Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Mini-Review Article

Vitamin B-related Gene Polymorphisms and Cardiovascular Disease

Author(s): Maria Efthymia Katsa and Andrea Paola Rojas Gil*

Volume 22, Issue 10, 2022

Published on: 15 June, 2022

Page: [979 - 984] Pages: 6

DOI: 10.2174/1381612828666220328115605

Price: $65

Abstract

Hyperhomocysteinemia is an independent risk factor for atherosclerosis, even in early childhood. A mutation in genes that code homocysteine metabolism enzymes or deficiency of specific vitamin cofactors may cause hyperhomocysteinemia. Vitamin B complex has been correlated with serum homocysteine levels. Any abnormality in its metabolism or nutritional deficiency may lead to hyperhomocysteinemia. Both vitamin B complex and homocysteine levels are partly genetically determined. Specifically, the most studied polymorphism is 677T-C in exon 5 of the 5,10- methylenetetrahydrofolate reductase (MTHFR) gene, which plays an important role in folate’s metabolism. This polymorphism has been shown to be correlated with hypertension and cardiovascular disease. Polymorphisms in methylenetetrahydrofolate dehydrogenase (NADP+ dependent) 1-like (MTHFD1L) gene have also been correlated with increased risk for coronary artery disease. Other common serious polymorphisms regard the area with high linkage disequilibrium, including the neuroblastoma breakpoint family, NBPF3 gene, and ~ 12-50 kb upstream of the tissue nonspecific alkaline phosphatase gene. Finally, the polymorphisms which have been mostly associated with vitamin B12 concentration are the rs11254363 polymorphism at intron 52 of the intrinsic factor vitamin B12 receptor of the CUBN and the rs526934 polymorphism at intron 8 of transcobalamin I. To sum up, several polymorphisms have already been associated with vitamin B complexes and therefore homocysteine level, highlighting the complex nature of vitamin B genetics.

Keywords: Hyperhomocysteinemia, vitamin B complex, polymorphisms, cardiovascular disease, transcobalamin I, vitamin B12.

Graphical Abstract
[1]
Ganguly, P.; Alam, S.F. Role of homocysteine in the development of cardiovascular disease. Nutr. J., 2015, 14, 6.
[http://dx.doi.org/10.1186/1475-2891-14-6] [PMID: 25577237]
[2]
Kumar, A.; Palfrey, H.A.; Pathak, R.; Kadowitz, P.J.; Gettys, T.W.; Murthy, S.N. The metabolism and significance of homocysteine in nutrition and health. Nutr. Metab. (Lond.), 2017, 14, 78.
[http://dx.doi.org/10.1186/s12986-017-0233-z] [PMID: 29299040]
[3]
Škovierová, H.; Vidomanová, E.; Mahmood, S.; Sopková, J.; Drgová, A.; Červeňová, T.; Halašová, E.; Lehotský, J. The molecular and cellular effect of homocysteine metabolism imbalance on human health. Int. J. Mol. Sci., 2016, 17(10), 1733.
[http://dx.doi.org/10.3390/ijms17101733] [PMID: 27775595]
[4]
Loscalzo, J. The oxidant stress of hyperhomocyst(e)inemia. J. Clin. Invest., 1996, 98(1), 5-7.
[http://dx.doi.org/10.1172/JCI118776] [PMID: 8690803]
[5]
Tayal, D.; Goswami, B.; Koner, B.C.; Mallika, V. Role of homocysteine and lipoprotein (A) in atherosclerosis: An update. Biomed. Res., 2011, 22(4), 391-405.
[6]
Yajnik, C.S.; Deshpande, S.S.; Jackson, A.A.; Refsum, H.; Rao, S.; Fisher, D.J.; Bhat, D.S.; Naik, S.S.; Coyaji, K.J.; Joglekar, C.V.; Joshi, N.; Lubree, H.G.; Deshpande, V.U.; Rege, S.S.; Fall, C.H. Vitamin B12 and folate concentrations during pregnancy and insulin resistance in the offspring: The Pune maternal nutrition study. Diabetologia, 2008, 51(1), 29-38.
[http://dx.doi.org/10.1007/s00125-007-0793-y] [PMID: 17851649]
[7]
Li, Y.; Jiang, C.; Xu, G.; Wang, N.; Zhu, Y.; Tang, C.; Wang, X. Homocysteine upregulates resistin production from adipocytes in vivo and in vitro . Diabetes, 2008, 57(4), 817-827.
[http://dx.doi.org/10.2337/db07-0617] [PMID: 18192543]
[8]
Rook, J.L.; Nugent, D.J.; Young, G. Pediatric stroke and methylenetetrahydrofolate reductase polymorphisms: An examination of C677T and A1298C mutations. J. Pediatr. Hematol. Oncol., 2005, 27(11), 590-593.
[http://dx.doi.org/10.1097/01.mph.0000188119.33452.fd] [PMID: 16282888]
[9]
Leal, A.A.; Palmeira, A.C.; Castro, G.M.; Simões, M.O.; Ramos, A.T.; Medeiros, C.C. Homocysteine: Cardiovascular risk factor in children and adolescents? Rev. Assoc. Med. Bras., 2013, 59(6), 622-628.
[http://dx.doi.org/10.1016/j.ramb.2013.05.004] [PMID: 24182942]
[10]
Casanueva, V.; Cid, X.; Cancino, M.; Borzone, L.; Cid, L. Serum homocysteine levels in children with and without a family history of cardiovascular disease. Rev. Med. Chil., 2003, 131(9), 997-1002.
[PMID: 14635586]
[11]
Tinelli, C.; Di Pino, A.; Ficulle, E.; Marcelli, S.; Feligioni, M. Hyperhomocysteinemia as a risk factor and potential nutraceutical target for certain pathologies. Front. Nutr., 2019, 6, 49.
[http://dx.doi.org/10.3389/fnut.2019.00049] [PMID: 31069230]
[12]
Mason, J.B. Biomarkers of nutrient exposure and status in one-carbon (methyl) metabolism. J. Nutr., 2003, 133(3)(Suppl. 3), 941S-947S.
[http://dx.doi.org/10.1093/jn/133.3.941S] [PMID: 12612180]
[13]
Lyon, P.; Strippoli, V.; Fang, B.; Cimmino, L.B. Vitamins and one-carbon metabolism: Implications in human health and disease. Nutrients, 2020, 12(9), 2867.
[http://dx.doi.org/10.3390/nu12092867] [PMID: 32961717]
[14]
Froese, D.S.; Fowler, B.; Baumgartner, M.R. Vitamin B12, folate, and the methionine remethylation cycle-biochemistry, pathways, and regulation. J. Inherit. Metab. Dis., 2019, 42(4), 673-685.
[http://dx.doi.org/10.1002/jimd.12009] [PMID: 30693532]
[15]
Ankar, A.; Kumar, A. Vitamin B12 Deficiency. StatPearls; StatPearls Publishing: Treasure Island, FL, 2021. Internet Available from: https://www.ncbi.nlm.nih.gov/books/NBK441923/
[16]
Senousy, S.M.; Farag, M.K.; Gouda, A.S.; El Noury, M.A.; Dabbous, O.A.; Gaber, K.R. Association between biomarkers of vitamin B12 status and the risk of neural tube defects. J. Obstet. Gynaecol. Res., 2018, 44(10), 1902-1908.
[http://dx.doi.org/10.1111/jog.13751] [PMID: 30043514]
[17]
Rimm, E.B.; Willett, W.C.; Hu, F.B.; Sampson, L.; Colditz, G.A.; Manson, J.E.; Hennekens, C.; Stampfer, M.J. Folate and vitamin B6 from diet and supplements in relation to risk of coronary heart disease among women. JAMA, 1998, 279(5), 359-364.
[http://dx.doi.org/10.1001/jama.279.5.359] [PMID: 9459468]
[18]
Debreceni, B.; Debreceni, L. Role of vitamins in cardiovascular health and disease. Res. Rep. Clin. Cardiol., 2014, 5, 283-295.
[http://dx.doi.org/10.2147/RRCC.S44465]
[19]
Ntaios, G.; Savopoulos, C.; Grekas, D.; Hatzitolios, A. The controversial role of B-vitamins in cardiovascular risk: An update. Arch. Cardiovasc. Dis., 2009, 102(12), 847-854.
[http://dx.doi.org/10.1016/j.acvd.2009.07.002] [PMID: 19963194]
[20]
Raghubeer, S.; Matsha, T.E. Methylenetetrahydrofolate (MTHFR), the One-carbon cycle, and cardiovascular risks. Nutrients, 2021, 13(12), 4562.
[http://dx.doi.org/10.3390/nu13124562] [PMID: 34960114]
[21]
Klerk, M.; Verhoef, P.; Clarke, R.; Blom, H.J.; Kok, F.J.; Schouten, E.G. Mthfr Studies Collaboration Group. MTHFR 677C→T polymorphism and risk of coronary heart disease: A meta-analysis. JAMA, 2002, 288(16), 2023-2031.
[http://dx.doi.org/10.1001/jama.288.16.2023] [PMID: 12387655]
[22]
Li, A.; Huang, W.; Yang, Q.; Peng, L.; Liu, Q. Expression of the C677T Polymorphism of the 5, 10-Methylenetetrahydrofolate reductase (MTHFR) gene in patients with carotid artery atherosclerosis. Med. Sci. Monit., 2020, 26, e920320.
[http://dx.doi.org/10.12659/MSM.920320] [PMID: 32675800]
[23]
Dedoussis, G.V.Z.; Panagiotakos, D.B.; Pitsavos, C.; Chrysohoou, C.; Skoumas, J.; Choumerianou, D.; Stefanadis, C. ATTICA Study Group. An association between the methylenetetrahydrofolate reductase (MTHFR) C677T mutation and inflammation markers related to cardiovascular disease. Int. J. Cardiol., 2005, 100(3), 409-414.
[http://dx.doi.org/10.1016/j.ijcard.2004.08.038] [PMID: 15837084]
[24]
Palmer, B.R.; Slow, S.; Ellis, K.L.; Pilbrow, A.P.; Skelton, L.; Frampton, C.M.; Palmer, S.C.; Troughton, R.W.; Yandle, T.G.; Doughty, R.N.; Whalley, G.A.; Lever, M.; George, P.M.; Chambers, S.T.; Ellis, C.; Richards, A.M.; Cameron, V.A. Genetic polymorphism rs6922269 in the MTHFD1L gene is associated with survival and baseline active vitamin B12 levels in post-acute coronary syndromes patients. PLoS One, 2014, 9(3), e89029.
[http://dx.doi.org/10.1371/journal.pone.0089029] [PMID: 24618918]
[25]
Hubacek, J.; Stanek, V.; Poledne, R.; Adamkova, V.; Pitha, J. Rs6922269 marker at the MTHFD1L gene predict cardiovascular mortality in males after acute coronary syndrome. Atherosclerosis, 2016, 252, e77-e78.
[http://dx.doi.org/10.1016/j.atherosclerosis.2016.07.490]
[26]
Tanaka, T.; Scheet, P.; Giusti, B.; Bandinelli, S.; Piras, M.G.; Usala, G.; Lai, S.; Mulas, A.; Corsi, A.M.; Vestrini, A.; Sofi, F.; Gori, A.M.; Abbate, R.; Guralnik, J.; Singleton, A.; Abecasis, G.R.; Schlessinger, D.; Uda, M.; Ferrucci, L. Genome-wide association study of vitamin B6, vitamin B12, folate, and homocysteine blood concentrations. Am. J. Hum. Genet., 2009, 84(4), 477-482.
[http://dx.doi.org/10.1016/j.ajhg.2009.02.011] [PMID: 19303062]
[27]
Hazra, A.; Kraft, P.; Lazarus, R.; Chen, C.; Chanock, S.J.; Jacques, P.; Selhub, J.; Hunter, D.J. Genome-wide significant predictors of metabolites in the one-carbon metabolism pathway. Hum. Mol. Genet., 2009, 18(23), 4677-4687.
[http://dx.doi.org/10.1093/hmg/ddp428] [PMID: 19744961]
[28]
Loohuis, L.M.; Albersen, M.; de Jong, S.; Wu, T.; Luykx, J.J.; Jans, J.J.M.; Verhoeven-Duif, N.M.; Ophoff, R.A. The Alkaline Phosphatase (ALPL) Locus Is Associated with B6 Vitamer Levels in CSF and Plasma. Genes (Basel), 2018, 10(1), 8.
[http://dx.doi.org/10.3390/genes10010008] [PMID: 30583557]
[29]
Giampaoli, O.; Conta, G.; Calvani, R.; Miccheli, A. Can the FUT2 Non-secretor phenotype associated with gut microbiota increase the children susceptibility for type 1 diabetes? A mini review. Front. Nutr., 2020, 7, 606171.
[http://dx.doi.org/10.3389/fnut.2020.606171] [PMID: 33425974]
[30]
Surendran, S.; Adaikalakoteswari, A.; Saravanan, P.; Shatwaan, I.A.; Lovegrove, J.A.; Vimaleswaran, K.S. An update on vitamin B12-related gene polymorphisms and B12 status. Genes Nutr., 2018, 6(13), 2.
[http://dx.doi.org/10.1186/s12263-018-0591-9]
[31]
Kozyraki, R.; Kristiansen, M.; Silahtaroglu, A.; Hansen, C.; Jacobsen, C.; Tommerup, N.; Verroust, P.J.; Moestrup, S.K. The human intrinsic factor-vitamin B12 receptor, cubilin: Molecular characterization and chromosomal mapping of the gene to 10p within the autosomal recessive megaloblastic anemia (MGA1) region. Blood, 1998, 91(10), 3593-3600.
[http://dx.doi.org/10.1182/blood.V91.10.3593] [PMID: 9572993]
[32]
Wang, J.; Zhao, J.Y.; Wang, F.; Peng, Q.Q.; Hou, J.; Sun, S.N.; Gui, Y.H.; Duan, W.Y.; Qiao, B.; Wang, H.Y. A genetic variant in vitamin B12 metabolic genes that reduces the risk of congenital heart disease in Han Chinese populations. PLoS One, 2014, 9(2), e88332.
[http://dx.doi.org/10.1371/journal.pone.0088332] [PMID: 24533076]
[33]
Seetharam, B. Receptor-mediated endocytosis of cobalamin (vitamin B12). Annu. Rev. Nutr., 1999, 19, 173-195.
[http://dx.doi.org/10.1146/annurev.nutr.19.1.173] [PMID: 10448521]
[34]
Garg, G.; Kumar, J.; Tanwar, V.S.; Basak, T.; Seth, S.; Karthikeyan, G.; Sengupta, S. Polymorphisms in transcobalamin II gene is associated with coronary artery disease in Indian population. Biomarkers, 2012, 17(2), 119-124.
[http://dx.doi.org/10.3109/1354750X.2011.642408] [PMID: 22188304]
[35]
Wang, B.; Liu, M.; Yan, W.; Mao, J.; Jiang, D.; Li, H.; Chen, Y. Association of SNPs in genes involved in folate metabolism with the risk of congenital heart disease. J. Matern. Fetal Neonatal Med., 2013, 26(18), 1768-1777.
[http://dx.doi.org/10.3109/14767058.2013.799648] [PMID: 23701284]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy