Review Article

姜黄素纳米纤维:一种增强姜黄素抗癌潜力和生物利用度的新方法

卷 30, 期 3, 2023

发表于: 20 May, 2022

页: [286 - 303] 页: 18

弟呕挨: 10.2174/0929867329666220322110348

价格: $65

摘要

鉴于当前治疗方法的局限性,包括副作用和化疗耐药性,需要开发新的癌症治疗方法,为癌症患者提供新的希望。癌症是全球死亡的第二大原因。姜黄素是姜黄的活性成分,自古以来就被用于各种治疗目的。几项研究已经确定了它对癌症的活性。尽管姜黄素具有确定的抗癌活性,但其低水溶性和生物利用度是其有效性的障碍。为了解决这个问题,许多研究已经使用多种方法配制姜黄素纳米纤维制剂。静电纺丝是生产纳米纤维的一种简单且经济的方法。研究表明,由于纳米纤维的高表面/体积比和孔隙率,姜黄素的生物利用度增加。我们对姜黄素纳米纤维的抗癌作用研究进行了详细回顾。姜黄素通过抑制各种生物癌症途径起作用,包括 NF-κB、mTOR、复合物 I、细胞因子、p-p65、Ki67 的表达和血管生成相关基因。它还通过激活 caspase 途径和癌细胞中的 ROS 产生来诱导细胞凋亡。负载姜黄素的 PLA50/PVP50/Cur15 纳米纤维在乳腺癌(研究最多的癌症之一)中进行了研究,并显示对广泛使用的 HeLa 细胞系有显着影响。大多数进行的研究都是在体外细胞系中进行的,而动物研究的报道相对较少。需要更多的临床前和临床研究来评估姜黄素纳米纤维抗癌活性的有效性。在进行的各种研究中,各种配方的姜黄素纳米纤维被证明可以抑制各种癌症类型。总体而言,姜黄素纳米纤维被发现比游离姜黄素更有效。因此,姜黄素纳米纤维提供了癌症治疗,为有效的癌症管理提供了巨大的潜力。在体外和体内对姜黄素纳米纤维的进一步研究有可能有益于癌症管理。姜黄素纳米纤维被发现比游离姜黄素更有效。因此,姜黄素纳米纤维提供了癌症治疗,为有效的癌症管理提供了巨大的潜力。在体外和体内对姜黄素纳米纤维的进一步研究有可能有益于癌症管理。姜黄素纳米纤维被发现比游离姜黄素更有效。因此,姜黄素纳米纤维提供了癌症治疗,为有效的癌症管理提供了巨大的潜力。在体外和体内对姜黄素纳米纤维的进一步研究有可能有益于癌症管理。

关键词: 姜黄素,纳米纤维,癌症,静电纺丝,姜黄素类生物利用度,化疗耐药性。

[1]
Abd Wahab, N.A.; Lajis, N.H.; Abas, F.; Othman, I.; Naidu, R. Mechanism of anti-cancer activity of curcumin on androgen-dependent and androgen-independent prostate cancer. Nutrients, 2020, 12(3), E679.
[http://dx.doi.org/10.3390/nu12030679] [PMID: 32131560]
[2]
Kalluru, H.; Kondaveeti, S.S.; Telapolu, S.; Kalachaveedu, M. Turmeric supplementation improves the quality of life and hematological parameters in breast cancer patients on paclitaxel chemotherapy: A case series. Complement. Ther. Clin. Pract., 2020, 41, 101247.
[http://dx.doi.org/10.1016/j.ctcp.2020.101247] [PMID: 33099272]
[3]
Wong, K.E.; Ngai, S.C.; Chan, K-G.; Lee, L-H.; Goh, B-H.; Chuah, L-H. Curcumin nanoformulations for colorectal cancer: A review. Front. Pharmacol., 2019, 10, 152.
[http://dx.doi.org/10.3389/fphar.2019.00152] [PMID: 30890933]
[4]
Menon, V.P.; Sudheer, A.R. Antioxidant and anti-inflammatory properties of curcumin. Adv. Exp. Med. Biol., 2007, 595, 105-125.
[http://dx.doi.org/10.1007/978-0-387-46401-5_3] [PMID: 17569207]
[5]
Pulido-Moran, M.; Moreno-Fernandez, J.; Ramirez-Tortosa, C.; Ramirez-Tortosa, M. Curcumin and health. Molecules, 2016, 21(3), 264.
[http://dx.doi.org/10.3390/molecules21030264] [PMID: 26927041]
[6]
Chainani-Wu, N. Safety and anti-inflammatory activity of curcumin: A component of tumeric (Curcuma longa). J. Altern. Complement. Med., 2003, 9(1), 161-168.
[http://dx.doi.org/10.1089/107555303321223035] [PMID: 12676044]
[7]
Farhood, B.; Mortezaee, K.; Goradel, N.H.; Khanlarkhani, N.; Salehi, E.; Nashtaei, M.S.; Najafi, M.; Sahebkar, A. Curcumin as an anti-inflammatory agent: Implications to radiotherapy and chemotherapy. J. Cell. Physiol., 2019, 234(5), 5728-5740.
[http://dx.doi.org/10.1002/jcp.27442]
[8]
Jiang, S.; Han, J.; Li, T.; Xin, Z.; Ma, Z.; Di, W.; Hu, W.; Gong, B.; Di, S.; Wang, D.; Yang, Y. Curcumin as a potential protective compound against cardiac diseases. Pharmacol. Res., 2017, 119, 373-383.
[http://dx.doi.org/10.1016/j.phrs.2017.03.001] [PMID: 28274852]
[9]
Srivastava, G.; Mehta, J.L. Currying the heart: Curcumin and cardioprotection. J. Cardiovasc. Pharmacol. Ther., 2009, 14(1), 22-27.
[http://dx.doi.org/10.1177/1074248408329608] [PMID: 19153099]
[10]
Samarghandian, S.; Azimi-Nezhad, M.; Farkhondeh, T.; Samini, F. Anti-oxidative effects of curcumin on immobilization-induced oxidative stress in rat brain, liver and kidney. Biomed. Pharmacother., 2017, 87, 223-229.
[http://dx.doi.org/10.1016/j.biopha.2016.12.105] [PMID: 28061405]
[11]
Chuengsamarn, S.; Rattanamongkolgul, S.; Luechapudiporn, R.; Phisalaphong, C.; Jirawatnotai, S. Curcumin extract for prevention of type 2 diabetes. Diabetes Care, 2012, 35(11), 2121-2127.
[http://dx.doi.org/10.2337/dc12-0116] [PMID: 22773702]
[12]
Pivari, F.; Mingione, A.; Brasacchio, C.; Soldati, L. Curcumin and Type 2 Diabetes Mellitus: Prevention and treatment. Nutrients, 2019, 11(8), E1837.
[http://dx.doi.org/10.3390/nu11081837] [PMID: 31398884]
[13]
Parsamanesh, N.; Moossavi, M.; Bahrami, A.; Butler, A.E.; Sahebkar, A. Therapeutic potential of curcumin in diabetic complications. Pharmacolo. Res.,2018, 136, 181-193.
[http://dx.doi.org/10.1016/j.phrs.2018.09.012]
[14]
Panahi, Y.; Khalili, N.; Sahebi, E.; Namazi, S.; Reiner, Ž.; Majeed, M.; Sahbekar, A. Curcuminoids modify lipid profile in type 2 diabetes mellitus: A randomized controlled trial. Complement. Ther. Med., 2017, 33, 1-5.
[http://dx.doi.org/10.1016/j.ctim.2017.05.006]
[15]
Reddy, P.H.; Manczak, M.; Yin, X.; Grady, M.C.; Mitchell, A.; Tonk, S.; Kuruva, C.S.; Bhatti, J.S.; Kandimalla, R.; Vijayan, M.; Kumar, S.; Wang, R.; Pradeepkiran, J.A.; Ogunmokun, G.; Thamarai, K.; Quesada, K.; Boles, A.; Reddy, A.P. Protective effects of indian spice curcumin against Amyloid-β in Alzheimer’s Disease. J. Alzheimers Dis., 2018, 61(3), 843-866.
[http://dx.doi.org/10.3233/JAD-170512] [PMID: 29332042]
[16]
Small, G.W.; Siddarth, P.; Li, Z.; Miller, K.J.; Ercoli, L.; Emerson, N.D.; Martinez, J.; Wong, K.P.; Liu, J.; Merrill, D.A.; Chen, S.T.; Henning, S.M.; Satyamurthy, N.; Huang, S.C.; Heber, D.; Barrio, J.R. Memory and brain amyloid and Tau effects of a bioavailable form of curcumin in non-demented adults: A double-blind, placebo-controlled 18-month trial. Am. J. Geriatr. Psychiatry, 2018, 26(3), 266-277.
[http://dx.doi.org/10.1016/j.jagp.2017.10.010] [PMID: 29246725]
[17]
Asteriou, E.; Gkoutzourelas, A.; Mavropoulos, A.; Katsiari, C.; Sakkas, L.I.; Bogdanos, D.P. Curcumin for the management of periodontitis and early ACPA-positive rheumatoid arthritis: Killing two birds with one stone. Nutrients, 2018, 10(7), E908.
[http://dx.doi.org/10.3390/nu10070908] [PMID: 30012973]
[18]
Chandran, B.; Goel, A. A randomized, pilot study to assess the efficacy and safety of curcumin in patients with active rheumatoid arthritis. Phytother. Res., 2012, 26(11), 1719-1725.
[http://dx.doi.org/10.1002/ptr.4639] [PMID: 22407780]
[19]
Daily, J.W.; Yang, M.; Park, S. Efficacy of turmeric extracts and curcumin for alleviating the symptoms of joint arthritis: A systematic review and meta-analysis of randomized clinical trials. J. Med. Food, 2016, 19(8), 717-729.
[http://dx.doi.org/10.1089/jmf.2016.3705] [PMID: 27533649]
[20]
Adiwidjaja, J.; McLachlan, A.J.; Boddy, A.V. Curcumin as a clinically-promising anti-cancer agent: Pharmacokinetics and drug interactions. Expert Opin. Drug Metab. Toxicol., 2017, 13(9), 953-972.
[http://dx.doi.org/10.1080/17425255.2017.1360279] [PMID: 28776444]
[21]
Hassanalilou, T.; Ghavamzadeh, S.; Khalili, L. Curcumin and gastric cancer: A review on mechanisms of action. J. Gastrointest. Cancer, 2019, 50(2), 185-192.
[http://dx.doi.org/10.1007/s12029-018-00186-6] [PMID: 30725357]
[22]
Howells, L.M.; Iwuji, C.O.O.; Irving, G.R.B.; Barber, S.; Walter, H.; Sidat, Z.; Griffin-Teall, N.; Singh, R.; Foreman, N.; Patel, S.R.; Morgan, B.; Steward, W.P.; Gescher, A.; Thomas, A.L.; Brown, K. Curcumin combined with FOLFOX chemotherapy is safe and tolerable in patients with metastatic colorectal cancer in a Randomized Phase IIa Trial. J. Nutr., 2019, 149(7), 1133-1139.
[http://dx.doi.org/10.1093/jn/nxz029] [PMID: 31132111]
[23]
Shahcheraghi, S.H.; Zangui, M.; Lotfi, M.; Ghayour-Mobarhan, M.; Ghorbani, A.; Jaliani, H.Z.; Sadeghnia, H.R.; Sahebkar, A. Therapeutic potential of curcumin in the treatment of glioblastoma multiforme. Curr. Pharm. Des., 2019, 25(3), 333-342.
[http://dx.doi.org/10.2174/1381612825666190313123704] [PMID: 30864499]
[24]
Wan Mohd Tajuddin, W.N.B.; Lajis, N.H.; Abas, F.; Othman, I.; Naidu, R. Mechanistic understanding of curcumin’s therapeutic effects in lung cancer. Nutrients, 2019, 11(12), E2989.
[http://dx.doi.org/10.3390/nu11122989] [PMID: 31817718]
[25]
Wang, Y.; Yu, J.; Cui, R.; Lin, J.; Ding, X. Curcumin in treating breast cancer: A review. J. Lab. Autom., 2016, 21(6), 723-731.
[http://dx.doi.org/10.1177/2211068216655524] [PMID: 27325106]
[26]
Giordano, A.; Tommonaro, G. Curcumin and cancer. Nutrients, 2019, 11(10), 2376.
[http://dx.doi.org/10.3390/nu11102376] [PMID: 31590362]
[27]
Batra, H.; Pawar, S.; Bahl, D. Curcumin in combination with anti-cancer drugs: A nanomedicine review. Pharmacol. Res., 2019, 139, 91-105.
[http://dx.doi.org/10.1016/j.phrs.2018.11.005] [PMID: 30408575]
[28]
Hu, C.; Li, M.; Guo, T.; Wang, S.; Huang, W.; Yang, K.; Liao, Z.; Wang, J.; Zhang, F.; Wang, H. Anti-metastasis activity of curcumin against breast cancer via the inhibition of stem cell-like properties and EMT. Phytomedicine, 2019, 58, 152740.
[http://dx.doi.org/10.1016/j.phymed.2018.11.001] [PMID: 31005718]
[29]
Aytac, Z.; Uyar, T. Core-shell nanofibers of curcumin/cyclodextrin inclusion complex and polylactic acid: Enhanced water solubility and slow release of curcumin. Int. J. Pharm., 2017, 518(1-2), 177-184.
[http://dx.doi.org/10.1016/j.ijpharm.2016.12.061] [PMID: 28057465]
[30]
Celebioglu, A.; Uyar, T. Fast-dissolving antioxidant curcumin/cyclodextrin inclusion complex electrospun nanofibrous webs. Food Chem., 2020, 317, 126397.
[http://dx.doi.org/10.1016/j.foodchem.2020.126397] [PMID: 32078994]
[31]
Ibrahim, H.M.; Klingner, A. A review on electrospun polymeric nanofibers: Production parameters and potential applications. Polym. Test., 2020, 90, 106647.
[http://dx.doi.org/10.1016/j.polymertesting.2020.106647]
[32]
Kumar, P.S.; Jayaraman, S.; Singh, G. Polymer and composite nanofiber: Electrospinning parameters and rheology properties. In: Rheology and Processing of Polymer Nanocomposites; Springer, 2016; pp. 329-354.
[33]
Islam, M.S.; Ang, B.C.; Andriyana, A.; Afifi, A.M. A review on fabrication of nanofibers via electrospinning and their applications. SN Appl. Sci., 2019, 1(10), 1-16.
[http://dx.doi.org/10.1007/s42452-019-1288-4]
[34]
Akhgari, A.; Shakib, Z.; Sanati, S. A review on electrospun nanofibers for oral drug delivery. Nanomed. J., 2017, 4(4), 197-207.
[35]
Ranjbar-Mohammadi, M.; Bahrami, S.H. Electrospun curcumin loaded poly(ε-caprolactone)/gum tragacanth nanofibers for biomedical application. Int. J. Biol. Macromol., 2016, 84, 448-456.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.12.024] [PMID: 26706845]
[36]
Afzali, M.; Mostafavi, A.; Shamspur, T. Electrospun composite nanofibers of poly vinyl pyrrolidone and Zinc Oxide nanoparticles modified Carbon paste electrode for electrochemical detection of curcumin. Mater. Sci. Eng. C, 2016, 68, 789-797.
[http://dx.doi.org/10.1016/j.msec.2016.07.038] [PMID: 27524081]
[37]
Boroumand, S.; Hosseini, S.; Pashandi, Z.; Faridi-Majidi, R.; Salehi, M. Curcumin-loaded nanofibers for targeting endometriosis in the peritoneum of a mouse model. J. Mater. Sci. Mater. Med., 2019, 31(1), 8.
[http://dx.doi.org/10.1007/s10856-019-6337-4] [PMID: 31838602]
[38]
Yakub, G.; Toncheva, A.; Kussovski, V.; Toshkova, R.; Georgieva, A.; Nikolova, E. Curcumin-PVP loaded electrospun membranes with conferred antibacterial and antitumoral activities. Fibers Polym., 2020, 21(1), 55-65.
[http://dx.doi.org/10.1007/s12221-020-9473-z]
[39]
Ma, Y.; Wang, X.; Zong, S.; Zhang, Z.; Xie, Z.; Huang, Y.; Yue, Y.; Liu, S.; Jing, X. Local, combination chemotherapy in prevention of cervical cancer recurrence after surgery by using nanofibers co-loaded with cisplatin and curcumin. RSC Advances, 2015, 5(129), 106325-106332.
[http://dx.doi.org/10.1039/C5RA17230F]
[40]
Thangaraju, E.; Srinivasan, N.T.; Kumar, R.; Sehgal, P.K.; Rajiv, S. Fabrication of electrospun Poly L-lactide and Curcumin loaded Poly L-lactide nanofibers for drug delivery. Fibers Polym., 2012, 13, 823-830.
[http://dx.doi.org/10.1007/s12221-012-0823-3]
[41]
Guo, G.; Fu, S.; Zhou, L.; Liang, H.; Fan, M.; Luo, F.; Qian, Z.; Wei, Y. Preparation of curcumin loaded poly(ε- caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) nanofibers and their in vitro antitumor activity against Glioma 9L cells. Nanoscale, 2011, 3(9), 3825-3832.
[http://dx.doi.org/10.1039/c1nr10484e] [PMID: 21847493]
[42]
Kumar, S.U.; Matai, I.; Dubey, P.; Bhushan, B.; Sachdev, A.; Gopinath, P. Differentially cross-linkable core–shell nanofibers for tunable delivery of anticancer drugs: synthesis, characterization and their anticancer efficacy. RSC Advances, 2014, 4(72), 38263-38272.
[http://dx.doi.org/10.1039/C4RA05001K]
[43]
Sridhar, R.; Ravanan, S.; Venugopal, J.R.; Sundarrajan, S.; Pliszka, D.; Sivasubramanian, S.; Gunasekaran, P.; Prabhakaran, M.; Madhaiyan, K.; Sahayaraj, A.; Lim, K.H.; Ramakrishna, S. Curcumin- and natural extract-loaded nanofibres for potential treatment of lung and breast cancer: In vitro efficacy evaluation. J. Biomater. Sci. Polym. Ed., 2014, 25(10), 985-998.
[http://dx.doi.org/10.1080/09205063.2014.917039] [PMID: 24865590]
[44]
Bulbul, Y.E.; Okur, M.; Demirtas-Korkmaz, F.; Dilsiz, N. Development of PCL/PEO electrospun fibrous membranes blended with silane-modified halloysite nanotube as a curcumin release system. Appl. Clay Sci., 2020, 186, 105430.
[45]
Rasouli, S.; Montazeri, M.; Mashayekhi, S.; Sadeghi-Soureh, S.; Dadashpour, M.; Mousazadeh, H.; Nobakht, A.; Zarghami, N.; Pilehvar-Soltanahmadi, Y. Synergistic anticancer effects of electrospun nanofiber-mediated codelivery of Curcumin and Chrysin: Possible application in prevention of breast cancer local recurrence. J. Drug Deliv. Sci. Technol., 2020, 55, 101402.
[http://dx.doi.org/10.1016/j.jddst.2019.101402]
[46]
Sedghi, R.; Gholami, M.; Shaabani, A.; Saber, M.; Niknejad, H. Preparation of novel chitosan derivative nanofibers for prevention of breast cancer recurrence. Eur. Polym. J., 2020, 123, 109421.
[http://dx.doi.org/10.1016/j.eurpolymj.2019.109421]
[47]
Sedghi, R.; Shaabani, A.; Mohammadi, Z.; Samadi, F.Y.; Isaei, E. Biocompatible electrospinning chitosan nanofibers: A novel delivery system with superior local cancer therapy. Carbohydr. Polym., 2017, 159, 1-10.
[http://dx.doi.org/10.1016/j.carbpol.2016.12.011] [PMID: 28038737]
[48]
Razmshoar, P; Bahrami, SH; Akbari, S Functional hydrophilic highly biodegradable PCL nanofibers through direct aminolysis of PAMAM dendrimer. Int. J. Polym. Mater. Polym. Biomater., 2020, 69, 1069-1080.
[49]
Sudakaran, S.V.; Venugopal, J.R.; Vijayakumar, G.P.; Abisegapriyan, S.; Grace, A.N.; Ramakrishna, S. Sequel of MgO nanoparticles in PLACL nanofibers for anti-cancer therapy in synergy with curcumin/β-cyclodextrin. Mater. Sci. Eng. C, 2017, 71, 620-628.
[http://dx.doi.org/10.1016/j.msec.2016.10.050] [PMID: 27987753]
[50]
Cheng, T.; Zhang, Z.; Shen, H.; Jian, Z.; Li, J.; Chen, Y.; Shen, Y.; Dai, X. Topically applicated curcumin/gelatin-blended nanofibrous mat inhibits pancreatic adenocarcinoma by increasing ROS production and endoplasmic reticulum stress mediated apoptosis. J. Nanobiotechnology, 2020, 18(1), 126.
[http://dx.doi.org/10.1186/s12951-020-00687-2] [PMID: 32891174]
[51]
Sampath, M.; Lakra, R.; Korrapati, P.; Sengottuvelan, B. Curcumin loaded poly (lactic-co-glycolic) acid nanofiber for the treatment of carcinoma. Colloids Surf. B Biointerfaces, 2014, 117, 128-134.
[http://dx.doi.org/10.1016/j.colsurfb.2014.02.020] [PMID: 24646452]
[52]
Balashanmugam, P.; Sucharithra, G. Efficacy of Biopolymeric PVA-AuNPs and PCL-curcumin loaded electrospun nanofibers anticancer activity against A431 skin cancer cell line. Mater. Today Commun., 2020, 2020, 101276.
[53]
Wang, C.; Ma, C.; Wu, Z.; Liang, H.; Yan, P.; Song, J.; Ma, N.; Zhao, Q. Enhanced bioavailability and anticancer effect of curcumin-loaded electrospun nanofiber: in vitro and in vivo study. Nanoscale Res. Lett., 2015, 10(1), 439.
[http://dx.doi.org/10.1186/s11671-015-1146-2] [PMID: 26573930]
[54]
Liu, J.; Liu, J.; Xu, H.; Zhang, Y.; Chu, L.; Liu, Q.; Song, N.; Yang, C. Novel tumor-targeting, self-assembling peptide nanofiber as a carrier for effective curcumin delivery. Int. J. Nanomedicine, 2014, 9, 197-207.
[PMID: 24399876]
[55]
Varshosaz, J.; Jajanian-Najafabadi, A.; Soleymani, A.; Khajavinia, A. Poly (butylene adipate-co-terephthalate) electrospun nanofibers loaded with 5-fluorouracil and curcumin in treatment of colorectal cancer cells. Polym. Test., 2018, 65, 217-230.
[http://dx.doi.org/10.1016/j.polymertesting.2017.11.020]
[56]
Xu, H.; Wang, T.; Yang, C.; Li, X.; Liu, G.; Yang, Z.; Singh, P.K.; Krishnan, S.; Ding, D. Supramolecular nanofibers of curcumin for highly amplified radiosensitization of colorectal cancers to ionizing radiation. Adv. Funct. Mater., 2018, 28(14), 1707140.
[http://dx.doi.org/10.1002/adfm.201707140]
[57]
Xie, M.; Fan, D.; Chen, Y.; Zhao, Z.; He, X.; Li, G.; Chen, A.; Wu, X.; Li, J.; Li, Z.; Hunt, J.A.; Li, Y.; Lan, P. An implantable and controlled drug-release silk fibroin nanofibrous matrix to advance the treatment of solid tumour cancers. Biomaterials, 2016, 103, 33-43.
[http://dx.doi.org/10.1016/j.biomaterials.2016.06.049] [PMID: 27376557]
[58]
Shehzad, A.; Qureshi, M.; Anwar, M.N.; Lee, Y.S. Multifunctional curcumin mediate multitherapeutic effects. J. Food Sci., 2017, 82(9), 2006-2015.
[http://dx.doi.org/10.1111/1750-3841.13793] [PMID: 28771714]
[59]
Choudhuri, T.; Pal, S.; Das, T.; Sa, G. Curcumin selectively induces apoptosis in deregulated cyclin D1-expressed cells at G2 phase of cell cycle in a p53-dependent manner. J. Biol. Chem., 2005, 280(20), 20059-20068.
[http://dx.doi.org/10.1074/jbc.M410670200] [PMID: 15738001]
[60]
Vallianou, N.G.; Evangelopoulos, A.; Schizas, N.; Kazazis, C. Potential anticancer properties and mechanisms of action of curcumin. Anticancer Res., 2015, 35(2), 645-651.
[PMID: 25667441]
[61]
Forouzanfar, F.; Barreto, G.; Majeed, M.; Sahebkar, A. Modulatory effects of curcumin on heat shock proteins in cancer: A promising therapeutic approach. Biofactors, 2019, 45(5), 631-640.
[http://dx.doi.org/10.1002/biof.1522] [PMID: 31136038]
[62]
Ghasemi, F.; Shafiee, M.; Banikazemi, Z.; Pourhanifeh, M.H.; Khanbabaei, H.; Shamshirian, A.; Amiri Moghadam, S.; ArefNezhad, R.; Sahebkar, A.; Avan, A.; Mirzaei, H. Curcumin inhibits NF-kB and Wnt/β-catenin pathways in cervical cancer cells. Pathol. Res. Pract., 2019, 215(10), 152556.
[http://dx.doi.org/10.1016/j.prp.2019.152556] [PMID: 31358480]
[63]
Hamzehzadeh, L.; Atkin, S.L.; Majeed, M.; Butler, A.E.; Sahebkar, A. The versatile role of curcumin in cancer prevention and treatment: A focus on PI3K/AKT pathway. J. Cell. Physiol., 2018, 233(10), 6530-6537.
[http://dx.doi.org/10.1002/jcp.26620] [PMID: 29693253]
[64]
Momtazi, A.A.; Shahabipour, F.; Khatibi, S.; Johnston, T.P.; Pirro, M.; Sahebkar, A. Curcumin as a MicroRNA regulator in cancer: A review. Rev. Physiol. Biochem. Pharmacol., 2016, 171, 1-38.
[http://dx.doi.org/10.1007/112_2016_3] [PMID: 27457236]
[65]
Mortezaee, K.; Salehi, E.; Mirtavoos-Mahyari, H.; Motevaseli, E.; Najafi, M.; Farhood, B.; Rosengren, R.J.; Sahebkar, A. Mechanisms of apoptosis modulation by curcumin: Implications for cancer therapy. J. Cell. Physiol., 2019, 234(8), 12537-12550.
[http://dx.doi.org/10.1002/jcp.28122] [PMID: 30623450]
[66]
Soflaei, S.S.; Momtazi-Borojeni, A.A.; Majeed, M.; Derosa, G.; Maffioli, P.; Sahebkar, A. Curcumin: A natural pan-HDAC inhibitor in cancer. Curr. Pharm. Des., 2018, 24(2), 123-129.
[http://dx.doi.org/10.2174/1381612823666171114165051] [PMID: 29141538]
[67]
Teymouri, M.; Pirro, M.; Johnston, T.P.; Sahebkar, A. Curcumin as a multifaceted compound against human papilloma virus infection and cervical cancers: A review of chemistry, cellular, molecular, and preclinical features. Biofactors, 2017, 43(3), 331-346.
[http://dx.doi.org/10.1002/biof.1344] [PMID: 27896883]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy