Perspective

Perspectives on Epigenetic Markers in Adaptation to Physical Exercise

Author(s): Robert Solsona, Fabio Borrani, Henri Bernardi and Anthony M.J. Sanchez*

Volume 11, Issue 2, 2022

Published on: 25 May, 2022

Page: [91 - 94] Pages: 4

DOI: 10.2174/2211536611666220318140844

Open Access Journals Promotions 2
« Previous
[1]
Sanchez, A.M.J.; Bernardi, H.; Py, G.; Candau, R.B. Autophagy is essential to support skeletal muscle plasticity in response to endurance exercise. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2014, 307(8), R956-R969.
[http://dx.doi.org/10.1152/ajpregu.00187.2014] [PMID: 25121614]
[2]
Sanchez, A.M.; Candau, R.; Bernardi, H. Recent data on cellular component turnover: focus on adaptations to physical exercise. Cells, 2019, 8(6), 542.
[http://dx.doi.org/10.3390/cells8060542] [PMID: 31195688]
[3]
Solsona, R.; Pavlin, L.; Bernardi, H.; Sanchez, A.M. Molecular regulation of skeletal muscle growth and organelle biosynthesis: practical recommendations for exercise training. Int. J. Mol. Sci., 2021, 22(5), 2741.
[http://dx.doi.org/10.3390/ijms22052741] [PMID: 33800501]
[4]
Philippe, A.G.; Lionne, C.; Sanchez, A.M.J.; Pagano, A.F.; Candau, R. Increase in muscle power is associated with myofibrillar ATPase adaptations during resistance training. Exp. Physiol., 2019, 104(8), 1274-1285.
[http://dx.doi.org/10.1113/EP087071] [PMID: 31168842]
[5]
Solsona, R.; Sanchez, A.M.J. Exercise and ribosome biogenesis in skeletal muscle hypertrophy: Impact of genetic and epigenetic factors. J. Physiol., 2021, 599(16), 3803-3805.
[http://dx.doi.org/10.1113/JP281984] [PMID: 34197648]
[6]
Watier, T.; Sanchez, A.M. Micro-RNAs, exercise and cellular plasticity in humans: the impact of dietary factors and hypoxia. MicroRNA Shariqah United Arab Emir, 2017, 6(2), 110-124.
[7]
McCarthy, J.J. MicroRNA-206: the skeletal muscle-specific myomiR. Biochim. Biophys. Acta, 2008, 1779(11), 682-691.
[http://dx.doi.org/10.1016/j.bbagrm.2008.03.001] [PMID: 18381085]
[8]
Ma, G.; Wang, Y.; Li, Y. MiR-206, a key modulator of skeletal muscle development and disease. Int. J. Biol. Sci., 2015, 11(3), 345-352.
[http://dx.doi.org/10.7150/ijbs.10921] [PMID: 25678853]
[9]
Domańska-Senderowska D, Laguette MN, Jegier A, Cięszczyk P, September AV, Brzeziańska-Lasota E. MicroRNA profile and adaptive response to exercise training: A review. Int. J. Sports Med., 2019, 40(4), 227-235.
[http://dx.doi.org/10.1055/a-0824-4813] [PMID: 30791082]
[10]
Graham, Z.A.; Lavin, K.M.; O’Bryan, S.M. Mechanisms of exercise as a preventative measure to muscle wasting. Am. J. Physiol. Cell Physiol., 2021, 321(1), C40-C57.
[http://dx.doi.org/10.1152/ajpcell.00056.2021] [PMID: 33950699]
[11]
Gomes, J.L.P.; Tobias, G.C.; Fernandes, T. Effects of aerobic exercise training on myomirs expression in cachectic and non-cachectic cancer mice. Cancers (Basel), 2021, 13(22), 5728.
[http://dx.doi.org/10.3390/cancers13225728] [PMID: 34830882]
[12]
Hong, B.S. Regulation of the effect of physical activity through micrornas in breast cancer. Int. J. Sports Med., 2021.
[http://dx.doi.org/10.1055/a-1678-7147] [PMID: 34872116]
[13]
Russell, A.P.; Lamon, S.; Boon, H. Regulation of miRNAs in human skeletal muscle following acute endurance exercise and short-term endurance training. J. Physiol., 2013, 591(18), 4637-4653.
[http://dx.doi.org/10.1113/jphysiol.2013.255695] [PMID: 23798494]
[14]
Leuenberger, N.; Jan, N.; Pradervand, S.; Robinson, N.; Saugy, M. Circulating microRNAs as long-term biomarkers for the detection of erythropoiesis-stimulating agent abuse. Drug Test. Anal., 2011, 3(11-12), 771-776.
[http://dx.doi.org/10.1002/dta.370] [PMID: 22113880]
[15]
Leuenberger, N.; Schumacher, Y.O.; Pradervand, S.; Sander, T.; Saugy, M.; Pottgiesser, T. Circulating microRNAs as biomarkers for detection of autologous blood transfusion. PLoS One, 2013, 8(6), e66309.
[http://dx.doi.org/10.1371/journal.pone.0066309] [PMID: 23840438]
[16]
Leuenberger, N.; Robinson, N.; Saugy, M. Circulating miRNAs: a new generation of anti-doping biomarkers. Anal. Bioanal. Chem., 2013, 405(30), 9617-9623.
[http://dx.doi.org/10.1007/s00216-013-7340-0] [PMID: 24077830]
[17]
Leuenberger, N.; Saugy, M. Circulating microRNAs: The future of biomarkers in anti-doping field. Adv. Exp. Med. Biol., 2015, 888, 401-408.
[http://dx.doi.org/10.1007/978-3-319-22671-2_20] [PMID: 26663194]
[18]
Figueiredo, V.C.; D’Souza, R.F.; Van Pelt, D.W. Ribosome biogenesis and degradation regulate translational capacity during muscle disuse and reloading. J. Cachexia Sarcopenia Muscle, 2021, 12(1), 130-143.
[http://dx.doi.org/10.1002/jcsm.12636] [PMID: 33231914]
[19]
Stec, M.J.; Kelly, N.A.; Many, G.M.; Windham, S.T.; Tuggle, S.C.; Bamman, M.M. Ribosome biogenesis may augment resistance training-induced myofiber hypertrophy and is required for myotube growth in vitro. Am. J. Physiol. Endocrinol. Metab., 2016, 310(8), E652-E661.
[http://dx.doi.org/10.1152/ajpendo.00486.2015]
[20]
Davidsen, PK; Gallagher, IJ; Hartman, JW High responders to resistance exercise training demonstrate differential regulation of skeletal muscle microRNA expression. J Appl Physiol Bethesda Md 1985, 2011, 110(2), 309-317.
[21]
Figueiredo, V.C.; Wen, Y.; Alkner, B. Genetic and epigenetic regulation of skeletal muscle ribosome biogenesis with exercise. J. Physiol., 2021, 599(13), 3363-3384.
[http://dx.doi.org/10.1113/JP281244] [PMID: 33913170]
[22]
Sieland, J.; Niederer, D.; Engeroff, T. Effects of single bouts of different endurance exercises with different intensities on microRNA biomarkers with and without blood flow restriction: A three-arm, randomized crossover trial. Eur. J. Appl. Physiol., 2021, 121(11), 3243-3255.
[http://dx.doi.org/10.1007/s00421-021-04786-2] [PMID: 34435273]
[23]
Willis, S.J.; Borrani, F.; Millet, G.P. High-intensity exercise with blood flow restriction or in hypoxia as valuable spaceflight countermeasures? Front. Physiol., 2019, 10, 1266.
[http://dx.doi.org/10.3389/fphys.2019.01266] [PMID: 31632298]
[24]
Wortman, R.J.; Brown, S.M.; Savage-Elliott, I.; Finley, Z.J.; Mulcahey, M.K. Blood flow restriction training for athletes: A systematic review. Am. J. Sports Med., 2020, 0363546520964454.
[PMID: 33196300]
[25]
Drummond, M.J.; McCarthy, J.J.; Fry, C.S.; Esser, K.A.; Rasmussen, B.B. Aging differentially affects human skeletal muscle microRNA expression at rest and after an anabolic stimulus of resistance exercise and essential amino acids. Am. J. Physiol. Endocrinol. Metab., 2008, 295(6), E1333-E1340.
[http://dx.doi.org/10.1152/ajpendo.90562.2008] [PMID: 18827171]
[26]
Rivas, D.A.; Lessard, S.J.; Rice, N.P. Diminished skeletal muscle microRNA expression with aging is associated with attenuated muscle plasticity and inhibition of IGF-1 signaling. FASEB J., 2014, 28(9), 4133-4147.
[http://dx.doi.org/10.1096/fj.14-254490] [PMID: 24928197]
[27]
Nair, V.D.; Ge, Y.; Li, S. Sedentary and trained older men have distinct circulating exosomal microRNA profiles at baseline and in response to acute exercise. Front. Physiol., 2020, 11, 605.
[http://dx.doi.org/10.3389/fphys.2020.00605] [PMID: 32587527]
[28]
Bayraktar, R.; Van Roosbroeck, K.; Calin, G.A. Cell-to-cell communication: microRNAs as hormones. Mol. Oncol., 2017, 11(12), 1673-1686.
[http://dx.doi.org/10.1002/1878-0261.12144] [PMID: 29024380]
[29]
Fabbri, M. MicroRNAs and miRceptors: a new mechanism of action for intercellular communication. Philos Trans R Soc B Biol Sci, 2018, 373(1737), 20160486.
[30]
Polakovičová M, Musil P, Laczo E, Hamar D, Kyselovič J. Circulating MicroRNAs as Potential Biomarkers of Exercise Response. Int. J. Mol. Sci., 2016, 17(10), E1553.
[http://dx.doi.org/10.3390/ijms17101553] [PMID: 27782053]
[31]
D’Souza, R.F.; Markworth, J.F.; Aasen, K.M.M.; Zeng, N.; Cameron-Smith, D.; Mitchell, C.J. Acute resistance exercise modulates microRNA expression profiles: Combined tissue and circulatory targeted analyses. PLoS One, 2017, 12(7), e0181594.
[http://dx.doi.org/10.1371/journal.pone.0181594] [PMID: 28750051]
[32]
Garai, K.; Adam, Z.; Herczeg, R. Physical activity as a preventive lifestyle intervention acts through specific exosomal mirna species-evidence from human short- and long-term pilot studies. Front. Physiol., 2021, 12, 658218.
[http://dx.doi.org/10.3389/fphys.2021.658218] [PMID: 34408656]
[33]
Psilander, N; Eftestøl, E; Cumming, KT Effects of training, detraining, and retraining on strength, hypertrophy, and myonuclear number in human skeletal muscle. J Appl Physiol Bethesda Md 1985, 2019, 126(6), 1636, 1645.
[34]
Turner, D.C.; Seaborne, R.A.; Sharples, A.P. Comparative transcriptome and methylome analysis in human skeletal muscle anabolism, hypertrophy and epigenetic memory. Sci. Rep., 2019, 9(1), 4251.
[http://dx.doi.org/10.1038/s41598-019-40787-0] [PMID: 30862794]
[35]
Wen, Y; Dungan, CM; Mobley, CB; Valentino, T; von Walden, F; Murach, KA Nucleus type-specific DNA methylomics reveals epigenetic “memory” of prior adaptation in skeletal muscle. Funct Oxf Engl, 2021, 2(5), zqab038.
[http://dx.doi.org/10.1093/function/zqab038]
[36]
Murach, K.A.; Mobley, C.B.; Zdunek, C.J. Muscle memory: myonuclear accretion, maintenance, morphology, and miRNA levels with training and detraining in adult mice. J. Cachexia Sarcopenia Muscle, 2020, 11(6), 1705-1722.
[http://dx.doi.org/10.1002/jcsm.12617] [PMID: 32881361]
[37]
Nielsen, S.; Scheele, C.; Yfanti, C. Muscle specific microRNAs are regulated by endurance exercise in human skeletal muscle. J. Physiol., 2010, 588(Pt 20), 4029-4037.
[http://dx.doi.org/10.1113/jphysiol.2010.189860] [PMID: 20724368]
[38]
Wada, S.; Kato, Y.; Okutsu, M. Translational suppression of atrophic regulators by microRNA-23a integrates resistance to skeletal muscle atrophy. J. Biol. Chem., 2011, 286(44), 38456-38465.
[http://dx.doi.org/10.1074/jbc.M111.271270] [PMID: 21926429]
[39]
McFarlane, C.; Vajjala, A.; Arigela, H. Negative auto-regulation of myostatin expression is mediated by Smad3 and microRNA-27. PLoS One, 2014, 9(1), e87687.
[http://dx.doi.org/10.1371/journal.pone.0087687] [PMID: 24498167]
[40]
Li, X.; Li, Y.; Zhao, L. Circulating muscle-specific mirnas in duchenne muscular dystrophy patients. Mol. Ther. Nucleic Acids, 2014, 3, e177.
[http://dx.doi.org/10.1038/mtna.2014.29] [PMID: 25050825]
[41]
Silva, F.C.D.; Iop, R.D.R.; Andrade, A.; Costa, V.P.; Gutierres Filho, P.J.B.; Silva, R.D. Effects of physical exercise on the expression of micrornas: a systematic review. J. Strength Cond. Res., 2020, 34(1), 270-280.
[http://dx.doi.org/10.1519/JSC.0000000000003103] [PMID: 31877120]
[42]
Borja-Gonzalez, M; Casas-Martinez, JC; McDonagh, B; Goljanek-Whysall, K Inflamma-miR-21 negatively regulates myogenesis during ageing. Antioxid Basel Switz, 2020, 9(4)
[http://dx.doi.org/10.3390/antiox9040345]
[43]
Pozzo, E.; Giarratana, N.; Sassi, G. Upregulation of miR181a/miR212 Improves Myogenic Commitment in Murine Fusion-Negative Rhabdomyosarcoma. Front. Physiol., 2021, 12, 701354.
[http://dx.doi.org/10.3389/fphys.2021.701354] [PMID: 34421639]
[44]
Patel, R.; Kemp, C.L.; Hafejee, M. The underrepresentation of females in studies assessing the impact of high-dose exercise on cardiovascular outcomes: a scoping review. Sports Med. Open, 2021, 7(1), 30.
[http://dx.doi.org/10.1186/s40798-021-00320-y] [PMID: 33914201]

© 2024 Bentham Science Publishers | Privacy Policy