Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Mini-Review Article

AD脑内D-丝氨酸水平动态变化的复杂过程

卷 19, 期 7, 2022

发表于: 31 May, 2022

页: [485 - 493] 页: 9

弟呕挨: 10.2174/1567205019666220328123048

价格: $65

摘要

背景:阿尔茨海默病(AD)是一种以细胞外β-淀粉样蛋白(aβ)斑块和认知障碍为特征的神经退行性疾病。D-丝氨酸由大脑中的丝氨酸外消旋酶(SR)产生,在N-甲基-D-天冬氨酸受体(NMDAR)的甘氨酸结合位点起内源性共激动剂的作用,与AD的病理生理过程有关。 目的:关于D-丝氨酸在AD进展过程中的作用和动态调节的理解证据仍有争议。本文献综述旨在为研究AD脑中D-丝氨酸的功能和代谢提供新的研究方向。 方法:我们使用D-丝氨酸/SR和AD作为关键词搜索PubMed。包括与NMDAR功能障碍、神经元兴奋毒性、D-丝氨酸动态变化和炎症反应相关的研究。 结果:这篇综述主要讨论了:(i)Aβ低聚物在NMDAR失调中的作用,以及AD中随后的突触功能障碍和神经元损伤,(ii)D-丝氨酸在NMDAR诱导的兴奋性毒性中的作用以及(iii)D-丝氨酸和SR参与AD相关的炎症病理进展。 结论:我们还提出了AD进展过程中D-丝氨酸的代谢和动态变化,并假设:(i)D-丝氨酸水平或SR表达的可能调节是缓解AD病理生理进展过程中神经毒性的有效方法,以及(ii)AD脑中D-丝氨酸水平的动态变化可能由复杂过程引起。

关键词: 阿尔茨海默病,D-丝氨酸,丝氨酸外消旋酶,NMDAR,认知,突触传递,神经变性。

Next »
[1]
Dingledine R, Borges K, Bowie D, Traynelis SF. The glutamate receptor ion channels. Pharmacol Rev 1999; 51(1): 7-61.
[PMID: 10049997]
[2]
Mori H. Overview of the NMDA receptorsThe NMDA receptors. Humana Press 2017; Vol. 30: pp. p1-p18.
[http://dx.doi.org/10.1007/978-3-319-49795-2_1]
[3]
Hashimoto A, Nishikawa T, Oka T, Takahashi K. Endogenous D-serine in rat brain: N-methyl-D-aspartate receptor-related distribution and aging. J Neurochem 1993; 60(2): 783-6.
[http://dx.doi.org/10.1111/j.1471-4159.1993.tb03219.x] [PMID: 8419554]
[4]
Matsui T, Sekiguchi M, Hashimoto A, Tomita U, Nishikawa T, Wada K. Functional comparison of D-serine and glycine in rodents: The effect on cloned NMDA receptors and the extracellular concentration. J Neurochem 1995; 65(1): 454-8.
[http://dx.doi.org/10.1046/j.1471-4159.1995.65010454.x] [PMID: 7790891]
[5]
Hashimoto A, Oka T, Nishikawa T. Extracellular concentration of endogenous free D-serine in the rat brain as revealed by in vivo microdialysis. Neuroscience 1995; 66(3): 635-43.
[http://dx.doi.org/10.1016/0306-4522(94)00597-X] [PMID: 7644027]
[6]
Berger AJ, Dieudonné S, Ascher P. Glycine uptake governs glycine site occupancy at NMDA receptors of excitatory synapses. J Neurophysiol 1998; 80(6): 3336-40.
[http://dx.doi.org/10.1152/jn.1998.80.6.3336] [PMID: 9862928]
[7]
Yang Y, Ge W, Chen Y, et al. Contribution of astrocytes to hippocampal long-term potentiation through release of D-serine. Proc Natl Acad Sci USA 2003; 100(25): 15194-9.
[http://dx.doi.org/10.1073/pnas.2431073100] [PMID: 14638938]
[8]
Mothet JP, Rouaud E, Sinet PM, et al. A critical role for the glial-derived neuromodulator D-serine in the age-related deficits of cellular mechanisms of learning and memory. Aging Cell 2006; 5(3): 267-74.
[http://dx.doi.org/10.1111/j.1474-9726.2006.00216.x] [PMID: 16842499]
[9]
Mothet JP, Parent AT, Wolosker H, et al. D-serine is an endogenous ligand for the glycine site of the N-methyl-D-aspartate receptor. Proc Natl Acad Sci USA 2000; 97(9): 4926-31.
[http://dx.doi.org/10.1073/pnas.97.9.4926] [PMID: 10781100]
[10]
Maekawa M, Watanabe M, Yamaguchi S, Konno R, Hori Y. Spatial learning and long-term potentiation of mutant mice lacking D-amino-acid oxidase. Neurosci Res 2005; 53(1): 34-8.
[http://dx.doi.org/10.1016/j.neures.2005.05.008] [PMID: 15996778]
[11]
Shleper M, Kartvelishvily E, Wolosker H. D-serine is the dominant endogenous coagonist for NMDA receptor neurotoxicity in organotypic hippocampal slices. J Neurosci 2005; 25(41): 9413-7.
[http://dx.doi.org/10.1523/JNEUROSCI.3190-05.2005] [PMID: 16221850]
[12]
Wolosker H, Blackshaw S, Snyder SH. Serine racemase: A glial enzyme synthesizing D-serine to regulate glutamate-N-methyl-D-aspartate neurotransmission. Proc Natl Acad Sci USA 1999; 96(23): 13409-14.
[http://dx.doi.org/10.1073/pnas.96.23.13409] [PMID: 10557334]
[13]
Miya K, Inoue R, Takata Y, et al. Serine racemase is predominantly localized in neurons in mouse brain. J Comp Neurol 2008; 510(6): 641-54.
[http://dx.doi.org/10.1002/cne.21822] [PMID: 18698599]
[14]
Lin H, Jacobi AA, Anderson SA, Lynch DR. D-Serine and serine racemase are associated with PSD-95 and glutamatergic synapse stability. Front Cell Neurosci 2016; 10: 34.
[http://dx.doi.org/10.3389/fncel.2016.00034] [PMID: 26941605]
[15]
Wolosker H, Balu DT, Coyle JT. The rise and fall of the D-serine-mediated gliotransmission hypothesis. Trends Neurosci 2016; 39(11): 712-21.
[http://dx.doi.org/10.1016/j.tins.2016.09.007] [PMID: 27742076]
[16]
Kartvelishvily E, Shleper M, Balan L, Dumin E, Wolosker H. Neuron-derived D-serine release provides a novel means to activate N-methyl-D-aspartate receptors. J Biol Chem 2006; 281(20): 14151-62.
[http://dx.doi.org/10.1074/jbc.M512927200] [PMID: 16551623]
[17]
Wang LZ, Zhu XZ. Serine racemase expression in mouse cerebral cortex after permanent focal cerebral ischemia. Acta Pharmacol Sin 2004; 25(4): 436-41.
[PMID: 15066209]
[18]
Sasabe J, Chiba T, Yamada M, et al. D-serine is a key determinant of glutamate toxicity in amyotrophic lateral sclerosis. EMBO J 2007; 26(18): 4149-59.
[http://dx.doi.org/10.1038/sj.emboj.7601840] [PMID: 17762863]
[19]
Perez EJ, Tapanes SA, Loris ZB, et al. Enhanced astrocytic d-serine underlies synaptic damage after traumatic brain injury. J Clin Invest 2017; 127(8): 3114-25.
[http://dx.doi.org/10.1172/JCI92300] [PMID: 28714867]
[20]
Sasabe J, Miyoshi Y, Suzuki M, et al. D-amino acid oxidase controls motoneuron degeneration through D-serine. Proc Natl Acad Sci USA 2012; 109(2): 627-32.
[http://dx.doi.org/10.1073/pnas.1114639109] [PMID: 22203986]
[21]
Balu DT, Pantazopoulos H, Huang CCY, et al. Neurotoxic astrocytes express the D-serine synthesizing enzyme, serine racemase, in Alzheimer’s disease. Neurobiol Dis 2019; 130: 104511.
[http://dx.doi.org/10.1016/j.nbd.2019.104511] [PMID: 31212068]
[22]
Long JM, Holtzman DM. Alzheimer disease: An update on pathobiology and treatment strategies. Cell 2019; 179(2): 312-39.
[http://dx.doi.org/10.1016/j.cell.2019.09.001] [PMID: 31564456]
[23]
Tarawneh R, Holtzman DM. The clinical problem of symptomatic Alzheimer disease and mild cognitive impairment. Cold Spring Harb Perspect Med 2012; 2(5): a006148.
[http://dx.doi.org/10.1101/cshperspect.a006148] [PMID: 22553492]
[24]
Jack CR Jr, Bennett DA, Blennow K, et al. Contributors. NIA-AA Research framework: Toward a biological definition of Alzheimer’s disease. Alzheimers Dement 2018; 14(4): 535-62.
[http://dx.doi.org/10.1016/j.jalz.2018.02.018] [PMID: 29653606]
[25]
McKhann GM. Changing concepts of Alzheimer disease. JAMA 2011; 305(23): 2458-9.
[http://dx.doi.org/10.1001/jama.2011.810] [PMID: 21673298]
[26]
Bateman RJ, Xiong C, Benzinger TL, et al. Dominantly inherited alzheimer network. clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N Engl J Med 2012; 367(9): 795-804.
[http://dx.doi.org/10.1056/NEJMoa1202753] [PMID: 22784036]
[27]
Fagan AM, Xiong C, Jasielec MS, et al. Dominantly inherited Alzheimer network. longitudinal change in CSF biomarkers in autosomal-dominant Alzheimer’s disease. Sci Transl Med 2014; 6(226): 226ra30.
[http://dx.doi.org/10.1126/scitranslmed.3007901] [PMID: 24598588]
[28]
Price JL, Ko AI, Wade MJ, Tsou SK, McKeel DW, Morris JC. Neuron number in the entorhinal cortex and CA1 in preclinical Alzheimer disease. Arch Neurol 2001; 58(9): 1395-402.
[http://dx.doi.org/10.1001/archneur.58.9.1395] [PMID: 11559310]
[29]
de Wilde MC, Overk CR, Sijben JW, Masliah E. Meta-analysis of synaptic pathology in Alzheimer’s disease reveals selective molecular vesicular machinery vulnerability. Alzheimers Dement 2016; 12(6): 633-44.
[http://dx.doi.org/10.1016/j.jalz.2015.12.005] [PMID: 26776762]
[30]
Andrade-Moraes CH, Oliveira-Pinto AV, Castro-Fonseca E, et al. Cell number changes in Alzheimer’s disease relate to dementia, not to plaques and tangles. Brain 2013; 136(Pt 12): 3738-52.
[http://dx.doi.org/10.1093/brain/awt273] [PMID: 24136825]
[31]
Mota SI, Ferreira IL, Rego AC. Dysfunctional synapse in Alzheimer's disease - a focus on NMDA receptors. Neuropharmacology 2014; 76(Pt A): 16-26.
[32]
Parameshwaran K, Dhanasekaran M, Suppiramaniam V. Amyloid beta peptides and glutamatergic synaptic dysregulation. Exp Neurol 2008; 210(1): 7-13.
[http://dx.doi.org/10.1016/j.expneurol.2007.10.008] [PMID: 18053990]
[33]
Selkoe DJ. Normal and abnormal biology of the beta-amyloid precursor protein. Annu Rev Neurosci 1994; 17(1): 489-517.
[http://dx.doi.org/10.1146/annurev.ne.17.030194.002421] [PMID: 8210185]
[34]
Chen GF, Xu TH, Yan Y, et al. Amyloid beta: Structure, biology and structure-based therapeutic development. Acta Pharmacol Sin 2017; 38(9): 1205-35.
[http://dx.doi.org/10.1038/aps.2017.28] [PMID: 28713158]
[35]
Hardy J, Allsop D. Amyloid deposition as the central event in the aetiology of Alzheimer’s disease. Trends Pharmacol Sci 1991; 12(10): 383-8.
[http://dx.doi.org/10.1016/0165-6147(91)90609-V] [PMID: 1763432]
[36]
Frautschy SA, Baird A, Cole GM. Effects of injected Alzheimer beta-amyloid cores in rat brain. Proc Natl Acad Sci USA 1991; 88(19): 8362-6.
[http://dx.doi.org/10.1073/pnas.88.19.8362] [PMID: 1924295]
[37]
Kowall NW, Beal MF, Busciglio J, Duffy LK, Yankner BA. An in vivo model for the neurodegenerative effects of beta amyloid and protection by substance P. Proc Natl Acad Sci USA 1991; 88(16): 7247-51.
[http://dx.doi.org/10.1073/pnas.88.16.7247] [PMID: 1714596]
[38]
Näslund J, Haroutunian V, Mohs R, et al. Correlation between elevated levels of amyloid beta-peptide in the brain and cognitive decline. JAMA 2000; 283(12): 1571-7.
[http://dx.doi.org/10.1001/jama.283.12.1571] [PMID: 10735393]
[39]
McLean CA, Cherny RA, Fraser FW, et al. Soluble pool of Abeta amyloid as a determinant of severity of neurodegeneration in Alzheimer’s disease. Ann Neurol 1999; 46(6): 860-6.
[http://dx.doi.org/10.1002/1531-8249(199912)46:6<860:AID-ANA8>3.0.CO;2-M] [PMID: 10589538]
[40]
Mucke L, Masliah E, Yu GQ, et al. High-level neuronal expression of abeta 1-42 in wild-type human amyloid protein precursor transgenic mice: Synaptotoxicity without plaque formation. J Neurosci 2000; 20(11): 4050-8.
[http://dx.doi.org/10.1523/JNEUROSCI.20-11-04050.2000] [PMID: 10818140]
[41]
Shankar GM, Bloodgood BL, Townsend M, Walsh DM, Selkoe DJ, Sabatini BL. Natural oligomers of the Alzheimer amyloid-β protein induce reversible synapse loss by modulating an NMDA-type glutamate receptor-dependent signaling pathway. J Neurosci 2007; 27(11): 2866-75.
[http://dx.doi.org/10.1523/JNEUROSCI.4970-06.2007] [PMID: 17360908]
[42]
Harkany T, Penke B, Luiten PG. β-Amyloid excitotoxicity in rat magnocellular nucleus basalis. Effect of cortical deafferentation on cerebral blood flow regulation and implications for Alzheimer’s disease. Ann N Y Acad Sci 2000; 903: 374-86.
[http://dx.doi.org/10.1111/j.1749-6632.2000.tb06389.x] [PMID: 10818528]
[43]
Miguel-Hidalgo JJ, Alvarez XA, Cacabelos R, Quack G. Neuroprotection by memantine against neurodegeneration induced by beta-amyloid(1-40). Brain Res 2002; 958(1): 210-21.
[http://dx.doi.org/10.1016/S0006-8993(02)03731-9] [PMID: 12468047]
[44]
Texidó L, Martín-Satué M, Alberdi E, Solsona C, Matute C. Amyloid β peptide oligomers directly activate NMDA receptors. Cell Calcium 2011; 49(3): 184-90.
[http://dx.doi.org/10.1016/j.ceca.2011.02.001] [PMID: 21349580]
[45]
Ferreira IL, Bajouco LM, Mota SI, Auberson YP, Oliveira CR, Rego AC. Amyloid beta peptide 1-42 disturbs intracellular calcium homeostasis through activation of GluN2B-containing N-methyl-d-aspartate receptors in cortical cultures. Cell Calcium 2012; 51(2): 95-106.
[http://dx.doi.org/10.1016/j.ceca.2011.11.008] [PMID: 22177709]
[46]
Varga E, Juhász G, Bozsó Z, Penke B, Fülöp L, Szegedi V. Abeta(1-42) enhances neuronal excitability in the CA1 via NR2B subunit-containing NMDA receptors. Neural Plast 2014; 2014: 584314.
[http://dx.doi.org/10.1155/2014/584314] [PMID: 25276438]
[47]
Li S, Jin M, Koeglsperger T, Shepardson NE, Shankar GM, Selkoe DJ. Soluble Aβ oligomers inhibit long-term potentiation through a mechanism involving excessive activation of extrasynaptic NR2B-containing NMDA receptors. J Neurosci 2011; 31(18): 6627-38.
[http://dx.doi.org/10.1523/JNEUROSCI.0203-11.2011] [PMID: 21543591]
[48]
Chapman PF, White GL, Jones MW, et al. Impaired synaptic plasticity and learning in aged amyloid precursor protein transgenic mice. Nat Neurosci 1999; 2(3): 271-6.
[http://dx.doi.org/10.1038/6374] [PMID: 10195221]
[49]
Palop JJ, Chin J, Roberson ED, et al. Aberrant excitatory neuronal activity and compensatory remodeling of inhibitory hippocampal circuits in mouse models of Alzheimer’s disease. Neuron 2007; 55(5): 697-711.
[http://dx.doi.org/10.1016/j.neuron.2007.07.025] [PMID: 17785178]
[50]
Lanté F, Chafai M, Raymond EF, et al. Subchronic glucocorticoid receptor inhibition rescues early episodic memory and synaptic plasticity deficits in a mouse model of Alzheimer’s disease. Neuropsychopharmacology 2015; 40(7): 1772-81.
[http://dx.doi.org/10.1038/npp.2015.25] [PMID: 25622751]
[51]
Trinchese F, Liu S, Battaglia F, Walter S, Mathews PM, Arancio O. Progressive age-related development of Alzheimer-like pathology in APP/PS1 mice. Ann Neurol 2004; 55(6): 801-14.
[http://dx.doi.org/10.1002/ana.20101] [PMID: 15174014]
[52]
Kimura R, Ohno M. Impairments in remote memory stabilization precede hippocampal synaptic and cognitive failures in 5XFAD Alzheimer mouse model. Neurobiol Dis 2009; 33(2): 229-35.
[http://dx.doi.org/10.1016/j.nbd.2008.10.006] [PMID: 19026746]
[53]
Latif-Hernandez A, Sabanov V, Ahmed T, et al. The two faces of synaptic failure in AppNL-G-F knock-in mice. Alzheimers Res Ther 2020; 12(1): 100.
[http://dx.doi.org/10.1186/s13195-020-00667-6] [PMID: 32838792]
[54]
Dick O, Bading H. Synaptic activity and nuclear calcium signaling protect hippocampal neurons from death signal-associated nuclear translocation of FoxO3a induced by extrasynaptic N-methyl-D-aspartate receptors. J Biol Chem 2010; 285(25): 19354-61.
[http://dx.doi.org/10.1074/jbc.M110.127654] [PMID: 20404335]
[55]
Xu J, Kurup P, Zhang Y, et al. Extrasynaptic NMDA receptors couple preferentially to excitotoxicity via calpain-mediated cleavage of STEP. J Neurosci 2009; 29(29): 9330-43.
[http://dx.doi.org/10.1523/JNEUROSCI.2212-09.2009] [PMID: 19625523]
[56]
Liu DD, Yang Q, Li ST. Activation of extrasynaptic NMDA receptors induces LTD in rat hippocampal CA1 neurons. Brain Res Bull 2013; 93: 10-6.
[http://dx.doi.org/10.1016/j.brainresbull.2012.12.003] [PMID: 23270879]
[57]
Papouin T, Ladépêche L, Ruel J, et al. Synaptic and extrasynaptic NMDA receptors are gated by different endogenous coagonists. Cell 2012; 150(3): 633-46.
[http://dx.doi.org/10.1016/j.cell.2012.06.029] [PMID: 22863013]
[58]
Hardingham GE, Bading H. Synaptic versus extrasynaptic NMDA receptor signalling: Implications for neurodegenerative disorders. Nat Rev Neurosci 2010; 11(10): 682-96.
[http://dx.doi.org/10.1038/nrn2911] [PMID: 20842175]
[59]
Hardingham GE, Fukunaga Y, Bading H. Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. Nat Neurosci 2002; 5(5): 405-14.
[http://dx.doi.org/10.1038/nn835] [PMID: 11953750]
[60]
Snyder EM, Nong Y, Almeida CG, et al. Regulation of NMDA receptor trafficking by amyloid-β. Nat Neurosci 2005; 8(8): 1051-8.
[http://dx.doi.org/10.1038/nn1503] [PMID: 16025111]
[61]
Dewachter I, Filipkowski RK, Priller C, et al. Deregulation of NMDA-receptor function and down-stream signaling in APP[V717I] transgenic mice. Neurobiol Aging 2009; 30(2): 241-56.
[http://dx.doi.org/10.1016/j.neurobiolaging.2007.06.011] [PMID: 17673336]
[62]
Matos M, Augusto E, Oliveira CR, Agostinho P. Amyloid-beta peptide decreases glutamate uptake in cultured astrocytes: Involvement of oxidative stress and mitogen-activated protein kinase cascades. Neuroscience 2008; 156(4): 898-910.
[http://dx.doi.org/10.1016/j.neuroscience.2008.08.022] [PMID: 18790019]
[63]
Talantova M, Sanz-Blasco S, Zhang X, et al. Aβ induces astrocytic glutamate release, extrasynaptic NMDA receptor activation, and synaptic loss. Proc Natl Acad Sci USA 2013; 110(27): E2518-27.
[http://dx.doi.org/10.1073/pnas.1306832110] [PMID: 23776240]
[64]
Zoia CP, Tagliabue E, Isella V, et al. Fibroblast glutamate transport in aging and in AD: Correlations with disease severity. Neurobiol Aging 2005; 26(6): 825-32.
[http://dx.doi.org/10.1016/j.neurobiolaging.2004.07.007] [PMID: 15718040]
[65]
Masliah E, Alford M, Mallory M, Rockenstein E, Moechars D, Van Leuven F. Abnormal glutamate transport function in mutant amyloid precursor protein transgenic mice. Exp Neurol 2000; 163(2): 381-7.
[http://dx.doi.org/10.1006/exnr.2000.7386] [PMID: 10833311]
[66]
Masliah E, Alford M, DeTeresa R, Mallory M, Hansen L. Deficient glutamate transport is associated with neurodegeneration in Alzheimer’s disease. Ann Neurol 1996; 40(5): 759-66.
[http://dx.doi.org/10.1002/ana.410400512] [PMID: 8957017]
[67]
Wu SZ, Bodles AM, Porter MM, Griffin WS, Basile AS, Barger SW. Induction of serine racemase expression and D-serine release from microglia by amyloid beta-peptide. J Neuroinflammation 2004; 1(1): 2.
[http://dx.doi.org/10.1186/1742-2094-1-2] [PMID: 15285800]
[68]
Madeira C, Lourenco MV, Vargas-Lopes C, et al. D-serine levels in Alzheimer’s disease: Implications for novel biomarker development. Transl Psychiatry 2015; 5(5): e561.
[http://dx.doi.org/10.1038/tp.2015.52] [PMID: 25942042]
[69]
Inoue R, Hashimoto K, Harai T, Mori H. NMDA- and β-amyloid1-42-induced neurotoxicity is attenuated in serine racemase knock-out mice. J Neurosci 2008; 28(53): 14486-91.
[http://dx.doi.org/10.1523/JNEUROSCI.5034-08.2008] [PMID: 19118183]
[70]
Liu H, Li S, Yang C, et al. D-Serine ameliorates motor and cognitive impairments in β-amyloid 1-42 injected mice by inhibiting JNK signaling pathway. J Chem Neuroanat 2020; 109: 101852.
[http://dx.doi.org/10.1016/j.jchemneu.2020.101852] [PMID: 32781134]
[71]
Fukuyama H, Ogawa M, Yamauchi H, et al. Altered cerebral energy metabolism in Alzheimer’s disease: A PET study. J Nucl Med 1994; 35(1): 1-6.
[PMID: 8271029]
[72]
An Y, Varma VR, Varma S, et al. Evidence for brain glucose dysregulation in Alzheimer’s disease. Alzheimers Dement 2018; 14(3): 318-29.
[http://dx.doi.org/10.1016/j.jalz.2017.09.011] [PMID: 29055815]
[73]
Le Douce J, Maugard M, Veran J, et al. Impairment of glycolysis-derived L-serine production in astrocytes contributes to cognitive deficits in Alzheimer’s disease. Cell Metab 2020; 31(3): 503-517.e8.
[http://dx.doi.org/10.1016/j.cmet.2020.02.004] [PMID: 32130882]
[74]
Lin CH, Chen PK, Wang SH, Lane HY. Sodium benzoate for the treatment of behavioral and psychological symptoms of dementia (BPSD): A randomized, double-blind, placebo-controlled, 6-week trial. J Psychopharmacol 2019; 33(8): 1030-3.
[http://dx.doi.org/10.1177/0269881119849815] [PMID: 31113277]
[75]
Piubelli L, Pollegioni L, Rabattoni V, et al. Serum D-serine levels are altered in early phases of Alzheimer’s disease: Towards a precocious biomarker. Transl Psychiatry 2021; 11(1): 77.
[http://dx.doi.org/10.1038/s41398-021-01202-3] [PMID: 33500383]
[76]
Chang CH, Kuo HL, Ma WF, Tsai HC. Cerebrospinal fluid and serum D-serine levels in patients with Alzheimer’s disease: A systematic review and meta-analysis. J Clin Med 2020; 9(12): E3840.
[http://dx.doi.org/10.3390/jcm9123840] [PMID: 33256147]
[77]
Hashimoto K, Fukushima T, Shimizu E, et al. Possible role of D-serine in the pathophysiology of Alzheimer’s disease. Prog Neuropsychopharmacol Biol Psychiatry 2004; 28(2): 385-8.
[http://dx.doi.org/10.1016/j.pnpbp.2003.11.009] [PMID: 14751437]
[78]
Nuzzo T, Miroballo M, Casamassa A, et al. Cerebrospinal fluid and serum D-serine concentrations are unaltered across the whole clinical spectrum of Alzheimer’s disease. Biochim Biophys Acta Proteins Proteomics 2020; 1868(12): 140537.
[http://dx.doi.org/10.1016/j.bbapap.2020.140537] [PMID: 32896673]
[79]
Biemans EA, Verhoeven-Duif NM, Gerrits J, Claassen JA, Kuiperij HB, Verbeek MM. CSF D-serine concentrations are similar in Alzheimer’s disease, other dementias, and elderly controls. Neurobiol Aging 2016; 42: 213-6.
[http://dx.doi.org/10.1016/j.neurobiolaging.2016.03.017] [PMID: 27143438]
[80]
Ploux E, Freret T, Billard JM. D-serine in physiological and pathological brain aging. Biochim Biophys Acta Proteins Proteomics 2021; 1869(1): 140542.
[http://dx.doi.org/10.1016/j.bbapap.2020.140542] [PMID: 32950692]
[81]
Li Z, Xing Y, Guo X, Cui Y. Development of an UPLC-MS/MS method for simultaneous quantitation of 11 d-amino acids in different regions of rat brain: Application to a study on the associations of D-amino acid concentration changes and Alzheimer’s disease. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1058: 40-6.
[http://dx.doi.org/10.1016/j.jchromb.2017.05.011] [PMID: 28531844]
[82]
Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH. Mechanisms underlying inflammation in neurodegeneration. Cell 2010; 140(6): 918-34.
[http://dx.doi.org/10.1016/j.cell.2010.02.016] [PMID: 20303880]
[83]
Rogers J, Luber-Narod J, Styren SD, Civin WH. Expression of immune system-associated antigens by cells of the human central nervous system: Relationship to the pathology of Alzheimer’s disease. Neurobiol Aging 1988; 9(4): 339-49.
[http://dx.doi.org/10.1016/S0197-4580(88)80079-4] [PMID: 3263583]
[84]
Heneka MT, Carson MJ, El Khoury J, et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol 2015; 14(4): 388-405.
[http://dx.doi.org/10.1016/S1474-4422(15)70016-5] [PMID: 25792098]
[85]
Heneka MT, O’Banion MK. Inflammatory processes in Alzheimer’s disease. J Neuroimmunol 2007; 184(1-2): 69-91.
[http://dx.doi.org/10.1016/j.jneuroim.2006.11.017] [PMID: 17222916]
[86]
Yu Y, Ye RD. Microglial Aβ receptors in Alzheimer’s disease. Cell Mol Neurobiol 2015; 35(1): 71-83.
[http://dx.doi.org/10.1007/s10571-014-0101-6] [PMID: 25149075]
[87]
Liddelow SA, Guttenplan KA, Clarke LE, et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 2017; 541(7638): 481-7.
[http://dx.doi.org/10.1038/nature21029] [PMID: 28099414]
[88]
Li S, Uno Y, Rudolph U, et al. Astrocytes in primary cultures express serine racemase, synthesize D-serine and acquire A1 reactive astrocyte features. Biochem Pharmacol 2018; 151: 245-51.
[http://dx.doi.org/10.1016/j.bcp.2017.12.023] [PMID: 29305854]
[89]
Wang Y, Hancock AM, Bradner J, et al. Complement 3 and factor h in human cerebrospinal fluid in Parkinson’s disease, Alzheimer’s disease, and multiple-system atrophy. Am J Pathol 2011; 178(4): 1509-16.
[http://dx.doi.org/10.1016/j.ajpath.2011.01.006] [PMID: 21435440]
[90]
Hikida T, Mustafa AK, Maeda K, et al. Modulation of D-serine levels in brains of mice lacking PICK1. Biol Psychiatry 2008; 63(10): 997-1000.
[http://dx.doi.org/10.1016/j.biopsych.2007.09.025] [PMID: 18191108]
[91]
Kim PM, Aizawa H, Kim PS, et al. Serine racemase: Activation by glutamate neurotransmission via glutamate receptor interacting protein and mediation of neuronal migration. Proc Natl Acad Sci USA 2005; 102(6): 2105-10.
[http://dx.doi.org/10.1073/pnas.0409723102] [PMID: 15684087]
[92]
Ma TM, Paul BD, Fu C, et al. Serine racemase regulated by binding to stargazin and PSD-95: Potential N-methyl-D-aspartate-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (NMDA-AMPA) glutamate neurotransmission cross-talk. J Biol Chem 2014; 289(43): 29631-41.
[http://dx.doi.org/10.1074/jbc.M114.571604] [PMID: 25164819]
[93]
Balan L, Foltyn VN, Zehl M, et al. Feedback inactivation of D-serine synthesis by NMDA receptor-elicited translocation of serine racemase to the membrane. Proc Natl Acad Sci USA 2009; 106(18): 7589-94.
[http://dx.doi.org/10.1073/pnas.0809442106] [PMID: 19380732]
[94]
Kolodney G, Dumin E, Safory H, et al. Nuclear compartmentalization of serine racemase regulates D-serine production: Implications for N-methyl-D-aspartate (NMDA) receptor activation. J Biol Chem 2015; 290(52): 31037-50.
[http://dx.doi.org/10.1074/jbc.M115.699496] [PMID: 26553873]
[95]
Cuomo M, Keller S, Punzo D, et al. Selective demethylation of two CpG sites causes postnatal activation of the Dao gene and consequent removal of D-serine within the mouse cerebellum. Clin Epigenetics 2019; 11(1): 149.
[http://dx.doi.org/10.1186/s13148-019-0732-z] [PMID: 31661019]
[96]
Zhang H, Kuang XL, Chang Y, Lu J, Jiang H, Wu S. Reduced serine racemase expression in aging rat cerebellum is associated with oxidative DNA stress and hypermethylation in the promoter. Brain Res 2015; 1629: 221-30.
[http://dx.doi.org/10.1016/j.brainres.2015.10.034] [PMID: 26505919]
[97]
Furuya S, Watanabe M. Novel neuroglial and glioglial relationships mediated by L-serine metabolism. Arch Histol Cytol 2003; 66(2): 109-21.
[http://dx.doi.org/10.1679/aohc.66.109] [PMID: 12846552]
[98]
Yang JH, Wada A, Yoshida K, et al. Brain-specific Phgdh deletion reveals a pivotal role for L-serine biosynthesis in controlling the level of D-serine, an N-methyl-D-aspartate receptor co-agonist, in adult brain. J Biol Chem 2010; 285(53): 41380-90.
[http://dx.doi.org/10.1074/jbc.M110.187443] [PMID: 20966073]
[99]
Wu S, Barger SW. Induction of serine racemase by inflammatory stimuli is dependent on AP-1. Ann N Y Acad Sci 2004; 1035(1): 133-46.
[http://dx.doi.org/10.1196/annals.1332.009] [PMID: 15681805]
[100]
Berson A, Nativio R, Berger SL, Bonini NM. Epigenetic regulation in neurodegenerative diseases. Trends Neurosci 2018; 41(9): 587-98.
[http://dx.doi.org/10.1016/j.tins.2018.05.005] [PMID: 29885742]
[101]
Chouliaras L, Rutten BP, Kenis G, et al. Epigenetic regulation in the pathophysiology of Alzheimer’s disease. Prog Neurobiol 2010; 90(4): 498-510.
[http://dx.doi.org/10.1016/j.pneurobio.2010.01.002] [PMID: 20097254]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy