Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Review Article

Recent Advancements in the Design and Development of Near Infrared (NIR) Emitting Fluorescent Probes for Sensing and their Bio-Imaging Applications

Author(s): Natarajan Vijay, Kuppan Magesh, Renny Louis M and Sivan Velmathi*

Volume 20, Issue 1, 2023

Published on: 04 August, 2022

Page: [114 - 175] Pages: 62

DOI: 10.2174/1570179419666220308145901

Abstract

Fluorescent bio-imaging will be the future in the medical diagnostic for visualising inner cellular and tissues. Near-infrared (NIR) emitting fluorescent probes serve dynamically for targeted fluorescent imaging of live cells and tissues. NIR imaging is advantageous because of its merits like deep tissue penetration, minimum damage to the tissue, reduced auto fluorescence from the background, and improved resolution in imaging. The Development of the NIR emitting probe was well explored recently and growing drastically. In this review, we summarise recent achievements in NIR probes in between 2018-2021. The merits and future applications have also been discussed in this review.

Keywords: NIR probes, reactive oxygen, reactive sulphur species, hydrazine, bio imaging, fluorescent sensors.

Graphical Abstract
[1]
Hilderbrand, S.A.; Weissleder, R. Near-infrared fluorescence: Application to in vivo molecular imaging. Curr. Opin. Chem. Biol., 2010, 14(1), 71-79.
[http://dx.doi.org/10.1016/j.cbpa.2009.09.029] [PMID: 19879798]
[2]
Pysz, M.A.; Gambhir, S.S.; Willmann, J.K. Molecular imaging: Current status and emerging strategies. Clin. Radiol., 2010, 65(7), 500-516.
[http://dx.doi.org/10.1016/j.crad.2010.03.011] [PMID: 20541650]
[3]
Frangioni, J.V. in vivo near-infrared fluorescence imaging. Curr. Opin. Chem. Biol., 2003, 7(5), 626-634.
[http://dx.doi.org/10.1016/j.cbpa.2003.08.007] [PMID: 14580568]
[4]
Escobedo, J.O.; Rusin, O.; Lim, S.; Strongin, R.M. NIR dyes for bioimaging applications. Curr. Opin. Chem. Biol., 2010, 14(1), 64-70.
[http://dx.doi.org/10.1016/j.cbpa.2009.10.022] [PMID: 19926332]
[5]
Fischer, G.M.; Isomäki-Krondahl, M.; Göttker-Schnetmann, I.; Daltrozzo, E.; Zumbusch, A. Pyrrolopyrrole cyanine dyes: A new class of near-infrared dyes and fluorophores. Chemistry, 2009, 15(19), 4857-4864.
[http://dx.doi.org/10.1002/chem.200801996] [PMID: 19296481]
[6]
Gonçalves, M.S. Fluorescent labeling of biomolecules with organic probes. Chem. Rev., 2009, 109(1), 190-212.
[http://dx.doi.org/10.1021/cr0783840] [PMID: 19105748]
[7]
Diao, S.; Hong, G.; Antaris, A.L.; Blackburn, J.L.; Cheng, K.; Cheng, Z.; Dai, H. Biological imaging without autofluorescence in the second near-infrared region. Nano Res., 2015, 8(9), 3027-3034.
[http://dx.doi.org/10.1007/s12274-015-0808-9]
[8]
Hong, G.; Antaris, A.L.; Dai, H. Near-infrared fluorophores for biomedical imaging. Nat. Biomed. Eng., 2017, 1(1), 1-22.
[http://dx.doi.org/10.1038/s41551-016-0010]
[9]
Reineck, P.; Gibson, B.C. Near‐infrared fluorescent nanomaterials for bioimaging and sensing. Adv. Opt. Mater., 2017, 5(2), 1600446.
[http://dx.doi.org/10.1002/adom.201600446]
[10]
Guan, Y.S.; Niu, L.Y.; Chen, Y.Z.; Wu, L.Z.; Tung, C.H.; Yang, Q.Z. A near-infrared fluorescent sensor for selective detection of cysteine and its application in live cell imaging. RSC Advances, 2014, 4(16), 8360-8364.
[http://dx.doi.org/10.1039/c3ra47116k]
[11]
Umezawa, K.; Citterio, D.; Suzuki, K. New trends in near-infrared fluorophores for bioimaging. Anal. Sci., 2014, 30(3), 327-349.
[http://dx.doi.org/10.2116/analsci.30.327] [PMID: 24614728]
[12]
Hou, J.; Qian, M.; Zhao, H.; Li, Y.; Liao, Y.; Han, G.; Xu, Z.; Wang, F.; Song, Y.; Liu, Y. A near-infrared ratiometric/turn-on fluorescent probe for in vivo imaging of hydrogen peroxide in a murine model of acute inflammation. Anal. Chim. Acta, 2018, 1024, 169-176.
[http://dx.doi.org/10.1016/j.aca.2018.03.028] [PMID: 29776543]
[13]
Diao, Q.; Guo, H.; Yang, Z.; Luo, W.; Li, T.; Hou, D. Design of a nile red-based NIR fluorescent probe for the detection of hydrogen peroxide in living cells. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2019, 223, 117284.
[http://dx.doi.org/10.1016/j.saa.2019.117284] [PMID: 31229902]
[14]
Zhou, Z.; Li, Y.; Su, W.; Gu, B.; Xu, H.; Wu, C.; Yin, P.; Li, H.; Zhang, Y. A dual-signal colorimetric and near-infrared fluorescence probe for the detection of exogenous and endogenous hydrogen peroxide in living cells. Sens. Actuators B Chem., 2019, 280, 120-128.
[http://dx.doi.org/10.1016/j.snb.2018.09.126]
[15]
Li, X.; Zhao, Y.; Zheng, J.; Zhang, T. Boron dipyrromethene-based near-infrared fluorescent probe for the selective imaging and analyzing hydrogen peroxide in living cells. J. Lumin., 2021, 229, 117642.
[http://dx.doi.org/10.1016/j.jlumin.2020.117642]
[16]
Tang, L.; Tian, M.; Chen, H.; Yan, X.; Zhong, K.; Bian, Y. An ESIPT-based mitochondria-targeted ratiometric and NIR-emitting fluorescent probe for hydrogen peroxide and its bioimaging in living cells. Dyes Pigments, 2018, 158, 482-489.
[http://dx.doi.org/10.1016/j.dyepig.2017.12.028]
[17]
Zhang, J.; Shi, L.; Li, Z.; Li, D.; Tian, X.; Zhang, C. Near-infrared fluorescence probe for hydrogen peroxide detection: design, synthesis, and application in living systems. Analyst, 2019, 144(11), 3643-3648.
[http://dx.doi.org/10.1039/C9AN00385A] [PMID: 31073567]
[18]
Wang, W.X.; Jiang, W.L.; Liu, Y.; Li, Y.; Zhang, J.; Li, C.Y. Near-infrared fluorescence probe with a large stokes shift for visualizing hydrogen peroxide in ulcerative colitis mice. Sens. Actuators B Chem., 2020, 320, 128296.
[http://dx.doi.org/10.1016/j.snb.2020.128296]
[19]
Wang, W.X.; Jiang, W.L.; Mao, G.J.; Tan, M.; Fei, J.; Li, Y.; Li, C.Y. Monitoring the fluctuation of hydrogen peroxide in diabetes and its complications with a novel near-infrared fluorescent probe. Anal. Chem., 2021, 93(6), 3301-3307.
[http://dx.doi.org/10.1021/acs.analchem.0c05364] [PMID: 33535747]
[20]
Li, S.; Wang, P.; Feng, W.; Xiang, Y.; Dou, K.; Liu, Z. Simultaneous imaging of mitochondrial viscosity and hydrogen peroxide in Alzheimer’s disease by a single near-infrared fluorescent probe with a large stokes shift. Chem. Commun., 2020, 56(7), 1050-1053.
[http://dx.doi.org/10.1039/C9CC08267K] [PMID: 31868186]
[21]
Chen, X.; Ren, X.; Zhang, L.; Liu, Z.; Hai, Z. Mitochondria-targeted fluorescent and photoacoustic imaging of hydrogen peroxide in inflammation. Anal. Chem., 2020, 92(20), 14244-14250.
[http://dx.doi.org/10.1021/acs.analchem.0c03506] [PMID: 32985876]
[22]
Xu, R.; Wang, Y.; You, H.; Zhang, L.; Wang, Y.; Chen, L. A near-infrared fluorescent probe for evaluating endogenous hydrogen peroxide during ischemia/reperfusion injury. Analyst, 2019, 144(8), 2556-2564.
[http://dx.doi.org/10.1039/C9AN00243J] [PMID: 30882813]
[23]
Mao, W.; Zhu, M.; Yan, C.; Ma, Y.; Guo, Z.; Zhu, W. Rational design of ratiometric near-infrared aza-BODIPY-based fluorescent probe for in vivo imaging of endogenous hydrogen peroxide. ACS Appl. Bio Mater., 2020, 3(1), 45-52.
[http://dx.doi.org/10.1021/acsabm.9b00842] [PMID: 35019425]
[24]
Bi, X.; Wang, Y.; Wang, D.; Liu, L.; Zhu, W.; Zhang, J.; Zha, X. A mitochondrial-targetable dual functional near-infrared fluorescent probe to monitor pH and H2O 2 in living cells and mice. RSC Advances, 2020, 10(45), 26874-26879.
[http://dx.doi.org/10.1039/D0RA03905E]
[25]
Huang, X.; Li, Z.; Liu, Z.; Zeng, C.; Hu, L. A near-infrared fluorescent probe for endogenous hydrogen peroxide real-time imaging in living cells and zebrafish. Dyes Pigments, 2019, 165, 518-523.
[http://dx.doi.org/10.1016/j.dyepig.2019.02.042]
[26]
He, Y.; Miao, L.; Yu, L.; Chen, Q.; Qiao, Y.; Zhang, J.F.; Zhou, Y. A near-infrared fluorescent probe for detection of exogenous and endogenous hydrogen peroxide in vivo. Dyes Pigments, 2019, 168, 160-165.
[http://dx.doi.org/10.1016/j.dyepig.2019.04.055]
[27]
Han, H.; He, X.; Wu, M.; Huang, Y.; Zhao, L.; Xu, L.; Ma, P.; Sun, Y.; Song, D.; Wang, X. A novel colorimetric and near-infrared fluorescence probe for detecting and imaging exogenous and endogenous hydrogen peroxide in living cells. Talanta, 2020, 217, 121000.
[http://dx.doi.org/10.1016/j.talanta.2020.121000] [PMID: 32498844]
[28]
Xiong, J.; Xia, L.; Li, L.; Cui, M.; Gu, Y.; Wang, P. An acetate-based NIR fluorescent probe for selectively imaging of hydrogen peroxide in living cells and in vivo. Sens. Actuators B Chem., 2019, 288, 127-132.
[http://dx.doi.org/10.1016/j.snb.2019.02.100]
[29]
Lan, J.; Guo, J.; Jiang, X.; Chen, Y.; Hu, Z.; Que, Y.; Li, H.; Gu, J.; Ho, R.J.; Zeng, R.; Ding, Y.; Zhang, T. A new dicyanoisophorone-based ratiometric and colorimetric near-infrared fluorescent probe for specifically detecting hypochlorite and its bioimaging on a model of acute inflammation. Anal. Chim. Acta, 2020, 1094, 70-79.
[http://dx.doi.org/10.1016/j.aca.2019.09.076] [PMID: 31761049]
[30]
Tong, H.; Zhang, Y.; Ma, S.; Zhang, M.; Wang, N.; Wang, R.; Lou, K.; Wang, W. A pinacol boronate caged NIAD-4 derivative as a near-infrared fluorescent probe for fast and selective detection of hypochlorous acid. Chin. Chem. Lett., 2018, 29(1), 139-142.
[http://dx.doi.org/10.1016/j.cclet.2017.07.007]
[31]
Xu, L.; Wu, M.; Zhao, L.; Han, H.; Zhang, S.; Ma, P.; Sun, Y.; Wang, X.; Song, D. A novel highly sensitive and near-infrared fluorescent probe for detecting hypochlorite and its application in actual water sample and bioimaging. Talanta, 2020, 215, 120892.
[http://dx.doi.org/10.1016/j.talanta.2020.120892] [PMID: 32312437]
[32]
Zhu, B.; Wu, L.; Zhang, M.; Wang, Y.; Liu, C.; Wang, Z.; Duan, Q.; Jia, P. A highly specific and ultrasensitive near-infrared fluorescent probe for imaging basal hypochlorite in the mitochondria of living cells. Biosens. Bioelectron., 2018, 107, 218-223.
[http://dx.doi.org/10.1016/j.bios.2018.02.023] [PMID: 29475185]
[33]
Huang, Y.; Zhang, Y.; Huo, F.; Chao, J.; Yin, C. A near-infrared ratiometric fluorescent probe with large stokes based on isophorone for rapid detection of ClO− and its bioimaging in cell and mice. Sens. Actuators B Chem., 2019, 287, 453-458.
[http://dx.doi.org/10.1016/j.snb.2019.02.075]
[34]
Xi, L.L.; Guo, X.F.; Wang, C.L.; Wu, W.L.; Huang, M.F.; Miao, J.Y.; Zhao, B.X. A near-infrared ratiometric fluorescent probe for rapid and selective detection of hypochlorous acid in aqueous solution and living cells. Sens. Actuators B Chem., 2018, 255, 666-671.
[http://dx.doi.org/10.1016/j.snb.2017.08.073]
[35]
Zhao, X.J.; Jiang, Y.R.; Chen, Y.X.; Yang, B.Q.; Li, Y.T.; Liu, Z.H.; Liu, C. A new “off-on” NIR fluorescence probe for determination and bio-imaging of mitochondrial hypochlorite in living cells and zebrafish. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2019, 219, 509-516.
[http://dx.doi.org/10.1016/j.saa.2019.05.001] [PMID: 31078818]
[36]
Song, X.; Dong, B.; Kong, X.; Wang, C.; Zhang, N.; Lin, W. Construction of a ratiometric fluorescent probe with an extremely large emission shift for imaging hypochlorite in living cells. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2018, 188, 394-399.
[http://dx.doi.org/10.1016/j.saa.2017.07.011] [PMID: 28755637]
[37]
Xiong, K.; Huo, F.; Zhang, Y.; Wen, Y.; Yin, C. A NIR ratiometric fluorescent probe for the ‘naked-eye’detection of endogenous hypochlorous acid in practical samples. Anal. Methods, 2019, 11(13), 1751-1756.
[http://dx.doi.org/10.1039/C9AY00011A]
[38]
Huang, Y.; He, N.; Wang, Y.; Zhang, L.; Kang, Q.; Wang, Y.; Shen, D.; Choo, J.; Chen, L. Detection of hypochlorous acid fluctuation via a selective near-infrared fluorescent probe in living cells and in vivo under hypoxic stress. J. Mater. Chem. B Mater. Biol. Med., 2019, 7(15), 2557-2564.
[http://dx.doi.org/10.1039/C9TB00079H] [PMID: 32255132]
[39]
Gong, J.; Liu, C.; Cai, S.; He, S.; Zhao, L.; Zeng, X. Novel near-infrared fluorescent probe with a large Stokes shift for sensing hypochlorous acid in mitochondria. Org. Biomol. Chem., 2020, 18(38), 7656-7662.
[http://dx.doi.org/10.1039/D0OB01563F] [PMID: 32966521]
[40]
Natarajan, V.; Thirumalaivasan, N.; Wu, S.P.; Sivan, V. A far-red to NIR emitting ultra-sensitive probe for the detection of endogenous HOCl in zebrafish and the RAW 264.7 cell line. Org. Biomol. Chem., 2019, 17(14), 3538-3544.
[http://dx.doi.org/10.1039/C9OB00143C] [PMID: 30896014]
[41]
Jiao, X.; Huang, K.; He, S.; Liu, C.; Zhao, L.; Zeng, X. A mitochondria-targeted near-infrared fluorescent probe with a large stokes shift for real-time detection of hypochlorous acid. Org. Biomol. Chem., 2018, 17(1), 108-114.
[http://dx.doi.org/10.1039/C8OB02583E] [PMID: 30520928]
[42]
Nie, J.; Sun, H.; Miao, B.; Ni, Z. A novel coumarin-based ratiometric near-infrared fluorescence probe for hypochlorous acid in living cells. Dyes Pigments, 2020, 181, 108590.
[http://dx.doi.org/10.1016/j.dyepig.2020.108590]
[43]
Wang, L.; Liu, J.; Zhang, H.; Guo, W. Discrimination between cancerous and normal cells/tissues enabled by a near-infrared fluorescent HClO probe. Sens. Actuators B Chem., 2021, 334, 129602.
[http://dx.doi.org/10.1016/j.snb.2021.129602]
[44]
Mao, G.J.; Liang, Z.Z.; Bi, J.; Zhang, H.; Meng, H.M.; Su, L.; Gong, Y.J.; Feng, S.; Zhang, G. A near-infrared fluorescent probe based on photostable Si-rhodamine for imaging hypochlorous acid during lysosome-involved inflammatory response. Anal. Chim. Acta, 2019, 1048, 143-153.
[http://dx.doi.org/10.1016/j.aca.2018.10.014] [PMID: 30598144]
[45]
Yang, J.; Fan, M.; Sun, Y.; Zhang, M.; Xue, Y.; Zhang, D.; Wang, T.; Cui, X. A near-infrared fluorescent probe based on phosphorus-substituted rhodamine for deep imaging of endogenous hypochlorous acid in vivo. Sens. Actuators B Chem., 2020, 307, 127652.
[http://dx.doi.org/10.1016/j.snb.2019.127652]
[46]
Mao, G.J.; Wang, Y.Y.; Dong, W.P.; Meng, H.M.; Wang, Q.Q.; Luo, X.F.; Li, Y.; Zhang, G. A lysosome-targetable two-photon excited near-infrared fluorescent probe for visualizing hypochlorous acid-involved arthritis and its treatment. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2021, 249, 119326.
[http://dx.doi.org/10.1016/j.saa.2020.119326] [PMID: 33360565]
[47]
Wang, T.R.; Zhang, X.F.; Huang, X.Q.; Cao, X.Q.; Shen, S.L. Rapid and selective visualization of mitochondrial hypochlorite by a red region water-soluble fluorescence probe. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2021, 247, 119115.
[http://dx.doi.org/10.1016/j.saa.2020.119115] [PMID: 33161266]
[48]
Qian, X.; Yu, H.; Zhu, W.; Yao, X.; Liu, W.; Yang, S.; Zhou, F.; Liu, Y. Near infrared fluorescent probe for in vivo bioimaging of endogenous hypochlorous acid. Dyes Pigments, 2021, 188, 109218.
[http://dx.doi.org/10.1016/j.dyepig.2021.109218]
[49]
Deng, Y.; Feng, S.; Xia, Q.; Gong, S.; Feng, G. A novel reaction-based fluorescence probe for rapid imaging of HClO in live cells, animals, and injured liver tissues. Talanta, 2020, 215, 120901.
[http://dx.doi.org/10.1016/j.talanta.2020.120901] [PMID: 32312446]
[50]
Gao, W.; Ma, Y.; Liu, Y.; Ma, S.; Lin, W. Observation of endogenous HClO in living mice with inflammation, tissue injury and bacterial infection by a near-infrared fluorescent probe. Sens. Actuators B Chem., 2021, 327, 128884.
[http://dx.doi.org/10.1016/j.snb.2020.128884]
[51]
Yang, J.; Zheng, W.; Shen, Y.; Xu, Y.; Lv, G.; Li, C. A novel near-infrared fluorescent probe based on phenoxazine for the specific detection of HOCl. J. Lumin., 2020, 226, 117460.
[http://dx.doi.org/10.1016/j.jlumin.2020.117460]
[52]
He, M.; Ye, M.; Wang, Z.; Liu, P.; Li, H.; Lu, C.; Wang, Y.; Liang, T.; Li, H.; Li, C. A ratiometric near-infrared fluorescent probe with a large emission peak shift for sensing and imaging hypochlorous acid. Sens. Actuators B Chem., 2021, 343, 130063.
[http://dx.doi.org/10.1016/j.snb.2021.130063]
[53]
Zhang, Y.Y.; Chen, X.Z.; Liu, X.Y.; Zhang, X.Y.; Gao, G.; Hou, S.C.; Wang, H.M. A highly selective and ultrafast near-infrared fluorescent turn-on and colorimetric probe for hypochlorite in living cells. Anal. Chim. Acta, 2019, 1078, 135-141.
[http://dx.doi.org/10.1016/j.aca.2019.06.014] [PMID: 31358211]
[54]
Yang, J.; Liu, X.; Wang, H.; Tan, H.; Xie, X.; Zhang, X.; Liu, C.; Qu, X.; Hua, J. A turn-on near-infrared fluorescence probe with aggregation-induced emission based on dibenzo[a,c]phenazine for detection of superoxide anions and its application in cell imaging. Analyst, 2018, 143(5), 1242-1249.
[http://dx.doi.org/10.1039/C7AN01860F] [PMID: 29431796]
[55]
Xu, C.; Xu, W.; Yang, Z.; Li, S.; Wang, Y.; Hua, J. A turn-on mitochondria-targeted near-infrared fluorescent probe with a large Stokes shift for detecting and imaging endogenous superoxide anion in cells. J. Photochem. Photobiol. Chem., 2021, 415, 113304.
[http://dx.doi.org/10.1016/j.jphotochem.2021.113304]
[56]
Han, X.; Wang, R.; Song, X.; Yu, F.; Lv, C.; Chen, L. A mitochondrial-targeting near-infrared fluorescent probe for bioimaging and evaluating endogenous superoxide anion changes during ischemia/reperfusion injury. Biomaterials, 2018, 156, 134-146.
[http://dx.doi.org/10.1016/j.biomaterials.2017.11.039] [PMID: 29195182]
[57]
Wang, Y.; Gao, M.; Liao, C.; Yu, F.; Chen, L. A sulfydryl-based near-infrared ratiometic fluorescent probe for assessment of acute/chronic mercury exposure via associated determination of superoxide anion and mercury ion in cells and in vivo. Sens. Actuators B Chem., 2019, 301, 127038.
[http://dx.doi.org/10.1016/j.snb.2019.127038]
[58]
Sun, C.; Du, W.; Zhang, W.; Wu, Y.; Yao, Z.; Wang, B.; Wu, T.; Yang, H.; Wang, Y.; Ren, L. A novel near-infrared probe for the imaging of superoxide anion fluctuations and hydrogen ion enhancement in vivo. Anal. Methods, 2018, 10(30), 3727-3736.
[http://dx.doi.org/10.1039/C8AY01190G]
[59]
Wang, Z.; Wang, W.; Wang, P.; Song, X.; Mao, Z.; Liu, Z. Highly Sensitive Near-Infrared Imaging of Peroxynitrite Fluxes in Inflammation Progress. Anal. Chem., 2021, 93(5), 3035-3041.
[http://dx.doi.org/10.1021/acs.analchem.0c05118] [PMID: 33494590]
[60]
Jia, P.; Liu, D.; Zhuang, Z.; Liu, C.; Li, Z.; Yu, C.; Chen, Y.; Zhu, H.; Zhang, X.; Yu, Y.; Zhu, B.; Sheng, W. Dicyanoisophorone-derived near-infrared fluorescent probe for ultrasensitive detection of peroxynitrite in living cells and zebrafish. Ind. Eng. Chem. Res., 2019, 58(43), 19778-19784.
[http://dx.doi.org/10.1021/acs.iecr.9b03854]
[61]
Wu, L.; Tian, X.; Han, H.H.; Wang, J.; Groleau, R.R.; Tosuwan, P.; Wannalerse, B.; Sedgwick, A.C.; Bull, S.D.; He, X.P.; James, T.D. A simple near-infrared fluorescent probe for the detection of peroxynitrite. ChemistryOpen, 2019, 8(12), 1407-1409.
[http://dx.doi.org/10.1002/open.201900301] [PMID: 31867147]
[62]
Zeng, X.; Li, Z.; Fu, J.; Jiang, C.; Ma, M.; Zhu, L.; Jin, X. A novel ultrasensitive peroxynitrite-specific fluorescent probe and its bioimaging applications in living systems. Dyes Pigments, 2021, 186, 108982.
[http://dx.doi.org/10.1016/j.dyepig.2020.108982]
[63]
Deng, Y.; Feng, G. Visualization of ONOO–and viscosity in drug-induced hepatotoxicity with different fluorescence signals by a sensitive fluorescent probe. Anal. Chem., 2020, 92(21), 14667-14675.
[http://dx.doi.org/10.1021/acs.analchem.0c03199] [PMID: 33090768]
[64]
Tian, Y.; Zhou, D.Y.; Jiang, W.L.; She, Z.P.; Li, Y.; Li, C.Y. Novel near-infrared fluorescence probe with large Stokes shift for monitoring CCl4-induced toxic hepatitis. Talanta, 2021, 223(Pt 1), 121720.
[http://dx.doi.org/10.1016/j.talanta.2020.121720] [PMID: 33303166]
[65]
Feng, S.; Liu, D.; Feng, G. A dual-channel probe with green and near-infrared fluorescence changes for in vitro and in vivo detection of peroxynitrite. Anal. Chim. Acta, 2019, 1054, 137-144.
[http://dx.doi.org/10.1016/j.aca.2018.12.021] [PMID: 30712584]
[66]
Liu, D.; Feng, S.; Feng, G. A rapid responsive colorimetric and near-infrared fluorescent turn-on probe for imaging exogenous and endogenous peroxynitrite in living cells. Sens. Actuators B Chem., 2018, 269, 15-21.
[http://dx.doi.org/10.1016/j.snb.2018.04.152]
[67]
Liu, C.; Zhang, X.; Li, Z.; Chen, Y.; Zhuang, Z.; Jia, P.; Zhu, H.; Yu, Y.; Zhu, B.; Sheng, W. Novel dimethylhydrazine-derived spirolactam fluorescent chemodosimeter for tracing basal peroxynitrite in live cells and zebrafish. J. Agric. Food Chem., 2019, 67(22), 6407-6413.
[http://dx.doi.org/10.1021/acs.jafc.9b01298] [PMID: 31083940]
[68]
Feng, W.; Feng, G. A lysosome-targetable fluorescent probe for imaging ONOO− in living cells and animals. Dyes Pigments, 2019, 164, 174-181.
[http://dx.doi.org/10.1016/j.dyepig.2019.01.028]
[69]
Mao, G.J.; Gao, G.Q.; Dong, W-P.; Wang, Q.Q.; Wang, Y.Y.; Li, Y.; Su, L.; Zhang, G. A two-photon excited near-infrared fluorescent probe for imaging peroxynitrite during drug-induced hepatotoxicity and its remediation. Talanta, 2021, 221, 121607.
[http://dx.doi.org/10.1016/j.talanta.2020.121607] [PMID: 33076137]
[70]
Li, Z.; Liu, C.; Yu, C.; Chen, Y.; Jia, P.; Zhu, H.; Zhang, X.; Yu, Y.; Zhu, B.; Sheng, W. A highly selective and sensitive red-emitting fluorescent probe for visualization of endogenous peroxynitrite in living cells and zebrafish. Analyst, 2019, 144(10), 3442-3449.
[http://dx.doi.org/10.1039/C9AN00347A] [PMID: 31020958]
[71]
Wu, Y.; Shi, A.; Li, Y.; Zeng, H.; Chen, X.; Wu, J.; Fan, X. A near-infrared xanthene fluorescence probe for monitoring peroxynitrite in living cells and mouse inflammation model. Analyst, 2018, 143(22), 5512-5519.
[http://dx.doi.org/10.1039/C8AN01107A] [PMID: 30295297]
[72]
Yuan, R.; Ma, Y.; Du, J.; Meng, F.; Guo, J.; Hong, M.; Yue, Q.; Li, X.; Li, C. A novel highly selective near-infrared and naked-eye fluorescence probe for imaging peroxynitrite. Anal. Methods, 2019, 11(11), 1522-1529.
[http://dx.doi.org/10.1039/C8AY02632G]
[73]
Gu, B.; Liu, C.; Wu, Y.; Zhang, C.; Shen, Y.; Liu, M. Application of a colorimetric and near-infrared fluorescent probe in peroxynitrite detection and imaging in living cells. ACS Omega, 2020, 5(42), 27530-27535.
[http://dx.doi.org/10.1021/acsomega.0c04073] [PMID: 33134716]
[74]
Luo, X.; Cheng, Z.; Wang, R.; Yu, F. Indication of dynamic peroxynitrite fluctuations in the rat epilepsy model with a near-infrared two-photon fluorescent probe. Anal. Chem., 2021, 93(4), 2490-2499.
[http://dx.doi.org/10.1021/acs.analchem.0c04529] [PMID: 33433198]
[75]
Zhang, Y.; Ma, D. Selective detection of peroxynitrite in living cells by a near-infrared diphenyl phosphinate-based dicyanoisophorone probe. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2021, 244, 118890.
[http://dx.doi.org/10.1016/j.saa.2020.118890] [PMID: 32898727]
[76]
Xie, X.; Tang, F.; Liu, G.; Li, Y.; Su, X.; Jiao, X.; Wang, X.; Tang, B. Mitochondrial peroxynitrite mediation of anthracycline-induced cardiotoxicity as visualized by a two-photon near-infrared fluorescent probe. Anal. Chem., 2018, 90(19), 11629-11635.
[http://dx.doi.org/10.1021/acs.analchem.8b03207] [PMID: 30196694]
[77]
Yin, X.; Feng, W.; Gong, S.; Feng, G. Near-infrared fluorescent probe with rapid response and large stokes shift for imaging peroxynitrite in living cells, zebrafish and mice. Dyes Pigments, 2020, 172, 107820.
[http://dx.doi.org/10.1016/j.dyepig.2019.107820]
[78]
Sun, Q.; Xu, J.; Ji, C.; Shaibani, M.S.S.; Li, Z.; Lim, K.; Zhang, C.; Li, L.; Liu, Z. Ultrafast detection of peroxynitrite in Parkinson’s disease models using a near-infrared fluorescent probe. Anal. Chem., 2020, 92(5), 4038-4045.
[http://dx.doi.org/10.1021/acs.analchem.9b05599] [PMID: 32028762]
[79]
Zhu, M.; Zhou, H.; Ji, D.; Li, G.; Wang, F.; Song, D.; Deng, B.; Li, C.; Qiao, R. A near-infrared fluorescence probe for ultrafast and selective detection of peroxynitrite with large Stokes shift in inflamed mouse models. Dyes Pigments, 2019, 168, 77-83.
[http://dx.doi.org/10.1016/j.dyepig.2019.04.046]
[80]
Lu, J.; Li, Z.; Zheng, X.; Tan, J.; Ji, Z.; Sun, Z.; You, J. A rapid response near-infrared ratiometric fluorescent probe for the real-time tracking of peroxynitrite for pathological diagnosis and therapeutic assessment in a rheumatoid arthritis model. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(40), 9343-9350.
[http://dx.doi.org/10.1039/D0TB01970D] [PMID: 32969462]
[81]
Liu, H.W.; Zhang, H.; Lou, X.; Teng, L.; Yuan, J.; Yuan, L.; Zhang, X.B.; Tan, W. Imaging of peroxynitrite in drug-induced acute kidney injury with a near-infrared fluorescence and photoacoustic dual-modal molecular probe. Chem. Commun., 2020, 56(58), 8103-8106.
[http://dx.doi.org/10.1039/D0CC01621G] [PMID: 32555855]
[82]
Zhang, J.; Zhen, X.; Zeng, J.; Pu, K. A dual-modal molecular probe for near-infrared fluorescence and photoacoustic imaging of peroxynitrite. Anal. Chem., 2018, 90(15), 9301-9307.
[http://dx.doi.org/10.1021/acs.analchem.8b01879] [PMID: 29940731]
[83]
Wang, S.; Liu, J.; Song, L.; Qi, Q.; Li, Z.; Huang, W. A selective and sensitive near-infrared fluorescent probe for in vivo real time tracking of exogenous and metabolized hydrazine, a genotoxic impurity. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(45), 10353-10359.
[http://dx.doi.org/10.1039/D0TB02063J] [PMID: 33063804]
[84]
Lu, Z.; Shi, X.; Ma, Y.; Fan, W.; Lu, Y.; Wang, Z.; Fan, C. A simple two-output near-infrared fluorescent probe for hydrazine detection in living cells and mice. Sens. Actuators B Chem., 2018, 258, 42-49.
[http://dx.doi.org/10.1016/j.snb.2017.11.125]
[85]
Zhu, M.; Zhao, Z.; Huang, Y.; Fan, F.; Wang, F.; Li, W.; Wu, X.; Hua, R.; Wang, Y. Hydrazine exposure: A near-infrared ICT-based fluorescent probe and its application in bioimaging and sewage analysis. Sci. Total Environ., 2021, 759, 143102.
[http://dx.doi.org/10.1016/j.scitotenv.2020.143102] [PMID: 33127121]
[86]
Vijay, N.; Velmathi, S. Near-Infrared-Emitting probes for detection of nanomolar hydrazine in a complete aqueous medium with real-time application in bioimaging and vapor-phase hydrazine detection. ACS Sustain. Chem.& Eng., 2020, 8(11), 4457-4463.
[http://dx.doi.org/10.1021/acssuschemeng.9b07445]
[87]
Jia, X.; Li, X.; Geng, X.; Nie, C.; Zhang, P.; Wei, C.; Li, X. A seminaphthorhodafluor-based near-infrared fluorescent probe for hydrazine and its bioimaging in living systems. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2019, 223, 117307.
[http://dx.doi.org/10.1016/j.saa.2019.117307] [PMID: 31255859]
[88]
Shi, X.; Huo, F.; Chao, J.; Zhang, Y.; Yin, C. An isophorone-based NIR probe for hydrazine in real water samples and hermetic space. New J. Chem., 2019, 43(25), 10025-10029.
[http://dx.doi.org/10.1039/C9NJ01661A]
[89]
Wang, S.; Ma, S.; Zhang, J.; She, M.; Liu, P.; Zhang, S.; Li, J. A highly sensitive and selective near-infrared fluorescent probe for imaging hydrazine in living tissues and mice. Sens. Actuators B Chem., 2018, 261, 418-424.
[http://dx.doi.org/10.1016/j.snb.2018.01.126]
[90]
Song, Y.; Chen, G.; Han, X.; You, J.; Yu, F. A highly sensitive near-infrared ratiometric fluorescent probe for imaging of mitochondrial hydrazine in cells and in mice models. Sens. Actuators B Chem., 2019, 286, 69-76.
[http://dx.doi.org/10.1016/j.snb.2019.01.116]
[91]
Zhang, S.; Chen, D.; Yan, L.; Xie, Y.; Mu, X.; Zhu, J. A near-infrared fluorescence probe for hydrazine based on dicyanoisophorone. Microchem. J., 2020, 157, 105066.
[http://dx.doi.org/10.1016/j.microc.2020.105066]
[92]
Zhang, T.; Zhu, L.; Lin, W. A near infrared ratiometric fluorescent probe with Aggregation Induced Emission (AIE) characteristics for hydrazine detection in vitro and in vivo. Dyes Pigments, 2021, 188, 109177.
[http://dx.doi.org/10.1016/j.dyepig.2021.109177]
[93]
Wu, C.; Xie, R.; Pang, X.; Li, Y.; Zhou, Z.; Li, H. A colorimetric and near-infrared ratiometric fluorescent probe for hydrazine detection and bioimaging. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 243, 118764.
[http://dx.doi.org/10.1016/j.saa.2020.118764] [PMID: 32827910]
[94]
Zhang, C.X.; Xiang, M.H.; Liu, X.J.; Wang, F.; Yu, R.Q.; Jiang, J.H. Development of large Stokes shift, near-infrared fluorescence probe for rapid and bioorthogonal imaging of nitroxyl (HNO) in living cells. Talanta, 2019, 193, 152-160.
[http://dx.doi.org/10.1016/j.talanta.2018.09.062] [PMID: 30368285]
[95]
Wang, T.; Chai, Y.; Chen, S.; Yang, G.; Lu, C.; Nie, J.; Ma, C.; Chen, Z.; Sun, Q.; Zhang, Y.; Ren, J.; Wang, F.; Zhu, W-H. Near-infrared fluorescent probe for imaging nitroxyl in living cells and zebrafish model. Dyes Pigments, 2019, 166, 260-265.
[http://dx.doi.org/10.1016/j.dyepig.2019.03.013]
[96]
Palanisamy, S.; Chen, L.F.; Tzou, S.C.; Wang, Y.M. Near-infrared templated fluorescent probe for nitroxyl: Selective and sensitive turn-on detection in living cells. Sens. Actuators B Chem., 2020, 310, 127839.
[http://dx.doi.org/10.1016/j.snb.2020.127839]
[97]
Huang, Y.; Zhang, X.; He, N.; Wang, Y.; Kang, Q.; Shen, D.; Yu, F.; Chen, L. Imaging of anti-inflammatory effects of HNO via a near-infrared fluorescent probe in cells and in rat gouty arthritis model. J. Mater. Chem. B Mater. Biol. Med., 2019, 7(2), 305-313.
[http://dx.doi.org/10.1039/C8TB02494D] [PMID: 32254555]
[98]
Liu, Z.; Sun, Q. A near-infrared fluorescent probe for imaging of nitroxyl in living cells. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 241, 118680.
[http://dx.doi.org/10.1016/j.saa.2020.118680] [PMID: 32650249]
[99]
Chai, Z.; Liu, D.; Li, X.; Zhao, Y.; Shi, W.; Li, X.; Ma, H. A tumor-targeted near-infrared fluorescent probe for HNO and its application to the real-time monitoring of HNO release in vivo. Chem. Commun., 2021, 57(41), 5063-5066.
[http://dx.doi.org/10.1039/D1CC01462E] [PMID: 33884388]
[100]
Zhong, K.; Deng, L.; Zhao, J.; Yan, X.; Sun, T.; Li, J.; Tang, L. A novel near-infrared fluorescent probe for highly selective recognition of hydrogen sulfide and imaging in living cells. RSC Advances, 2018, 8(42), 23924-23929.
[http://dx.doi.org/10.1039/C8RA03457E]
[101]
Gu, B.; Su, W.; Huang, L.; Wu, C.; Duan, X.; Li, Y.; Xu, H.; Huang, Z.; Li, H.; Yao, S. Real-time tracking and selective visualization of exogenous and endogenous hydrogen sulfide by a near-infrared fluorescent probe. Sens. Actuators B Chem., 2018, 255, 2347-2355.
[http://dx.doi.org/10.1016/j.snb.2017.09.045]
[102]
Zhong, K.; Chen, L.; Pan, Y.; Yan, X.; Hou, S.; Tang, Y.; Gao, X.; Li, J.; Tang, L. A colorimetric and near-infrared fluorescent probe for detection of hydrogen sulfide and its real multiple applications. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2019, 221, 117135.
[http://dx.doi.org/10.1016/j.saa.2019.117135] [PMID: 31158768]
[103]
Hong, J.; Zhou, E.; Gong, S.; Feng, G. A red to near-infrared fluorescent probe featuring a super large stokes shift for light-up detection of endogenous H2S. Dyes Pigments, 2019, 160, 787-793.
[http://dx.doi.org/10.1016/j.dyepig.2018.09.001]
[104]
Qian, M.; Zhang, L.; Pu, Z.; Xia, J.; Chen, L.; Xia, Y.; Cui, H.; Wang, J.; Peng, X. A NIR fluorescent probe for the detection and visualization of hydrogen sulfide using the aldehyde group assisted thiolysis of dinitrophenyl ether strategy. J. Mater. Chem. B Mater. Biol. Med., 2018, 6(47), 7916-7925.
[http://dx.doi.org/10.1039/C8TB02218F] [PMID: 32255037]
[105]
Zhong, K.; He, Y.; Deng, L.; Yan, X.; Li, X.; Tang, Y.; Hou, S.; Tang, L. A near-infrared fluorescent probe for H2S based on tandem reaction to construct iminocoumarin-benzothiazole and its application in food, water, living cells. Anal. Chim. Acta, 2020, 1127, 49-56.
[http://dx.doi.org/10.1016/j.aca.2020.06.050] [PMID: 32800137]
[106]
Jin, X.; Ma, X.; Zhou, H.; Chen, J.; Li, M.; Yang, J.; Bai, H.; She, M. Construction of DCM-based NIR fluorescent probe for visualization detection of H2S in solution and nanofibrous film. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2021, 257, 119764.
[http://dx.doi.org/10.1016/j.saa.2021.119764] [PMID: 33848953]
[107]
Zhao, X.J.; Jiang, Y.R.; Li, Y.T.; Yang, B.Q.; Liu, C.; Liu, Z.H. A novel “turn-on” mitochondria-targeting near-infrared fluorescent probe for determination and bioimaging cellular hydrogen sulfide. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2019, 212, 71-77.
[http://dx.doi.org/10.1016/j.saa.2018.12.046] [PMID: 30597436]
[108]
Gong, S.; Zheng, Z.; Guan, X.; Feng, S.; Feng, G. Near-infrared mitochondria-targetable fluorescent probe for high-contrast bioimaging of H2S. Anal. Chem., 2021, 93(14), 5700-5708.
[http://dx.doi.org/10.1021/acs.analchem.0c04639] [PMID: 33787227]
[109]
Zhou, K.; Yang, Y.; Zhou, T.; Jin, M.; Yin, C. Design strategy of multifunctional and high efficient hydrogen sulfide NIR fluorescent probe and its application in vivo. Dyes Pigments, 2021, 185, 108901.
[http://dx.doi.org/10.1016/j.dyepig.2020.108901]
[110]
Yang, Q.; Zhou, L.; Peng, L.; Yuan, G.; Ding, H.; Tan, L.; Zhou, Y. A smart mitochondria-targeting TP-NIR fluorescent probe for the selective and sensitive sensing of H2S in living cells and mice. New J. Chem., 2021, 45(16), 7315-7320.
[http://dx.doi.org/10.1039/D1NJ00840D]
[111]
Zhong, K.; Chen, L.; Yan, X.; Tang, Y.; Hou, S.; Li, X.; Tang, L. Dual-functional multi-application probe: Rapid detection of H2S and colorimetric recognition of HSO3− in food and cell. Dyes Pigments, 2020, 182, 108656.
[http://dx.doi.org/10.1016/j.dyepig.2020.108656]
[112]
Hong, J.; Feng, W.; Feng, G. Highly selective near-infrared fluorescent probe with rapid response, remarkable large Stokes shift and bright fluorescence for H2S detection in living cells and animals. Sens. Actuators B Chem., 2018, 262, 837-844.
[http://dx.doi.org/10.1016/j.snb.2018.02.070]
[113]
Feng, S.; Xia, Q.; Feng, G. Iminocoumarin-based red to near-infrared fluorescent turn-on probe with a large Stokes shift for imaging H2S in living cells and animals. Dyes Pigments, 2019, 163, 447-453.
[http://dx.doi.org/10.1016/j.dyepig.2018.12.029]
[114]
Li, B.; Mei, H.; Wang, M.; Gu, X.; Hao, J.; Xie, X.; Xu, K. A near-infrared fluorescent probe for imaging of endogenous hydrogen sulfide in living cells and mice. Dyes Pigments, 2021, 189, 109231.
[http://dx.doi.org/10.1016/j.dyepig.2021.109231]
[115]
Gong, S.; Zhou, E.; Hong, J.; Feng, G. Nitrobenzoxadiazole ether-based near-infrared fluorescent probe with unexpected high selectivity for H2S imaging in living cells and mice. Anal. Chem., 2019, 91(20), 13136-13142.
[http://dx.doi.org/10.1021/acs.analchem.9b03383] [PMID: 31550882]
[116]
Xiong, J.; Xia, L.; Huang, Q.; Huang, J.; Gu, Y.; Wang, P. Cyanine-based NIR fluorescent probe for monitoring H2S and imaging in living cells and in vivo. Talanta, 2018, 184, 109-114.
[http://dx.doi.org/10.1016/j.talanta.2018.03.006] [PMID: 29674020]
[117]
Huang, X.; Liu, H.; Zhang, J.; Xiao, B.; Wu, F.; Zhang, Y.; Tan, Y.; Jiang, Y. A novel near-infrared fluorescent hydrogen sulfide probe for live cell and tissue imaging. New J. Chem., 2019, 43(18), 6848-6855.
[http://dx.doi.org/10.1039/C9NJ00210C]
[118]
Men, J.; Yang, X.; Zhang, H.; Zhou, J. A near-infrared fluorescent probe based on nucleophilic substitution–cyclization for selective detection of hydrogen sulfide and bioimaging. Dyes Pigm., 2018, 153, 206-212.
[119]
Zhang, X.; Sun, R.; Duan, G.; Zhou, Z.; Luo, Y.; Li, W.; Zhang, L.; Gu, Y.; Zha, X. A highly sensitive near-infrared fluorescent probe for the detection of hydrogen sulfide and its application in living cells and mice. New J. Chem., 2018, 42(24), 19795-19800.
[120]
Shu, W.; Zang, S.; Wang, C.; Gao, M.; Jing, J.; Zhang, X. An endoplasmic reticulum-targeted ratiometric fluorescent probe for the sensing of hydrogen sulfide in living cells and zebrafish. Anal. Chem., 2020, 92(14), 9982-9988.
[http://dx.doi.org/10.1021/acs.analchem.0c01623] [PMID: 32567301]
[121]
Chen, W.; Xie, P.; Shan, X.; Zhao, H.; Wu, Y.; Zhou, H.; Jin, X. A near-infrared naphthofluorescein-based fluorescent probe for hydrogen sulfide detection. J. Mol. Struct., 2020, 1207, 127822.
[http://dx.doi.org/10.1016/j.molstruc.2020.127822]
[122]
Ma, X.; Jin, X.; Zhou, H.; Wang, D.; Zhou, X.; Chen, J.; Li, M.; Du, H.; She, M. Near-infrared fluorescent probe for rapid detecting H2S and its application in nanofibrous film and living cells. Dyes Pigments, 2021, 188, 109221.
[http://dx.doi.org/10.1016/j.dyepig.2021.109221]
[123]
Wu, Q.; Yin, C.; Wen, Y.; Zhang, Y.; Huo, F. An ICT lighten ratiometric and NIR fluorogenic probe to visualize endogenous/exogenous hydrogen sulphide and imaging in mice. Sens. Actuators B Chem., 2019, 288, 507-511.
[http://dx.doi.org/10.1016/j.snb.2019.03.053]
[124]
Ma, T.; Huo, F.; Yin, C.A. ‘naked-eye’ratiometric and NIR fluorescent detection for hydrogen sulphide with quick response and high selectivity for and its bioimaging. Dyes Pigments, 2019, 165, 31-37.
[http://dx.doi.org/10.1016/j.dyepig.2019.02.001]
[125]
Kong, X.; Li, M.; Dong, B.; Zhang, N.; Song, W.; Lu, Y.; Lin, W. A near-infrared and two-photon dual-mode fluorescent probe for the colorimetric monitoring of SO2in vitro and in vivo. Analyst, 2019, 144(14), 4371-4379.
[http://dx.doi.org/10.1039/C9AN00515C] [PMID: 31197299]
[126]
Yan, Y.H.; He, X.Y.; Miao, J.Y.; Zhao, B.X. A near-infrared and mitochondria-targeted fluorescence probe for ratiometric monitoring of sulfur dioxide derivatives in living cells. J. Mater. Chem. B Mater. Biol. Med., 2019, 7(42), 6585-6591.
[http://dx.doi.org/10.1039/C9TB01686D] [PMID: 31589220]
[127]
Zhang, T.; Yin, C.; Zhang, Y.; Chao, J.; Wen, G.; Huo, F. Mitochondria-targeted reversible ratiometric fluorescent probe for monitoring SO2/HCHO in living cells. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 234, 118253.
[http://dx.doi.org/10.1016/j.saa.2020.118253] [PMID: 32229320]
[128]
Han, S.; Yue, X.; Wang, J.; Zhang, Y.; Wang, B.; Song, X. A novel near-infrared ratiometric fluorescent probe for SO2 detection with a large emission shift. New J. Chem., 2020, 44(11), 4554-4557.
[http://dx.doi.org/10.1039/C9NJ06343A]
[129]
Wang, M.; Liu, Q.; Sun, X.; Zheng, S.; Ma, Y.; Wang, Y.; Yan, M.; Lu, Z.; Fan, C.; Lin, W. Ratiometric and reversible detection of endogenous SO2 and HCHO in living cells and mice by a near-infrared and dual-emission fluorescent probe. Sens. Actuators B Chem., 2021, 335, 129649.
[http://dx.doi.org/10.1016/j.snb.2021.129649]
[130]
Liu, K.; Chen, Y.; Sun, H.; Wang, S.; Kong, F. Construction of a novel near-infrared fluorescent probe with multiple fluorescence emission and its application for SO2 derivative detection in cells and living zebrafish. J. Mater. Chem. B Mater. Biol. Med., 2018, 6(43), 7060-7065.
[http://dx.doi.org/10.1039/C8TB02030B] [PMID: 32254589]
[131]
Li, D.; Tian, X.; Li, Z.; Zhang, J.; Yang, X. Preparation of a near-infrared fluorescent probe based on IR-780 for highly selective and sensitive detection of bisulfite–sulfite in food, living cells, and mice. J. Agric. Food Chem., 2019, 67(10), 3062-3067.
[http://dx.doi.org/10.1021/acs.jafc.9b00822] [PMID: 30807143]
[132]
Wang, L.; Zhao, L.; Xu, Z.; Ma, Y.; Wang, X.; Sun, Q.; Liu, H. Rapid detection of SO2 in living cells and zebrafish by using an efficient near-infrared ratiometric fluorescent probe with large emission shift. Microchem. J., 2021, 160, 105703.
[http://dx.doi.org/10.1016/j.microc.2020.105703]
[133]
Zhu, J.; Qin, F.; Zhang, D.; Tang, J.; Liu, W.; Cao, W.; Ye, Y. A novel NIR fluorescent probe for the double-site and ratiometric detection of SO2 derivatives and its applications. New J. Chem., 2019, 43(43), 16806-16811.
[http://dx.doi.org/10.1039/C9NJ03997J]
[134]
Zeng, R.F.; Lan, J.S.; Wu, T.; Liu, L.; Liu, Y.; Ho, R.J.; Ding, Y.; Zhang, T. A novel mitochondria-targetted near-infrared fluorescent probe for selective and colorimetric detection of sulfite and its application in vitro and vivo. Food Chem., 2020, 318, 126358.
[http://dx.doi.org/10.1016/j.foodchem.2020.126358] [PMID: 32145541]
[135]
Zhao, Y.; Ma, Y.; Lin, W. A near-infrared and two-photon ratiometric fluorescent probe with a large Stokes shift for sulfur dioxide derivatives detection and its applications in vitro and in vivo. Sens. Actuators B Chem., 2019, 288, 519-526.
[http://dx.doi.org/10.1016/j.snb.2019.01.170]
[136]
Tamima, U.; Santra, M.; Song, C.W.; Reo, Y.J.; Ahn, K.H. A benzopyronin-based two-photon fluorescent probe for ratiometric imaging of lysosomal bisulfite with complete spectral separation. Anal. Chem., 2019, 91(16), 10779-10785.
[http://dx.doi.org/10.1021/acs.analchem.9b02384] [PMID: 31347826]
[137]
Duan, C.; Zhang, J.F.; Hu, Y.; Zeng, L.; Su, D.; Bao, G.M. A distinctive near-infrared fluorescence turn-on probe for rapid, sensitive and chromogenic detection of sulfite in food. Dyes Pigments, 2019, 162, 459-465.
[http://dx.doi.org/10.1016/j.dyepig.2018.10.057]
[138]
Zeng, L.; Chen, T.; Chen, B-Q.; Yuan, H-Q.; Sheng, R.; Bao, G-M. A distinctive mitochondrion-targeting, in situ-activatable near-infrared fluorescent probe for visualizing sulfur dioxide derivatives and their fluctuations in vivo. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(9), 1914-1921.
[http://dx.doi.org/10.1039/C9TB02593F] [PMID: 32048683]
[139]
Niu, T.; Yu, T.; Yin, G.; Chen, H.; Yin, P.; Li, H. A novel colorimetric and ratiometric fluorescent probe for sensing SO2 derivatives and their bio-imaging in living cells. Analyst, 2019, 144(5), 1546-1554.
[http://dx.doi.org/10.1039/C8AN02331J] [PMID: 30643917]
[140]
Wu, M-Y.; Wang, Y.; Liu, Y-H.; Yu, X-Q. Dual-site lysosome-targeted fluorescent probe for separate detection of endogenous biothiols and SO2 in living cells. J. Mater. Chem. B Mater. Biol. Med., 2018, 6(25), 4232-4238.
[http://dx.doi.org/10.1039/C8TB01152D] [PMID: 32254597]
[141]
Zhang, T.; Zhu, L.; Ma, Y.; Lin, W. A near-infrared ratiometric fluorescent probe based on the C[double bond, length as m-dash]N double bond for monitoring SO2 and its application in biological imaging. Analyst, 2020, 145(5), 1910-1914.
[http://dx.doi.org/10.1039/C9AN02322D] [PMID: 31984996]
[142]
Wang, K.; Wang, W.; Chen, S.Y.; Guo, J.C.; Li, J.H.; Yang, Y.S.; Wang, X.M.; Xu, C.; Zhu, H.L. A novel Near-Infrared rhodamine-derivated turn-on fluorescence probe for sensing SO32− detection and their bio-imaging in vitro and in vivo. Dyes Pigm., 2021, 188, 109229.
[http://dx.doi.org/10.1016/j.dyepig.2021.109229]

© 2024 Bentham Science Publishers | Privacy Policy