Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

The Role of Inflammatory and Cytokine Biomarkers in the Pathogenesis of Frailty Syndrome

Author(s): Rashid Mir*, Chandan K. Jha, Naina Khullar, Mohsin Maqbool, Pradeep K. Dabla, Suruchi Mathur, Amal Moustafa, Uzma A. Faridi, Abdullah Hamadi, Mohammad Muzaffar Mir and Faisel M. Abu Duhier

Volume 22, Issue 14, 2022

Published on: 02 June, 2022

Page: [1357 - 1366] Pages: 10

DOI: 10.2174/1871530322666220304220522

Price: $65

Abstract

Frailty is a conglomerated elderly disorder that includes multiple abnormalities, like anemia, an increased titer of catabolic hormones, and compromised physiology of most of the body systems. Many studies have established the biomarkers that correlate with physical function and immune aging; however, people can age differently, so chronological age is not a sufficient marker of susceptibility to disabilities, morbidities, and mortality. The pathophysiology of frailty is not clearly understood, but a critical role of enhanced inflammation in the body is hypothesized. Many factors contribute to the development of frailty syndrome, such as pro-inflammatory cytokines, inflammatory markers, inflammatory cytokines, and secosteroids, like vitamin D. This review aims to highlight the role of inflammatory and cytokine biomarkers and vitamin D in the pathogenesis of Frailty Syndrome.

Keywords: Frailty Syndrome, inflammatory biomarkers, cytokine biomarkers, cytokines, adipocytokines, regulatory T-cells (Tregs), T-cell markers, vitamin D.

Graphical Abstract
[1]
Chen, X.; Mao, G.; Leng, S.X. Frailty syndrome: An overview. Clin. Interv. Aging, 2014, 9, 433-441.
[PMID: 24672230]
[2]
Sebastiani, P.; Thyagarajan, B.; Sun, F.; Schupf, N.; Newman, A.B.; Montano, M.; Perls, T.T. Biomarker signatures of aging. Aging Cell, 2017, 16(2), 329-338.
[http://dx.doi.org/10.1111/acel.12557] [PMID: 28058805]
[3]
Drew, E.W.; Wilson, D.; Sapey, E. Frailty and the Immune System. Jr. Ageing Rech. and Healthcare, 2017, 2, 1578.
[4]
Yao, X.; Li, H.; Leng, S.X. Inflammation and immune system alterations in frailty. Clin. Geriatr. Med., 2011, 27(1), 79-87.
[http://dx.doi.org/10.1016/j.cger.2010.08.002] [PMID: 21093724]
[5]
Pin, Ng. T.; Camous, X.; Nyunt, S.Z.M.; Vasudeva, A.; Tan, C.T.Y.; Feng, T.; Fulop, Y.; Yap, K.B.; Larbi, A. Markers of T-cell senescence and physical frailty: insights from Singapore Longitudinal Ageing Studies. Aging and Mechanisms of Disease, 2015, 1, 1-6.
[6]
Haynes, L.; Maue, A.C. Effects of aging on T cell function. Curr. Opin. Immunol., 2009, 21(4), 414-417.
[http://dx.doi.org/10.1016/j.coi.2009.05.009] [PMID: 19500967]
[7]
Fessler, J.; Ficjan, A.; Duftner, C.; Dejaco, C. The impact of aging on regulatory T-cells. Front. Immunol., 2013, 4, 231.
[http://dx.doi.org/10.3389/fimmu.2013.00231] [PMID: 23964277]
[8]
Li, M.; Yao, D.; Zeng, X.; Kasakovski, D.; Zhang, Y.; Chen, S.; Zha, X.; Li, Y.; Xu, L. Age related human T cell subset evolution and senescence. Immun. Ageing, 2019, 16(1), 24.
[http://dx.doi.org/10.1186/s12979-019-0165-8] [PMID: 31528179]
[9]
Vasson, M.P.; Farges, M.C.; Goncalves-Mendes, N.; Talvas, J.; Ribalta, J.; Winklhofer-Roob, B.; Rock, E.; Rossary, A. Does aging affect the immune status? A comparative analysis in 300 healthy volunteers from France, Austria and Spain. Immun. Ageing, 2013, 10(1), 38.
[http://dx.doi.org/10.1186/1742-4933-10-38] [PMID: 24010581]
[10]
Varricchi, G.; Bencivenga, L.; Poto, R.; Pecoraro, A.; Shamji, M.H.; Rengo, G. The emerging role of T follicular helper (TFH) cells in aging: Influence on the immune frailty. Ageing Res. Rev., 2020, 61, 101071.
[http://dx.doi.org/10.1016/j.arr.2020.101071] [PMID: 32344191]
[11]
Moreno-Valladares, M.; Moreno-Cugnon, L.; Silva, T.M.; Garcés, J.P.; Saenz-Antoñanzas, A.; Álvarez-Satta, M.; Matheu, A. CD8+ T cells are increased in the subventricular zone with physiological and pathological aging. Aging Cell, 2020, 19(9), e13198.
[http://dx.doi.org/10.1111/acel.13198] [PMID: 32741087]
[12]
Sproston, N.R.; Ashworth, J.J. Role of C-reactive protein at sites of inflammation and infection. Front. Immunol., 2018, 9, 754.
[http://dx.doi.org/10.3389/fimmu.2018.00754] [PMID: 29706967]
[13]
Hage, F.G.; Szalai, A.J. C-reactive protein gene polymorphisms, C-reactive protein blood levels, and cardiovascular disease risk. J. Am. Coll. Cardiol., 2007, 50(12), 1115-1122.
[http://dx.doi.org/10.1016/j.jacc.2007.06.012] [PMID: 17868801]
[14]
Almeida, O.P.; Norman, P.E.; van Bockxmeer, F.M.; Hankey, G.J.; Flicker, L. CRP 1846G>A polymorphism increases risk of frailty. Maturitas, 2012, 71(3), 261-266.
[http://dx.doi.org/10.1016/j.maturitas.2011.11.022] [PMID: 22192441]
[15]
Lin, C.C.; Wu, F.Y.; Liao, L.N.; Li, C.I.; Lin, C.H.; Yang, C.W.; Meng, N.H.; Chang, C.K.; Lin, W.Y.; Liu, C.S.; Li, T.C. Association of CRP gene polymorphisms with serum CRP level and handgrip strength in community-dwelling elders in Taiwan: Taichung Community Health Study for Elders (TCHS-E). Exp. Gerontol., 2014, 57, 141-148.
[http://dx.doi.org/10.1016/j.exger.2014.05.012] [PMID: 24862635]
[16]
Liu, Z.Y.; Wang, Z.D.; Li, L.Z.; Chu, X.F.; Zhu, Y.S.; Shi, J.M.; Xie, X.J.; Jin, L.; Wang, Y.; Wang, X.F. Association of CRP gene polymorphisms with CRP levels, frailty and co-morbidity in an elderly Chinese population: results from RuLAS. Age Ageing, 2016, 45(3), 360-365.
[http://dx.doi.org/10.1093/ageing/afw041] [PMID: 27016573]
[17]
Samson, L.D.; Boots, A.M.H.; Verschuren, W.M.M.; Picavet, H.S.J.; Engelfriet, P.; Buisman, A.M. Frailty is associated with elevated CRP trajectories and higher numbers of neutrophils and monocytes. Exp. Gerontol., 2019, 125(125), 110674.
[http://dx.doi.org/10.1016/j.exger.2019.110674] [PMID: 31336145]
[18]
Doğrul, R.T.; Varan, H.D.; Kızılarslanoğlu, M.C.; Kılıç, M.K.; Arık, G.; Kara, Ö.; Halil, M.; Cankurtaran, M.; Yavuz, B.B. Relationship between frailty and inflammation. Eur. J. Geriatr. Gerontol., 2019, 1(1), 17-23.
[http://dx.doi.org/10.4274/ejgg.galenos.2019.29]
[19]
Mailliez, A.; Guilbaud, A.; Puisieux, F.; Dauchet, L.; Boulanger, É. Circulating biomarkers characterizing physical frailty: CRP, hemoglobin, albumin, 25OHD and free testosterone as best biomarkers. Results of a meta-analysis. Exp. Gerontol., 2020, 139, 111014.
[http://dx.doi.org/10.1016/j.exger.2020.111014] [PMID: 32599147]
[20]
Velissaris, D.; Pantzaris, N.; Koniari, I.; Koutsogiannis, N.; Karamouzos, V.; Kotroni, I.; Skroumpelou, A.; Ellul, J. C-reactive protein and frailty in the elderly: a literature review. J. Clin. Med. Res., 2017, 9(6), 461-465.
[http://dx.doi.org/10.14740/jocmr2959w] [PMID: 28496545]
[21]
Guzik, T.J.; Touyz, R.M. Oxidative stress, inflammation, and vascular aging in hypertension. Hypertension, 2017, 70(4), 660-667.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.117.07802] [PMID: 28784646]
[22]
Han, Y.; Chu, X.; Cui, L.; Fu, S.; Gao, C.; Li, Y.; Sun, B. Neuronal mitochondria-targeted therapy for Alzheimer’s disease by systemic delivery of resveratrol using dual-modified novel biomimetic nanosystems. Drug Deliv., 2020, 27(1), 502-518.
[http://dx.doi.org/10.1080/10717544.2020.1745328] [PMID: 32228100]
[23]
Hecker, L. Mechanisms and consequences of oxidative stress in lung disease: therapeutic implications for an aging populace. Am. J. Physiol. Lung Cell. Mol. Physiol., 2018, 314(4), L642-L653.
[http://dx.doi.org/10.1152/ajplung.00275.2017] [PMID: 29351446]
[24]
Lejri, I.; Agapouda, A.; Grimm, A.; Eckert, A. Agapouda, A. Grimm, A. Eckert. Mitochondria- and oxidative stress-targeting substances in cognitive decline-related disorders: from molecular mechanisms to clinical evidence. Oxid. Med. Cell. Longev., 2019, 2019, 9695412.
[http://dx.doi.org/10.1155/2019/9695412] [PMID: 31214285]
[25]
Lang, P.O.; Michel, J.P.; Zekry, D. Frailty syndrome: A transitional state in a dynamic process. Gerontology, 2009, 55(5), 539-549.
[http://dx.doi.org/10.1159/000211949] [PMID: 19346741]
[26]
Allen, S.C. Systemic inflammation in the genesis of frailty and sarcopenia: An overview of the preventative and therapeutic role of exercise and the potential for drug treatments. Geriatrics (Basel), 2017, 2(1), 6.
[http://dx.doi.org/10.3390/geriatrics2010006] [PMID: 31011016]
[27]
Simpson, R.J.; Hammacher, A.; Smith, D.K.; Matthews, J.M.; Ward, L.D. Interleukin-6: structure-function relationships. Protein Sci., 1997, 6(5), 929-955.
[http://dx.doi.org/10.1002/pro.5560060501] [PMID: 9144766]
[28]
Tanaka, T.; Narazaki, M.; Kishimoto, T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb. Perspect. Biol., 2014, 6(10), a016295.
[http://dx.doi.org/10.1101/cshperspect.a016295] [PMID: 25190079]
[29]
Maggio, M.; Guralnik, J.M.; Longo, D.L.; Ferrucci, L. Interleukin-6 in aging and chronic disease: A magnificent pathway. J. Gerontol. A Biol. Sci. Med. Sci., 2006, 61(6), 575-584.
[http://dx.doi.org/10.1093/gerona/61.6.575] [PMID: 16799139]
[30]
Ershler, W.B.; Keller, E.T. Age-associated increased interleukin-6 gene expression, late-life diseases, and frailty. Annu. Rev. Med., 2000, 51(1), 245-270.
[http://dx.doi.org/10.1146/annurev.med.51.1.245] [PMID: 10774463]
[31]
Drucker, C.; Gewiese, J.; Malchow, S.; Scheller, J.; Rose-John, S. Impact of interleukin-6 classic- and trans-signaling on liver damage and regeneration. J. Autoimmun., 2010, 34(1), 29-37.
[http://dx.doi.org/10.1016/j.jaut.2009.08.003] [PMID: 19717281]
[32]
Gabay, C. Interleukin-6 and chronic inflammation. Arthritis Res. Ther., 2006, 8(2)(Suppl. 2), S3.
[http://dx.doi.org/10.1186/ar1917] [PMID: 16899107]
[33]
Choy, E.; Rose-John, S. Interleukin-6 as a multifunctional regulator: inflammation, immune response, and fibrosis. J. Scleroderma Relat. Disord., 2017, 2(2)(Suppl.), S1-S5.
[http://dx.doi.org/10.5301/jsrd.5000265]
[34]
Papanicolaou, D.A.; Wilder, R.L.; Manolagas, S.C.; Chrousos, G.P. The pathophysiologic roles of interleukin-6 in human disease. Ann. Intern. Med., 1998, 128(2), 127-137.
[http://dx.doi.org/10.7326/0003-4819-128-2-199801150-00009] [PMID: 9441573]
[35]
Soysal, P.; Stubbs, B.; Lucato, P.; Luchini, C.; Solmi, M.; Peluso, R.; Sergi, G.; Isik, A.T.; Manzato, E.; Maggi, S.; Maggio, M.; Prina, A.M.; Cosco, T.D.; Wu, Y.T.; Veronese, N. Inflammation and frailty in the elderly: A systematic review and meta-analysis. Ageing Res. Rev., 2016, 31, 1-8.
[http://dx.doi.org/10.1016/j.arr.2016.08.006] [PMID: 27592340]
[36]
Darvin, K.; Randolph, A.; Ovalles, S.; Halade, D.; Breeding, L.; Richardson, A.; Espinoza, S.E. Plasma protein biomarkers of the geriatric syndrome of frailty. J. Gerontol. A Biol. Sci. Med. Sci., 2014, 69(2), 182-186.
[http://dx.doi.org/10.1093/gerona/glt183] [PMID: 24285743]
[37]
Liu, C.K.; Lyass, A.; Larson, M.G.; Massaro, J.M.; Wang, N.; D’Agostino, R.B., Sr; Benjamin, E.J.; Murabito, J.M. Biomarkers of oxidative stress are associated with frailty: the Framingham Offspring Study. Age (Dordr.), 2016, 38(1), 1.
[http://dx.doi.org/10.1007/s11357-015-9864-z] [PMID: 26695510]
[38]
Visser, M.; Pahor, M.; Taaffe, D.R.; Goodpaster, B.H.; Simonsick, E.M.; Newman, A.B.; Nevitt, M.; Harris, T.B. Relationship of interleukin-6 and tumor necrosis factor-alpha with muscle mass and muscle strength in elderly men and women: the Health ABC Study. J. Gerontol. A Biol. Sci. Med. Sci., 2002, 57(5), M326-M332.
[http://dx.doi.org/10.1093/gerona/57.5.M326] [PMID: 11983728]
[39]
Bautmans, I.; Gorus, E.; Njemini, R.; Mets, T. Handgrip performance in relation to self-perceived fatigue, physical functioning and circulating IL-6 in elderly persons without inflammation. BMC Geriatr., 2007, 7(1), 5.
[http://dx.doi.org/10.1186/1471-2318-7-5] [PMID: 17331228]
[40]
Kilgour, A.H.; Firth, C.; Harrison, R.; Moss, P.; Bastin, M.E.; Wardlaw, J.M.; Deary, I.J.; Starr, J.M. Seropositivity for CMV and IL-6 levels are associated with grip strength and muscle size in the elderly. Immun. Ageing, 2013, 10(1), 33.
[http://dx.doi.org/10.1186/1742-4933-10-33] [PMID: 23938060]
[41]
Ding, C.; Parameswaran, V.; Udayan, R.; Burgess, J.; Jones, G. Circulating levels of inflammatory markers predict change in bone mineral density and resorption in older adults: A longitudinal study. J. Clin. Endocrinol. Metab., 2008, 93(5), 1952-1958.
[http://dx.doi.org/10.1210/jc.2007-2325] [PMID: 18285417]
[42]
Maes, M.; Bosmans, E.; De Jongh, R.; Kenis, G.; Vandoolaeghe, E.; Neels, H. Increased serum IL-6 and IL-1 receptor antagonist concentrations in major depression and treatment resistant depression. Cytokine, 1997, 9(11), 853-858.
[http://dx.doi.org/10.1006/cyto.1997.0238] [PMID: 9367546]
[43]
Cesari, M.; Penninx, B.W.J.H.; Pahor, M.; Lauretani, F.; Corsi, A.M.; Rhys Williams, G.; Guralnik, J.M.; Ferrucci, L. Inflammatory markers and physical performance in older persons: the InCHIANTI study. J. Gerontol. A Biol. Sci. Med. Sci., 2004, 59(3), 242-248.
[http://dx.doi.org/10.1093/gerona/59.3.M242] [PMID: 15031308]
[44]
Leng, S.; Chaves, P.; Koenig, K.; Walston, J. Serum interleukin-6 and hemoglobin as physiological correlates in the geriatric syndrome of frailty: A pilot study. J. Am. Geriatr. Soc., 2002, 50(7), 1268-1271.
[http://dx.doi.org/10.1046/j.1532-5415.2002.50315.x] [PMID: 12133023]
[45]
Cohen, H.J.; Pieper, C.F.; Harris, T.; Rao, K.M.; Currie, M.S. The association of plasma IL-6 levels with functional disability in community-dwelling elderly. J. Gerontol. A Biol. Sci. Med. Sci., 1997, 52(4), M201-M208.
[http://dx.doi.org/10.1093/gerona/52A.4.M201] [PMID: 9224431]
[46]
Ferrucci, L.; Harris, T.B.; Guralnik, J.M.; Tracy, R.P.; Corti, M.C.; Cohen, H.J.; Penninx, B.; Pahor, M.; Wallace, R.; Havlik, R.J. Serum IL-6 level and the development of disability in older persons. J. Am. Geriatr. Soc., 1999, 47(6), 639-646.
[http://dx.doi.org/10.1111/j.1532-5415.1999.tb01583.x] [PMID: 10366160]
[47]
Cappola, A.R.; Bandeen-Roche, K.; Wand, G.S.; Volpato, S.; Fried, L.P. Association of IGF-I levels with muscle strength and mobility in older women. J. Clin. Endocrinol. Metab., 2001, 86(9), 4139-4146.
[http://dx.doi.org/10.1210/jcem.86.9.7868] [PMID: 11549640]
[48]
Barbieri, M.; Ferrucci, L.; Ragno, E.; Corsi, A.; Bandinelli, S.; Bonafè, M.; Olivieri, F.; Giovagnetti, S.; Franceschi, C.; Guralnik, J.M.; Paolisso, G. Chronic inflammation and the effect of IGF-I on muscle strength and power in older persons. Am. J. Physiol. Endocrinol. Metab., 2003, 284(3), E481-E487.
[http://dx.doi.org/10.1152/ajpendo.00319.2002] [PMID: 12419777]
[49]
Ferrucci, L.; Corsi, A.; Lauretani, F.; Bandinelli, S.; Bartali, B.; Taub, D.D.; Guralnik, J.M.; Longo, D.L. The origins of age-related proinflammatory state. Blood, 2005, 105(6), 2294-2299.
[http://dx.doi.org/10.1182/blood-2004-07-2599] [PMID: 15572589]
[50]
American Association for Clinical Chemistry. Vitamin D Tests Lab Tests Online (USA), 2013. Available from: https://www.aacc.org/cln/articles/2013/august/vitamin-d-standardization
[51]
Hollis, B.W. Assessment of vitamin D nutritional and hormonal status: what to measure and how to do it. Calcif. Tissue Int., 1996, 58(1), 4-5.
[http://dx.doi.org/10.1007/BF02509538] [PMID: 8825231]
[52]
Holick, M.F.; Schnoes, H.K.; DeLuca, H.F.; Suda, T.; Cousins, R.J. Isolation and identification of 1,25-dihydroxycholecalciferol. A metabolite of vitamin D active in intestine. Biochemistry, 1971, 10(14), 2799-2804.
[http://dx.doi.org/10.1021/bi00790a023] [PMID: 4326883]
[53]
Vitamin D Fact Sheet for Health Professionals. National Institutes of Health (NIH), 2016. Available from: https://ods.od.nih.gov/factsheets/VitaminD-HealthProfessional/
[54]
Alvarez-Díaz, S.; Larriba, M.J.; López-Otín, C.; Muñoz, A.; Vitamin, D. Proteases, protease inhibitors and cancer. Cell Cycle, 2010, 9(1), 32-37.
[http://dx.doi.org/10.4161/cc.9.1.10266] [PMID: 20016282]
[55]
Lin, R.; Wang, T.T.; Miller, W.H., Jr; White, J.H. Inhibition of F-Box protein p45(SKP2) expression and stabilization of cyclin-dependent kinase inhibitor p27(KIP1) in vitamin D analog-treated cancer cells. Endocrinology, 2003, 144(3), 749-753.
[http://dx.doi.org/10.1210/en.2002-0026] [PMID: 12586749]
[56]
Thorne, J.L.; Maguire, O.; Doig, C.L.; Battaglia, S.; Fehr, L.; Sucheston, L.E.; Heinaniemi, M.; O’Neill, L.P.; McCabe, C.J.; Turner, B.M.; Carlberg, C.; Campbell, M.J. Epigenetic control of a VDR-governed feed-forward loop that regulates p21(waf1/cip1) expression and function in non-malignant prostate cells. Nucleic Acids Res., 2011, 39(6), 2045-2056.
[http://dx.doi.org/10.1093/nar/gkq875] [PMID: 21088000]
[57]
Bischoff-Ferrari, H.A.; Dawson-Hughes, B.; Willett, W.C.; Staehelin, H.B.; Bazemore, M.G.; Zee, R.Y.; Wong, J.B. Effect of Vitamin D on falls: A meta-analysis. JAMA, 2004, 291(16), 1999-2006.
[http://dx.doi.org/10.1001/jama.291.16.1999] [PMID: 15113819]
[58]
Wilhelm-Leen, E.R.; Hall, Y.N.; Deboer, I.H.; Chertow, G.M. Vitamin D deficiency and frailty in older Americans. J. Intern. Med., 2010, 268(2), 171-180.
[http://dx.doi.org/10.1111/j.1365-2796.2010.02248.x] [PMID: 20528970]
[59]
Smit, E.; Crespo, C.J.; Michael, Y.; Ramirez-Marrero, F.A.; Brodowicz, G.R.; Bartlett, S.; Andersen, R.E. The effect of vitamin D and frailty on mortality among non-institutionalized US older adults. Eur. J. Clin. Nutr., 2012, 66(9), 1024-1028.
[http://dx.doi.org/10.1038/ejcn.2012.67] [PMID: 22692022]
[60]
Tajar, A.; Lee, D.M.; Pye, S.R.; O’Connell, M.D.; Ravindrarajah, R.; Gielen, E.; Boonen, S.; Vanderschueren, D.; Pendleton, N.; Finn, J.D.; Bartfai, G.; Casanueva, F.F.; Forti, G.; Giwercman, A.; Han, T.S.; Huhtaniemi, I.T.; Kula, K.; Lean, M.E.; Punab, M.; Wu, F.C.; O’Neill, T.W. The association of frailty with serum 25-hydroxyvitamin D and parathyroid hormone levels in older European men. Age Ageing, 2013, 42(3), 352-359.
[http://dx.doi.org/10.1093/ageing/afs162] [PMID: 23111338]
[61]
Chang, C.I.; Chan, D.C.; Kuo, K.N.; Hsiung, C.A.; Chen, C.Y. Vitamin D insufficiency and frailty syndrome in older adults living in a Northern Taiwan community. Arch. Gerontol. Geriatr., 2010, 50(Suppl. 1), S17-S21.
[http://dx.doi.org/10.1016/S0167-4943(10)70006-6] [PMID: 20171450]
[62]
Aguilera, O.; Peña, C.; García, J.M.; Larriba, M.J.; Ordóñez-Morán, P.; Navarro, D.; Barbáchano, A.; López de Silanes, I.; Ballestar, E.; Fraga, M.F.; Esteller, M.; Gamallo, C.; Bonilla, F.; González-Sancho, J.M.; Muñoz, A. The Wnt antagonist DICKKOPF-1 gene is induced by 1α,25-dihydroxyvitamin D3 associated to the differentiation of human colon cancer cells. Carcinogenesis, 2007, 28(9), 1877-1884.
[http://dx.doi.org/10.1093/carcin/bgm094] [PMID: 17449905]
[63]
Pálmer, H.G.; González-Sancho, J.M.; Espada, J.; Berciano, M.T.; Puig, I.; Baulida, J.; Quintanilla, M.; Cano, A.; de Herreros, A.G.; Lafarga, M.; Muñoz, A. Vitamin D(3) promotes the differentiation of colon carcinoma cells by the induction of E-cadherin and the inhibition of β-catenin signaling. J. Cell Biol., 2001, 154(2), 369-387.
[http://dx.doi.org/10.1083/jcb.200102028] [PMID: 11470825]
[64]
Luderer, H.F.; Gori, F.; Demay, M.B. Lymphoid enhancer-binding factor-1 (LEF1) interacts with the DNA-binding domain of the vitamin D receptor. J. Biol. Chem., 2011, 286(21), 18444-18451.
[http://dx.doi.org/10.1074/jbc.M110.188219] [PMID: 21471213]
[65]
Bijlsma, M.F.; Spek, C.A.; Zivkovic, D.; van de Water, S.; Rezaee, F.; Peppelenbosch, M.P. Repression of smoothened by patched-dependent (pro-)vitamin D3 secretion. PLoS Biol., 2006, 4(8), e232.
[http://dx.doi.org/10.1371/journal.pbio.0040232] [PMID: 16895439]
[66]
Shen, Q.; Christakos, S. The vitamin D receptor, Runx2, and the Notch signaling pathway cooperate in the transcriptional regulation of osteopontin. J. Biol. Chem., 2005, 280(49), 40589-40598.
[http://dx.doi.org/10.1074/jbc.M504166200] [PMID: 16195230]
[67]
Staal, A.; Van Wijnen, A.J.; Desai, R.K.; Pols, H.A.P.; Birkenhäger, J.C.; Deluca, H.F.; Denhardt, D.T.; Stein, J.L.; Van Leeuwen, J.P.; Stein, G.S.; Lian, J.B. Antagonistic effects of transforming growth factor-β on vitamin D3 enhancement of osteocalcin and osteopontin transcription: reduced interactions of vitamin D receptor/retinoid X receptor complexes with vitamin E response elements. Endocrinology, 1996, 137(5), 2001-2011.
[http://dx.doi.org/10.1210/endo.137.5.8612541] [PMID: 8612541]
[68]
Garcia, L.A.; King, K.K.; Ferrini, M.G.; Norris, K.C.; Artaza, J.N. 1,25(OH)2vitamin D3 stimulates myogenic differentiation by inhibiting cell proliferation and modulating the expression of promyogenic growth factors and myostatin in C2C12 skeletal muscle cells. Endocrinology, 2011, 152(8), 2976-2986.
[http://dx.doi.org/10.1210/en.2011-0159] [PMID: 21673099]
[69]
Adorini, L.; Penna, G. Control of autoimmune diseases by the vitamin D endocrine system. Nat. Clin. Pract. Rheumatol., 2008, 4(8), 404-412.
[http://dx.doi.org/10.1038/ncprheum0855] [PMID: 18594491]
[70]
Larriba, M.J.; González-Sancho, J.M.; Bonilla, F.; Muñoz, A. Interaction of vitamin D with membrane-based signaling pathways. Front. Physiol., 2014, 5, 60.
[http://dx.doi.org/10.3389/fphys.2014.00060] [PMID: 24600406]
[71]
De Boland, A.R.; Boland, R.L. Non-genomic signal transduction pathway of vitamin D in muscle. Cell. Signal., 1994, 6(7), 717-724.
[http://dx.doi.org/10.1016/0898-6568(94)00042-5] [PMID: 7888298]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy