 41(2), 678-688.
[http://dx.doi.org/10.1159/000458427] [PMID: 28222424]
[56]
Lin, C-I.; Chang, Y.C.; Kao, N.J.; Lee, W.J.; Cross, T.W.; Lin, S.H. 1,25(OH)2D3 alleviates Aβ(25-35)-induced tau hyperphosphorylation, excessive reactive oxygen species, and apoptosis through interplay with glial cell line-derived neurotrophic factor signaling in SH-SY5Y cells. Int. J. Mol. Sci., 2020, 21(12), 1-17.
[http://dx.doi.org/10.3390/ijms21124215] [PMID: 32545801]
[57]
DeLuca, G.C.; Kimball, S.M.; Kolasinski, J.; Ramagopalan, S.V.; Ebers, G.C. Review: The role of vitamin D in nervous system health and disease. Neuropathol. Appl. Neurobiol., 2013, 39(5), 458-484.
[http://dx.doi.org/10.1111/nan.12020] [PMID: 23336971]
[58]
Zhang, W.; Chen, L.; Zhang, L.; Xiao, M.; Ding, J.; Goltzman, D.; Miao, D. Administration of exogenous 1,25(OH)2D3 normalizes overactivation of the central renin-angiotensin system in 1α(OH)ase knockout mice. Neurosci. Lett., 2015, 588, 184-189.
[http://dx.doi.org/10.1016/j.neulet.2015.01.013] [PMID: 25576706]
[59]
Jia, X.; Gu, Y.; Groome, L.J.; Al-Kofahi, M.; Alexander, J.S.; Li, W.; Wang, Y. 1,25(OH)2D3 induces placental vascular smooth muscle cell relaxation by phosphorylation of myosin phosphatase target subunit 1Ser507: Potential beneficial effects of vitamin D on placental vasculature in humans. Biol. Reprod., 2016, 94(5), 116.
[http://dx.doi.org/10.1095/biolreprod.116.138362] [PMID: 27075619]
[60]
Holick, M.F.; Frommer, J.E.; McNeill, S.C.; Richtand, N.M.; Henley, J.W.; Potts, J.T. Jr Photometabolism of 7-dehydrocholesterol to previtamin D3 in skin. Biochem. Biophys. Res. Commun., 1977, 76(1), 107-114.
[http://dx.doi.org/10.1016/0006-291X(77)91674-6] [PMID: 194588]
[61]
Eelen, G.; Gysemans, C.; Verlinden, L.; Vanoirbeek, E.; De Clercq, P.; Van Haver, D.; Mathieu, C.; Bouillon, R.; Verstuyf, A. Mechanism and potential of the growth-inhibitory actions of vitamin D and ana-logs. Curr. Med. Chem., 2007, 14(17), 1893-1910.
[http://dx.doi.org/10.2174/092986707781058823] [PMID: 17627525]
[62]
Holick, M.F.; Clark, M.B. The photobiogenesis and metabolism of vitamin D. Fed. Proc., 1978, 37(12), 2567-2574.
[PMID: 212325]
[63]
Gupta, R.P.; Hollis, B.W.; Patel, S.B.; Patrick, K.S.; Bell, N.H. CYP3A4 is a human microsomal vitamin D 25-hydroxylase. J. Bone Miner. Res., 2004, 19(4), 680-688.
[http://dx.doi.org/10.1359/JBMR.0301257] [PMID: 15005856]
[64]
Cheng, J.B.; Levine, M.A.; Bell, N.H.; Mangelsdorf, D.J.; Russell, D.W. Genetic evidence that the human CYP2R1 enzyme is a key vitamin D 25-hydroxylase. Proc. Natl. Acad. Sci. USA, 2004, 101(20), 7711-7715.
[http://dx.doi.org/10.1073/pnas.0402490101] [PMID: 15128933]
[65]
Sawada, N.; Sakaki, T.; Ohta, M.; Inouye, K. Metabolism of vitamin D(3) by human CYP27A1. Biochem. Biophys. Res. Commun., 2000, 273(3), 977-984.
[http://dx.doi.org/10.1006/bbrc.2000.3050] [PMID: 10891358]
[66]
Yamasaki, T.; Izumi, S.; Ide, H.; Ohyama, Y. Identification of a novel rat microsomal vitamin D3 25-hydroxylase. J. Biol. Chem., 2004, 279(22), 22848-22856.
[http://dx.doi.org/10.1074/jbc.M311346200] [PMID: 15026419]
[67]
Adams, J.S.; Hewison, M. Extrarenal expression of the 25-hydroxyvitamin D-1-hydroxylase. Arch. Biochem. Biophys., 2012, 523(1), 95-102.
[http://dx.doi.org/10.1016/j.abb.2012.02.016] [PMID: 22446158]
[68]
Penna, G.; Amuchastegui, S.; Giarratana, N.; Daniel, K.C.; Vulcano, M.; Sozzani, S.; Adorini, L. 1,25-Dihydroxyvitamin D3 selectively modulates tolerogenic properties in myeloid but not plasmacytoid dendritic cells. J. Immunol., 2007, 178(1), 145-153.
[http://dx.doi.org/10.4049/jimmunol.178.1.145] [PMID: 17182549]
[69]
Feger, M.; Ewendt, F.; Strotmann, J.; Schäffler, H.; Kempe-Teufel, D.; Glosse, P.; Stangl, G.I.; Föller, M. Glucocorticoids dexamethasone and prednisolone suppress fibroblast growth factor 23 (FGF23). J. Mol. Med. (Berl.), 2021, 99(5), 699-711.
[http://dx.doi.org/10.1007/s00109-021-02036-8] [PMID: 33517471]
[70]
Tieu, E.W.; Tang, E.K.Y.; Tuckey, R.C. Kinetic analysis of human CYP24A1 metabolism of vitamin D via the C24-oxidation pathway. FEBS J., 2014, 281(14), 3280-3296.
[http://dx.doi.org/10.1111/febs.12862] [PMID: 24893882]
[71]
Amrein, K.; Scherkl, M.; Hoffmann, M.; Neuwersch-Sommeregger, S.; Köstenberger, M.; Tmava Berisha, A.; Martucci, G.; Pilz, S.; Malle, O.; Vitamin, D. Vitamin D deficiency 2.0: an update on the current status worldwide. Eur. J. Clin. Nutr., 2020, 74(11), 1498-1513.
[http://dx.doi.org/10.1038/s41430-020-0558-y] [PMID: 31959942]
[72]
Minisola, S.; Ferrone, F.; Danese, V.; Cecchetti, V.; Pepe, J.; Cipriani, C.; Colangelo, L. Controversies Surrounding Vitamin D: Focus on Supplementation and Cancer. Int. J. Environ. Res. Public Health, 2019, 16(2), 1-10.
[http://dx.doi.org/10.3390/ijerph16020189] [PMID: 30641860]
[73]
Dankers, W.; den Braanker, H.; Paulissen, S.M.J.; van Hamburg, J.P.; Davelaar, N.; Colin, E.M.; Lubberts, E. The heterogeneous human memory CCR6+ T Helper-17 populations differ in T-bet and cytokine expression but all activate synovial fibroblasts in an IFNγ-independent manner. Arthritis Res. Ther., 2021, 23(1), 1-14.
[http://dx.doi.org/10.1186/s13075-021-02532-9] [PMID: 33397438]
[74]
Tangjittipokin, W.; Umjai, P.; Khemaprasit, K.; Charoentawornpanich, P.; Chanprasert, C.; Teerawattanapong, N.; Narkdontri, T.; Santiprabhob, J.; Vitamin, D. Vitamin D pathway gene polymorphisms, vitamin D level, and cytokines in children with type 1 diabetes. Gene, 2021, 791(May), 145691.
[http://dx.doi.org/10.1016/j.gene.2021.145691] [PMID: 33961971]
[75]
D’Ambrosio, D.; Cippitelli, M.; Cocciolo, M.G.; Mazzeo, D.; Di Lucia, P.; Lang, R.; Sinigaglia, F.; Panina-Bordignon, P. Inhibition of IL-12 production by 1,25-dihydroxyvitamin D3. Involvement of NF-kappaB downregulation in transcriptional repression of the p40 gene. J. Clin. Invest., 1998, 101(1), 252-262.
[http://dx.doi.org/10.1172/JCI1050] [PMID: 9421488]
[76]
Fleet, J.C.; Burcham, G.N.; Calvert, R.D.; Elzey, B.D.; Ratliff, T.L. 1α, 25 Dihydroxyvitamin D (1,25(OH)2D) inhibits the T cell suppressive function of myeloid derived suppressor cells (MDSC). J. Steroid Biochem. Mol. Biol., 2020, 198, 105557.
[http://dx.doi.org/10.1016/j.jsbmb.2019.105557] [PMID: 31783150]
[77]
Olson, K.C.; Kulling Larkin, P.M.; Signorelli, R.; Hamele, C.E.; Olson, T.L.; Conaway, M.R.; Feith, D.J.; Loughran, T.P., Jr; Vitamin, D. Vitamin D pathway activation selectively deactivates signal transducer and activator of transcription (STAT) proteins and inflammatory cytokine production in natural killer leukemic large granular lymphocytes. Cytokine, 2018, 111, 551-562.
[http://dx.doi.org/10.1016/j.cyto.2018.09.016] [PMID: 30455079]
[78]
Liu, P.T.; Stenger, S.; Li, H.; Wenzel, L.; Tan, B.H.; Krutzik, S.R.; Ochoa, M.T.; Schauber, J.; Wu, K.; Meinken, C.; Kamen, D.L.; Wagner, M.; Bals, R.; Steinmeyer, A.; Zügel, U.; Gallo, R.L.; Eisenberg, D.; Hewison, M.; Hollis, B.W.; Adams, J.S.; Bloom, B.R.; Modlin, R.L. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science, 2006, 311(5768), 1770-1773.
[http://dx.doi.org/10.1126/science.1123933] [PMID: 16497887]
[79]
Hewison, M.; Freeman, L.; Hughes, S.V.; Evans, K.N.; Bland, R.; Eliopoulos, A.G.; Kilby, M.D.; Moss, P.A.H.; Chakraverty, R. Differential regulation of vitamin D receptor and its ligand in human monocyte-derived dendritic cells. J. Immunol., 2003, 170(11), 5382-5390.
[http://dx.doi.org/10.4049/jimmunol.170.11.5382] [PMID: 12759412]
[80]
Griffin, M.D.; Lutz, W.; Phan, V.A.; Bachman, L.A.; McKean, D.J.; Kumar, R. Dendritic cell modulation by 1α,25 dihydroxyvitamin D3 and its analogs: A vitamin D receptor-dependent pathway that promotes a persistent state of immaturity in vitro and in vivo. Proc. Natl. Acad. Sci. USA, 2001, 98(12), 6800-6805.
[http://dx.doi.org/10.1073/pnas.121172198] [PMID: 11371626]
[81]
Cashman, K.D.; Dowling, K.G.; Škrabáková, Z.; Gonzalez-Gross, M.; Valtueña, J.; De Henauw, S.; Moreno, L.; Damsgaard, C.T.; Michaelsen, K.F.; Mølgaard, C.; Jorde, R.; Grimnes, G.; Moschonis, G.; Mavrogianni, C.; Manios, Y.; Thamm, M.; Mensink, G.B.M.; Rabenberg, M.; Busch, M.A.; Cox, L.; Meadows, S.; Goldberg, G.; Prentice, A.; Dekker, J.M.; Nijpels, G.; Pilz, S.; Swart, K.M.; van Schoor, N.M.; Lips, P.; Eiriksdottir, G.; Gudnason, V.; Cotch, M.F.; Koskinen, S.; Lamberg-Allardt, C.; Durazo-Arvizu, R.A.; Sempos, C.T.; Kiely, M.; Vitamin, D. Vitamin D deficiency in Europe: Pandemic? Am. J. Clin. Nutr., 2016, 103(4), 1033-1044.
[http://dx.doi.org/10.3945/ajcn.115.120873] [PMID: 26864360]
[82]
Parva, N.R.; Tadepalli, S.; Singh, P.; Qian, A.; Joshi, R.; Kandala, H.; Nookala, V.K.; Cheriyath, P. Prevalence of Vitamin D deficiency and associated risk factors in the US population (2011-2012). Cureus, 2018, 10(6), e2741.
[http://dx.doi.org/10.7759/cureus.2741] [PMID: 30087817]
[83]
Abbas, M. A. Physiological functions of vitamin D in adipose tissue. J. Steroid Biochem. Mol. Biol., 2017, 165(Pt B), 369-381.
[http://dx.doi.org/10.1016/j.jsbmb.2016.08.004]
[84]
Rosenstreich, S.J.; Rich, C.; Volwiler, W. Deposition in and release of vitamin D3 from body fat: Evidence for a storage site in the rat. J. Clin. Invest., 1971, 50(3), 679-687.
[http://dx.doi.org/10.1172/JCI106538] [PMID: 4322721]
[85]
Heaney, R.P.; Recker, R.R.; Grote, J.; Horst, R.L.; Armas, L.A.G. Vitamin D(3) is more potent than vitamin D(2) in humans. J. Clin. Endocrinol. Metab., 2011, 96(3), E447-E452.
[http://dx.doi.org/10.1210/jc.2010-2230] [PMID: 21177785]
[86]
Bouillon, R.; Carmeliet, G.; Lieben, L.; Watanabe, M.; Perino, A.; Auwerx, J.; Schoonjans, K.; Verstuyf, A. Vitamin D and energy homeostasis: Of mice and men. Nat. Rev. Endocrinol., 2014, 10(2), 79-87.
[http://dx.doi.org/10.1038/nrendo.2013.226] [PMID: 24247221]
[87]
Lee, H.; Bae, S.; Yoon, Y. Anti-adipogenic effects of 1,25-dihydroxyvitamin D3 are mediated by the maintenance of the wingless-type MMTV integration site/β-catenin pathway. Int. J. Mol. Med., 2012, 30(5), 1219-1224.
[http://dx.doi.org/10.3892/ijmm.2012.1101] [PMID: 22922938]
[88]
Marziou, A.; Philouze, C.; Couturier, C.; Astier, J.; Obert, P.; Landrier, J-F.; Riva, C.; Vitamin, D. Vitamin D supplementation improves adipose tissue inflammation and reduces hepatic steatosis in obese C57BL/6J Mice. Nutrients, 2020, 12(2), 1-13.
[http://dx.doi.org/10.3390/nu12020342] [PMID: 32012987]
[89]
Peppler, W.T.; Townsend, L.K.; Knuth, C.M.; Foster, M.T.; Wright, D.C. Subcutaneous inguinal white adipose tissue is responsive to, but dispensable for, the metabolic health benefits of exercise. Am. J. Physiol. Endocrinol. Metab., 2018, 314(1), E66-E77.
[http://dx.doi.org/10.1152/ajpendo.00226.2017] [PMID: 28978546]
[90]
Mukherjee, K.; Chio, T.I.; Sackett, D.L.; Bane, S.L. Detection of oxidative stress-induced carbonylation in live mammalian cells. Free Radic. Biol. Med., 2015, 84, 11-21.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.03.011] [PMID: 25801292]
[91]
Pisoschi, A.M.; Pop, A.; Iordache, F.; Stanca, L.; Predoi, G.; Serban, A.I. Oxidative stress mitigation by antioxidants - An overview on their chemistry and influences on health status. Eur. J. Med. Chem., 2021, 209, 112891.
[http://dx.doi.org/10.1016/j.ejmech.2020.112891] [PMID: 33032084]
[92]
Wiseman, H.; Vitamin, D. Vitamin D is a membrane antioxidant. Ability to inhibit iron-dependent lipid peroxidation in liposomes compared to cholesterol, ergosterol and tamoxifen and relevance to anticancer action. FEBS Lett., 1993, 326(1-3), 285-288.
[http://dx.doi.org/10.1016/0014-5793(93)81809-E] [PMID: 8325381]
[93]
Cao, Y.; Jia, X.; Huang, Y.; Wang, J.; Lu, C.; Yuan, X.; Xu, J.; Zhu, H.; Vitamin, D. Vitamin D stimulates miR-26b-5p to inhibit placental COX-2 expression in preeclampsia. Sci. Rep., 2021, 11(1), 11168.
[http://dx.doi.org/10.1038/s41598-021-90605-9] [PMID: 34045549]
[94]
Sun, J.; Zhong, W.; Gu, Y.; Groome, L.J.; Wang, Y. 1,25(OH)2D3 suppresses COX-2 up-regulation and thromboxane production in placental trophoblast cells in response to hypoxic stimulation. Placenta, 2014, 35(2), 143-145.
[http://dx.doi.org/10.1016/j.placenta.2013.12.002] [PMID: 24374095]
[95]
Nakai, K.; Fujii, H.; Kono, K.; Goto, S.; Kitazawa, R.; Kitazawa, S.; Hirata, M.; Shinohara, M.; Fukagawa, M.; Nishi, S.; Vitamin, D. Vitamin D activates the Nrf2-Keap1 antioxidant pathway and ameliorates nephropathy in diabetic rats. Am. J. Hypertens., 2014, 27(4), 586-595.
[http://dx.doi.org/10.1093/ajh/hpt160] [PMID: 24025724]
[96]
Ashcroft, S.P.; Bass, J.J.; Kazi, A.A.; Atherton, P.J.; Philp, A. The vitamin D receptor regulates mitochondrial function in C2C12 myoblasts. Am. J. Physiol. Cell Physiol., 2020, 318(3), C536-C541.
[http://dx.doi.org/10.1152/ajpcell.00568.2019] [PMID: 31940245]
[97]
Dhas, Y.; Banerjee, J.; Damle, G.; Mishra, N. Serum 25(OH)D concentration and its association with inflammation and oxidative stress in the middle-aged Indian healthy and diabetic subjects. Steroids, 2020, 154, 108532.
[http://dx.doi.org/10.1016/j.steroids.2019.108532] [PMID: 31672627]
[98]
Tagliaferri, S.; Porri, D.; De Giuseppe, R.; Manuelli, M.; Alessio, F.; Cena, H. The controversial role of vitamin D as an antioxidant: Results from randomised controlled trials. Nutr. Res. Rev., 2019, 32(1), 99-105.
[http://dx.doi.org/10.1017/S0954422418000197] [PMID: 30326975]
[99]
Lan, J.; Ge, J.; Yu, J.; Shan, S.; Zhou, H.; Fan, S.; Zhang, Q.; Shi, X.; Wang, Q.; Zhang, L.; Wang, X. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature, 2020, 581(7807), 215-220.
[http://dx.doi.org/10.1038/s41586-020-2180-5] [PMID: 32225176]
[100]
Bautista-Vargas, M.; Bonilla-Abadía, F.; Cañas, C.A. Potential role for tissue factor in the pathogenesis of hypercoagulability associated with in COVID-19. J. Thromb. Thrombolysis, 2020, 50(3), 479-483.
[http://dx.doi.org/10.1007/s11239-020-02172-x] [PMID: 32519164]
[101]
Yan, R.; Zhang, Y.; Li, Y.; Xia, L.; Guo, Y.; Zhou, Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science, 2020, 367(6485), 1444-1448.
[http://dx.doi.org/10.1126/science.abb2762] [PMID: 32132184]
[102]
Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N-H.; Nitsche, A.; Müller, M.A.; Drosten, C.; Pöhlmann, S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 2020, 181(2), 271-280.e8.
[http://dx.doi.org/10.1016/j.cell.2020.02.052] [PMID: 32142651]
[103]
Belouzard, S.; Chu, V.C.; Whittaker, G.R. Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites. Proc. Natl. Acad. Sci. USA, 2009, 106(14), 5871-5876.
[http://dx.doi.org/10.1073/pnas.0809524106] [PMID: 19321428]
[104]
Glinsky, G.V. Tripartite combination of candidate pandemic mitigation agents: Vitamin D, Quercetin, and estradiol manifest properties of medicinal agents for targeted mitigation of the COVID-19 pandemic defined by genomics-guided tracing of SARS-CoV-2 targets in human cells. Biomedicines, 2020, 8(5), 129.
[http://dx.doi.org/10.3390/biomedicines8050129] [PMID: 32455629]
[105]
Barlow, P.G.; Svoboda, P.; Mackellar, A.; Nash, A.A.; York, I.A.; Pohl, J.; Davidson, D.J.; Donis, R.O. Antiviral activity and increased host defense against influenza infection elicited by the human cathelicidin LL-37. PLoS One, 2011, 6(10), e25333.
[http://dx.doi.org/10.1371/journal.pone.0025333] [PMID: 22031815]
[106]
Hansdottir, S.; Monick, M.M.; Hinde, S.L.; Lovan, N.; Look, D.C.; Hunninghake, G.W. Respiratory epithelial cells convert inactive vitamin D to its active form: Potential effects on host defense. J. Immunol., 2008, 181(10), 7090-7099.
[http://dx.doi.org/10.4049/jimmunol.181.10.7090] [PMID: 18981129]
[107]
Sassi, F.; Tamone, C.; D’Amelio, P.; Vitamin, D.; Vitamin, D. Nutrient, hormone, and immunomodulator. Nutrients, 2018, 10(11), 1656.
[http://dx.doi.org/10.3390/nu10111656] [PMID: 30400332]
[108]
Bergman, P.; Lindh, A.U.; Björkhem-Bergman, L.; Lindh, J.D. Vitamin D and respiratory tract infections: A systematic review and meta-analysis of randomized controlled trials. PLoS One, 2013, 8(6), e65835.
[http://dx.doi.org/10.1371/journal.pone.0065835] [PMID: 23840373]
[109]
Dancer, R.C.A.; Parekh, D.; Lax, S.; D’Souza, V.; Zheng, S.; Bassford, C.R.; Park, D.; Bartis, D.G.; Mahida, R.; Turner, A.M.; Sapey, E.; Wei, W.; Naidu, B.; Stewart, P.M.; Fraser, W.D.; Christopher, K.B.; Cooper, M.S.; Gao, F.; Sansom, D.M.; Martineau, A.R.; Perkins, G.D.; Thickett, D.R.; Vitamin, D. Vitamin D deficiency contributes directly to the acute respiratory distress syndrome (ARDS). Thorax, 2015, 70(7), 617-624.
[http://dx.doi.org/10.1136/thoraxjnl-2014-206680] [PMID: 25903964]
[110]
Panagiotou, G.; Tee, S.A.; Ihsan, Y.; Athar, W.; Marchitelli, G.; Kelly, D.; Boot, C.S.; Stock, N.; Macfarlane, J.; Martineau, A.R.; Burns, G.; Quinton, R. Low serum 25-hydroxyvitamin D (25[OH]D) levels in patients hospitalized with COVID-19 are associated with greater disease severity. Clin. Endocrinol. (Oxf.), 2020, 93(4), 508-511.
[http://dx.doi.org/10.1111/cen.14276] [PMID: 32621392]
[111]
Breslin, É.; McCartney, D.; NíCheallaigh, C.; Byrne, D. The relationship between vitamin d, biomarkers and clinical outcome in hospitalised Covid-19 patients. Proc. Nutr. Soc., 2021, 80(OCE3), E98.
[112]
Cui, Z.; Tian, Y. Using genetic variants to evaluate the causal effect of serum vitamin D concentration on COVID-19 susceptibility, severity and hospitalization traits: A Mendelian randomization study. J. Transl. Med., 2021, 19(1), 300.
[http://dx.doi.org/10.1186/s12967-021-02973-5] [PMID: 34246301]
[113]
Entrenas Castillo, M.; Entrenas Costa, L.M.; Vaquero Barrios, J.M.; Alcalá Díaz, J.F.; López Miranda, J.; Bouillon, R.; Quesada Gomez, J.M. Effect of calcifediol treatment and best available therapy versus best available therapy on intensive care unit admission and mortality among patients hospitalized for COVID-19: A pilot randomized clinical study. J. Steroid Biochem. Mol. Biol., 2020, 203, 105751.
[http://dx.doi.org/10.1016/j.jsbmb.2020.105751] [PMID: 32871238]
[114]
Mason, R.J. Pathogenesis of COVID-19 from a cell biology perspective. Eur. Respir. J., 2020, 55(4), 2000607.
[http://dx.doi.org/10.1183/13993003.00607-2020] [PMID: 32269085]
[115]
Wang, P.; Luo, R.; Zhang, M.; Wang, Y.; Song, T.; Tao, T.; Li, Z.; Jin, L.; Zheng, H.; Chen, W.; Zhao, M.; Zheng, Y.; Qin, J. A cross-talk between epithelium and endothelium mediates human alveolar-capillary injury during SARS-CoV-2 infection. Cell Death Dis., 2020, 11(12), 1042.
[http://dx.doi.org/10.1038/s41419-020-03252-9] [PMID: 33293527]
[116]
Shi, Y-Y.; Liu, T-J.; Fu, J-H.; Xu, W.; Wu, L-L.; Hou, A-N.; Xue, X-D. Vitamin D/VDR signaling attenuates lipopolysaccharide induced acute lung injury by maintaining the integrity of the pulmonary epithelial barrier. Mol. Med. Rep., 2016, 13(2), 1186-1194.
[http://dx.doi.org/10.3892/mmr.2015.4685] [PMID: 26675943]
[117]
Yin, Z.; Pintea, V.; Lin, Y.; Hammock, B.D.; Watsky, M.A.; Vitamin, D. Vitamin D enhances corneal epithelial barrier function. Invest. Ophthalmol. Vis. Sci., 2011, 52(10), 7359-7364.
[http://dx.doi.org/10.1167/iovs.11-7605] [PMID: 21715350]
[118]
Kong, J.; Zhang, Z.; Musch, M.W.; Ning, G.; Sun, J.; Hart, J.; Bissonnette, M.; Li, Y.C. Novel role of the vitamin D receptor in maintaining the integrity of the intestinal mucosal barrier. Am. J. Physiol. Gastrointest. Liver Physiol., 2008, 294(1), G208-G216.
[http://dx.doi.org/10.1152/ajpgi.00398.2007] [PMID: 17962355]
[119]
Dantas Damascena, A.; Galvão Azevedo, L.M.; de Almeida Oliveira, T.; da Mota Santana, J.; Pereira, M.; Vitamin, D. Vitamin D deficiency aggravates COVID-19: Discussion of the evidence. Crit. Rev. Food Sci. Nutr., 2021, 1–5, 1-5.
[http://dx.doi.org/10.1080/10408398.2021.1951653] [PMID: 34384289]
[120]
Pereira, M.; Dantas Damascena, A.; Galvão Azevedo, L.M.; de Almeida Oliveira, T.; da Mota Santana, J.; Vitamin, D. Vitamin D deficiency aggravates COVID-19: Systematic review and meta-analysis. Crit. Rev. Food Sci. Nutr., 2020, 0(0), 1-9.
[http://dx.doi.org/10.1080/10408398.2020.1841090] [PMID: 33146028]
[121]
Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; Cheng, Z.; Yu, T.; Xia, J.; Wei, Y.; Wu, W.; Xie, X.; Yin, W.; Li, H.; Liu, M.; Xiao, Y.; Gao, H.; Guo, L.; Xie, J.; Wang, G.; Jiang, R.; Gao, Z.; Jin, Q.; Wang, J.; Cao, B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020, 395(10223), 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[122]
Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; Guan, L.; Wei, Y.; Li, H.; Wu, X.; Xu, J.; Tu, S.; Zhang, Y.; Chen, H.; Cao, B. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet, 2020, 395(10229), 1054-1062.
[http://dx.doi.org/10.1016/S0140-6736(20)30566-3] [PMID: 32171076]
[123]
Malin, J.J.; Spinner, C.D.; Janssens, U.; Welte, T.; Weber-Carstens, S.; Schälte, G.; Gastmeier, P.; Langer, F.; Wepler, M.; Westhoff, M.; Pfeifer, M.; Rabe, K.F.; Hoffmann, F.; Böttiger, B.W.; Weinmann-Menke, J.; Kersten, A.; Berlit, P.; Krawczyk, M.; Nehls, W.; Fichtner, F.; Laudi, S.; Stegemann, M.; Skoetz, N.; Nothacker, M.; Marx, G.; Karagiannidis, C.; Kluge, S. Key summary of German national treatment guidance for hospitalized COVID-19 patients key pharmacologic recommendations from a national german living guideline using an evidence to decision framework (Last Updated 17.05.2021). Infection, 2022, 50(1), 93.
[http://dx.doi.org/10.1007/s15010-021-01645-2] [PMID: 34228347]
[124]
Heaney, R.P.; Davies, K.M.; Chen, T.C.; Holick, M.F.; Barger-Lux, M.J. Human serum 25-hydroxycholecalciferol response to extended oral dosing with cholecalciferol. Am. J. Clin. Nutr., 2003, 77(1), 204-210.
[http://dx.doi.org/10.1093/ajcn/77.1.204] [PMID: 12499343]
[125]
McCullough, P.J.; Lehrer, D.S.; Amend, J. Daily oral dosing of vitamin D3 using 5000 TO 50,000 international units a day in long-term hospitalized patients: Insights from a seven year experience. J. Steroid Biochem. Mol. Biol., 2019, 189, 228-239.
[http://dx.doi.org/10.1016/j.jsbmb.2018.12.010] [PMID: 30611908]
[126]
Oristrell, J.; Oliva, J.C.; Casado, E.; Subirana, I.; Domínguez, D.; Toloba, A.; Balado, A.; Grau, M.; Vitamin, D. Supplementation and COVID-19 risk: A population-based, cohort study. J. Endocrinol. Invest., 2021, 1-13.
[http://dx.doi.org/10.1007/s40618-021-01639-9] [PMID: 34273098]
[127]
Nogues, X.; Ovejero, D.; Pineda-Moncusí, M.; Bouillon, R.; Arenas, D.; Pascual, J.; Ribes, A.; Guerri-Fernandez, R.; Villar- Garcia, J.; Rial, A.; Gimenez-Argente, C.; Cos, M. L.; Rodriguez- Morera, J.; Campodarve, I.; Quesada-Gomez, J. M.; Garcia-Giralt, N. Calcifediol treatment and COVID-19-related outcomes. J. Clin. Endocrinol. Metab., 2021, 13(6), dgag405.
[http://dx.doi.org/10.1210/clinem/dgab405]
[128]
Alcala-Diaz, J.F.; Limia-Perez, L.; Gomez-Huelgas, R.; Martin-Escalante, M.D.; Cortes-Rodriguez, B.; Zambrana-Garcia, J.L.; Entrenas-Castillo, M.; Perez-Caballero, A.I.; López-Carmona, M.D.; Garcia-Alegria, J.; Lozano Rodríguez-Mancheño, A.; Arenas-de Larriva, M.D.S.; Pérez-Belmonte, L.M.; Jungreis, I.; Bouillon, R.; Quesada-Gomez, J.M.; Lopez-Miranda, J. Calcifediol treatment and hospital mortality due to COVID-19: A cohort study. Nutrients, 2021, 13(6), 1-13.
[http://dx.doi.org/10.3390/nu13061760] [PMID: 34064175]
[129]
Oristrell, J.; Oliva, J.C.; Subirana, I.; Casado, E.; Domínguez, D.; Toloba, A.; Aguilera, P.; Esplugues, J.; Fafián, P.; Grau, M. Association of calcitriol supplementation with reduced COVID-19 mortality in patients with chronic kidney disease: A population-based study. Biomedicines, 2021, 9(5), 509.
[http://dx.doi.org/10.3390/biomedicines9050509] [PMID: 34063015]
[130]
Loucera, C.; Peña-Chilet, M.; Esteban-Medina, M.; Muñoyerro-Muñiz, D.; Villegas, R.; Lopez-Miranda, J.; Rodriguez-Baño, J.; Túnez, I.; Bouillon, R.; Dopazo, J.; Quesada Gomez, J.M. Real world evidence of calcifediol or vitamin D prescription and mortality rate of COVID-19 in a retrospective cohort of hospitalized Andalusian patients. Sci. Rep., 2021, 11(1), 23380.
[http://dx.doi.org/10.1038/s41598-021-02701-5] [PMID: 34862422]
[131]
Brenner, H.; Vitamin, D. Vitamin D supplementation to prevent COVID-19 infections and deaths-accumulating evidence from epidemiological and intervention studies calls for immediate action. Nutrients, 2021, 13(2), 1-8.
[http://dx.doi.org/10.3390/nu13020411] [PMID: 33525447]
[132]
U. S. National library of medicine. Available from: https://www.clinicaltrials.gov/ [Accessed: Aug 27, 2021].
[133]
Annweiler, C.; Beaudenon, M.; Gautier, J.; Simon, R.; Dubée, V.; Gonsard, J.; Parot-Schinkel, E.; Aidoud, A.; Albaret, G.; Annweiler, C.; Audemard-Verger, A.; Asfar, M.; Barré, J.; Berteau, F.; Bertoletti, G.; Beuscart, J.B.; Bigot, A.; Boucher, S.; Botelho-Nevers, E.; Bourdel-Marchasson, I.; Boureau, A.S.; Brangier, A.; Brouessard, C.; Bureau, M.L.; Cardinaud, N.; Carles, M.; Castro-Lionard, K.; Celarier, T.; Chapelet, G.; Chirio, D.; Clabé, E.; Codron, P.; Courjon, J.; Cua, É.; Danet-Lamasou, M.; Decorbez, A.; De La Chapelle, M.; Demonchy, E.; Desvaux, E.; D’Hautefeuille, M.; Duval, G.; Fougère, B.; Gassie, P.; Giroult, N.; Guérin, O.; Hankard, R.; Houvet, M.; Jobard, S.; Lacout, C.; Lafargue, A.; Laubarie-Mouret, C.; Le Floch, M.; Le Gentil, S.; Lléonart, S.; Loison, J.; Mahieu, R.; Maillot, F.; Martinez, L.; Mathieu, M.; Mauclere, A.; Ménager, P.; Michel, E.; Nguyen, T.B.; Ordonez, R.; Otekpo, M.; Pichon, V.; Poitau, F.; Pommier, G.; Rabier, V.; Risso, K.; Rivière, H.; Rouaud, A.; Roubaud-Baudron, C.; Sacco, G.; Scholastique, F.; Seronie-Doutriaux, E.; Tchalla, A.; Trzepizur, W.; Vandamme, Y.M. COVIT-TRIAL study group. COvid-19 and high-dose VITamin D supplementation TRIAL in high-risk older patients (COVIT-TRIAL): Study protocol for a randomized controlled trial. Trials, 2020, 21(1), 1031.
[http://dx.doi.org/10.1186/s13063-020-04928-5] [PMID: 33371905]
[134]
Annweiler, G.; Corvaisier, M.; Gautier, J.; Dubée, V.; Legrand, E.; Sacco, G.; Annweiler, C.; Vitamin, D.; Vitamin, D. Supplementation associated to better survival in hospitalized frail elderly COVID-19 patients: The GERIA-COVID quasi-experimental study. Nutrients, 2020, 12(11), 1-12.
[http://dx.doi.org/10.3390/nu12113377] [PMID: 33147894]
[135]
Rastogi, A.; Bhansali, A.; Khare, N.; Suri, V.; Yaddanapudi, N.; Sachdeva, N.; Puri, G.D.; Malhotra, P. Short term, high-dose vitamin D supplementation for COVID-19 disease: A randomised, placebo-controlled, study (shade study). Postgrad. Med. J., 2020, 1-4, postgradmedj-2020-139065.
[http://dx.doi.org/10.1136/postgradmedj-2020-139065] [PMID: 33184146]
[136]
Lakkireddy, M.; Gadiga, S.G.; Malathi, R.D.; Karra, M.L.; Raju, I.S.S.V.P.M. Ragini; Chinapaka, S.; Baba, K.S.S.S.; Kandakatla, M. Impact of daily high dose oral vitamin D therapy on the inflammatory markers in patients with COVID 19 disease. Sci. Rep., 2021, 11(1), 10641.
[http://dx.doi.org/10.1038/s41598-021-90189-4] [PMID: 34017029]
[137]
Murai, I.H.; Fernandes, A.L.; Sales, L.P.; Pinto, A.J.; Goessler, K.F.; Duran, C.S.C.; Silva, C.B.R.; Franco, A.S.; Macedo, M.B.; Dalmolin, H.H.H.; Baggio, J.; Balbi, G.G.M.; Reis, B.Z.; Antonangelo, L.; Caparbo, V.F.; Gualano, B.; Pereira, R.M.R. Effect of a single high dose of vitamin D3 on hospital length of stay in patients with moderate to severe COVID-19: A randomized clinical trial. JAMA, 2021, 325(11), 1053-1060.
[http://dx.doi.org/10.1001/jama.2020.26848] [PMID: 33595634]
[138]
Sabico, S.; Enani, M.A.; Sheshah, E.; Aljohani, N.J.; Aldisi, D.A.; Alotaibi, N.H.; Alshingetti, N.; Alomar, S.Y.; Alnaami, A.M.; Amer, O.E.; Hussain, S.D.; Al-Daghri, N.M. Effects of a 2-week 5000 IU versus 1000 IU Vitamin D3 supplementation on recovery of symptoms in patients with mild to moderate Covid-19: A randomized clinical trial. Nutrients, 2021, 13(7), 2170.
[http://dx.doi.org/10.3390/nu13072170] [PMID: 34202578]
[139]
Ling, S.F.; Broad, E.; Murphy, R.; Pappachan, J.M.; Pardesi-Newton, S.; Kong, M.F.; Jude, E.B. High-dose cholecalciferol booster therapy is associated with a reduced risk of mortality in patients with COVID-19: A cross-sectional multi-centre observational study. Nutrients, 2020, 12(12), 1-16.
[http://dx.doi.org/10.3390/nu12123799] [PMID: 33322317]
[140]
Giménez, V.M.M.; Sanz, R.L.; Marón, F.J.M.; Ferder, L.; Manucha, W. Vitamin D-RAAS connection: An integrative standpoint into cardiovascular and neuroinflammatory disorders. Curr. Protein Pept. Sci., 2020, 21(10), 948-954.
[http://dx.doi.org/10.2174/1389203721666200606220719] [PMID: 32504501]
[141]
Cui, X.; Gooch, H.; Groves, N.J.; Sah, P.; Burne, T.H.; Eyles, D.W.; McGrath, J.J. Vitamin D and the brain: Key questions for future research. J. Steroid Biochem. Mol. Biol., 2015, 148, 305-309.
[http://dx.doi.org/10.1016/j.jsbmb.2014.11.004] [PMID: 25448739]
[142]
Cui, X.; Pelekanos, M.; Liu, P-Y.; Burne, T.H.J.; McGrath, J.J.; Eyles, D.W. The vitamin D receptor in dopamine neurons; its presence in human substantia nigra and its ontogenesis in rat midbrain. Neuroscience, 2013, 236, 77-87.
[http://dx.doi.org/10.1016/j.neuroscience.2013.01.035] [PMID: 23352937]
[143]
Pertile, R.A.N.; Cui, X.; Eyles, D.W.; Vitamin, D. Vitamin D signaling and the differentiation of developing dopamine systems. Neuroscience, 2016, 333, 193-203.
[http://dx.doi.org/10.1016/j.neuroscience.2016.07.020] [PMID: 27450565]
[144]
Kesby, J.P.; Cui, X.; Ko, P.; McGrath, J.J.; Burne, T.H.J.; Eyles, D.W. Developmental vitamin D deficiency alters dopamine turnover in neonatal rat forebrain. Neurosci. Lett., 2009, 461(2), 155-158.
[http://dx.doi.org/10.1016/j.neulet.2009.05.070] [PMID: 19500655]
[145]
Kesby, J.P.; Cui, X.; O’Loan, J.; McGrath, J.J.; Burne, T.H.J.; Eyles, D.W. Developmental vitamin D deficiency alters dopamine-mediated behaviors and dopamine transporter function in adult female rats. Psychopharmacology (Berl.), 2010, 208(1), 159-168.
[http://dx.doi.org/10.1007/s00213-009-1717-y] [PMID: 19921153]
[146]
Kesby, J.P.; Turner, K.M.; Alexander, S.; Eyles, D.W.; McGrath, J.J.; Burne, T.H.J. Developmental vitamin D deficiency alters multiple neurotransmitter systems in the neonatal rat brain. Int. J. Dev. Neurosci., 2017, 62(1), 1-7.
[http://dx.doi.org/10.1016/j.ijdevneu.2017.07.002] [PMID: 28716540]
[147]
Gil, Á.; Plaza-Diaz, J.; Mesa, M.D.; Vitamin, D.; Vitamin, D. Classic and novel actions. Ann. Nutr. Metab., 2018, 72(2), 87-95.
[http://dx.doi.org/10.1159/000486536] [PMID: 29346788]
[148]
Eyles, D.W.; Burne, T.H.J.; McGrath, J.J.; Vitamin, D. Vitamin D, effects on brain development, adult brain function and the links between low levels of vitamin D and neuropsychiatric disease. Front. Neuroendocrinol., 2013, 34(1), 47-64.
[http://dx.doi.org/10.1016/j.yfrne.2012.07.001] [PMID: 22796576]
[149]
Zanatta, L.; Goulart, P.B.; Gonçalves, R.; Pierozan, P.; Winkelmann-Duarte, E.C.; Woehl, V.M.; Pessoa-Pureur, R.; Silva, F.R.M.B.; Zamoner, A. 1α,25-dihydroxyvitamin D(3) mechanism of action: Modulation of L-type calcium channels leading to calcium uptake and intermediate filament phosphorylation in cerebral cortex of young rats. Biochim. Biophys. Acta, 2012, 1823(10), 1708-1719.
[http://dx.doi.org/10.1016/j.bbamcr.2012.06.023] [PMID: 22743040]
[150]
Bigos, K.L.; Mattay, V.S.; Callicott, J.H.; Straub, R.E.; Vakkalanka, R.; Kolachana, B.; Hyde, T.M.; Lipska, B.K.; Kleinman, J.E.; Weinberger, D.R. Genetic variation in CACNA1C affects brain circuitries related to mental illness. Arch. Gen. Psychiatry, 2010, 67(9), 939-945.
[http://dx.doi.org/10.1001/archgenpsychiatry.2010.96] [PMID: 20819988]
[151]
McCann, J.C.; Ames, B.N. Is there convincing biological or behavioral evidence linking vitamin D deficiency to brain dysfunction? FASEB J., 2008, 22(4), 982-1001.
[http://dx.doi.org/10.1096/fj.07-9326rev] [PMID: 18056830]
[152]
Kajta, M.; Makarewicz, D.; Ziemińska, E.; Jantas, D.; Domin, H.; Lasoń, W.; Kutner, A.; Łazarewicz, J.W. Neuroprotection by co-treatment and post-treating with calcitriol following the ischemic and excitotoxic insult in vivo and in vitro. Neurochem. Int., 2009, 55(5), 265-274.
[http://dx.doi.org/10.1016/j.neuint.2009.03.010] [PMID: 19576513]
[153]
Torbus-Paluszczak, M.; Bartman, W.; Adamczyk-Sowa, M. Klotho protein in neurodegenerative disorders. Neurol. Sci., 2018, 39(10), 1677-1682.
[http://dx.doi.org/10.1007/s10072-018-3496-x] [PMID: 30062646]
[154]
Kuro-O, M. The Klotho proteins in health and disease. Nat. Rev. Nephrol., 2019, 15(1), 27-44.
[http://dx.doi.org/10.1038/s41581-018-0078-3] [PMID: 30455427]
[155]
Miller, B.J.; Whisner, C.M.; Johnston, C.S.; Vitamin, D. Vitamin D supplementation appears to increase plasma Aβ40 in vitamin D insufficient older adults: A pilot randomized controlled trial. J. Alzheimers Dis., 2016, 52(3), 843-847.
[http://dx.doi.org/10.3233/JAD-150901] [PMID: 27031473]
[156]
Kelley, L.; Sanders, A.F.P.; Beaton, E.A.; Vitamin, D. Vitamin D deficiency, behavioral atypicality, anxiety and depression in children with chromosome 22q11.2 deletion syndrome. J. Dev. Orig. Health Dis., 2016, 7(6), 616-625.
[http://dx.doi.org/10.1017/S2040174416000428] [PMID: 27827293]
[157]
Christakos, S.; Dhawan, P.; Verstuyf, A.; Verlinden, L.; Carmeliet, G.; Vitamin, D.; Vitamin, D. Metabolism, molecular mechanism of action, and pleiotropic effects. Physiol. Rev., 2016, 96(1), 365-408.
[http://dx.doi.org/10.1152/physrev.00014.2015] [PMID: 26681795]
[158]
Ertilav, E.; Barcin, N.E.; Ozdem, S. Comparison of serum free and bioavailable 25-hydroxyvitamin D levels in Alzheimer’s disease and healthy control patients. Lab. Med., 2021, 52(3), 219-225.
[http://dx.doi.org/10.1093/labmed/lmaa066] [PMID: 32893866]
[159]
Cárdenas-Rodríguez, N.; Bandala, C.; Vanoye-Carlo, A.; Ignacio-Mejía, I.; Gómez-Manzo, S.; Hernández-Cruz, E.Y.; Pedraza-Chaverri, J.; Carmona-Aparicio, L.; Hernández-Ochoa, B. Use of antioxidants for the neuro-therapeutic management of COVID-19. Antioxidants, 2021, 10(6), 1-33.
[http://dx.doi.org/10.3390/antiox10060971] [PMID: 34204362]
[160]
Therapeutics and COVID-19: Living guideline. Available from: https://www.who.int/publications/i/item/WHO-2019-nCoV-therapeutics-2021.2 [Accessed: Aug 10, 2021].
[161]
Fasano, A.; Cereda, E.; Barichella, M.; Cassani, E.; Ferri, V.; Zecchinelli, A.L.; Pezzoli, G. COVID-19 in Parkinson’s disease patients living in lombardy, Italy. Mov. Disord., 2020, 35(7), 1089-1093.
[http://dx.doi.org/10.1002/mds.28176] [PMID: 32484584]
[162]
Montini, F.; Nozzolillo, A.; Moiola, L.; Rocca, M.; Martinelli, V.; Filippi, M.E. Prognostic factors related to the risk of COVID-19 infection in MS patients. Eur. J. Neurol., 2021, 28(Suppl. 1), 401.
[163]
Chambergo-Michilot, D.; Barros-Sevillano, S.; Rivera-Torrejón, O.; De la Cruz-Ku, G.A.; Custodio, N. Factors associated with COVID-19 in people with Parkinson’s disease: A systematic review and meta-analysis. Eur. J. Neurol., 2021, 28(10), 3467-3477.
[http://dx.doi.org/10.1111/ene.14912] [PMID: 33983673]
[164]
Hribar, C.A.; Cobbold, P.H.; Church, F.C. Potential role of vitamin D in the elderly to resist COVID-19 and to slow progression of Parkinson’s disease. Brain Sci., 2020, 10(5), 1-10.
[http://dx.doi.org/10.3390/brainsci10050284] [PMID: 32397275]
[165]
Ghajarzadeh, M.; Bonavita, S. Are patients with multiple sclerosis (MS) at higher risk of COVID-19 infection? Neurol. Sci., 2020, 41(9), 2315-2316.
[http://dx.doi.org/10.1007/s10072-020-04570-8] [PMID: 32638135]
[166]
Viani-Walsh, D.; Kennedy-Williams, S.; Taylor, D.; Gaughran, F.; Lally, J.; Vitamin, D. Deficiency in Schizophrenia implications for COVID-19 infection. Ir. J. Psychol. Med., 2020, 1-10.
[http://dx.doi.org/10.1017/ipm.2020.107] [PMID: 32912355]
[167]
Florez Perdomo, W.; Vásquez Ucros, H.; Moscote-Salazar, L. D Vitamin, coronavirus, and neurological injuries. J. Transl. Crit. Care Med., 2020, 2(3), 64.
[http://dx.doi.org/10.4103/jtccm.jtccm_5_20]
[168]
Xu, Y.; Baylink, D.J.; Chen, C.S.; Reeves, M.E.; Xiao, J.; Lacy, C.; Lau, E.; Cao, H. The importance of vitamin d metabolism as a potential prophylactic, immunoregulatory and neuroprotective treatment for COVID-19. J. Transl. Med., 2020, 18(1), 322.
[http://dx.doi.org/10.1186/s12967-020-02488-5] [PMID: 32847594]
[169]
Biesalski, H.K.; Vitamin, D. Deficiency and co-morbidities in COVID-19 patients – A fatal relationship? NFS J., 2020, 20, 10-21.
[http://dx.doi.org/10.1016/j.nfs.2020.06.001]
[170]
Fond, G.; Masson, M.; Richieri, R.; Korchia, T.; Etchecopar-Etchart, D.; Sunhary de Verville, P-L.; Lançon, C.; Boyer, L. The Covid-19 infection: An opportunity to develop systematic vitamin D supplementation in psychiatry. Encephale, 2022, 48(1), 102-104.
[http://dx.doi.org/10.1016/j.encep.2021.02.002] [PMID: 33820650]
[171]
Di Nicola, M.; Dattoli, L.; Moccia, L.; Pepe, M.; Janiri, D.; Fiorillo, A.; Janiri, L.; Sani, G. Serum 25-hydroxyvitamin D levels and psychological distress symptoms in patients with affective disorders during the COVID-19 pandemic. Psychoneuroendocrinology, 2020, 122, 104869.
[http://dx.doi.org/10.1016/j.psyneuen.2020.104869] [PMID: 32956989]
[172]
Bahmani, E.; Hoseini, R.; Amiri, E. Effect of home-based aerobic training and vitamin D supplementation on fatigue and quality of life in patients with multiple sclerosis during COVID-19 outbreak. Res. Sq., 2021. Available from:
[http://dx.doi.org/10.21203/rs.3.rs-655827/v1]
[173]
Alfawaz, H.; Yakout, S.M.; Wani, K.; Aljumah, G.A.; Ansari, M.G.A.; Khattak, M.N.K.; Hussain, S.D.; Al-Daghri, N.M. Dietary intake and mental health among saudi adults during COVID-19 lockdown. Int. J. Environ. Res. Public Health, 2021, 18(4), 1-11.
[http://dx.doi.org/10.3390/ijerph18041653] [PMID: 33572328]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy