Generic placeholder image

Cardiovascular & Hematological Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5257
ISSN (Online): 1875-6182

Research Article

Effect of Calamintha officinalis on Vascular Contractility and Angiotensinconverting Enzyme-2

Author(s): Amine Azzane, Bouchra Azzaoui, Mourad Akdad, Ismail Bouadid and Mohamed Eddouks*

Volume 20, Issue 3, 2022

Published on: 21 April, 2022

Page: [219 - 236] Pages: 18

DOI: 10.2174/1871525720666220302125242

Price: $65

Open Access Journals Promotions 2
Abstract

Aims: The study aimed to assess the antihypertensive activity of Calamintha officinalis.

Background: Calamintha officinalis (CO) is a medicinal and aromatic herb as well as an antihypertensive plant that is widely used for its medicinal properties in several regions.

Objective: This study aimed to evaluate the effect of the aqueous extract of Calamintha officinalis (AECO) on vasorelaxant activity and arterial blood pressure under normal and hypertensive states in rats. Additionally, the effect of AECO on vascular angiotensin-converting enzyme 2 (ACE-2) was assessed.

Methods: In the current study, AECO (100 mg/Kg) was prepared, and its antihypertensive ability was assessed in L-NG-Nitro arginine methyl ester (L-NAME)-induced hypertensive rats. Blood pressure and heart rate were recorded for 6 h for the acute experiment and during seven days for the subchronic treatment.

Results: The results indicated that AECO reduced the systolic, diastolic, and mean arterial blood pressure in hypertensive rats. In addition, the study showed that AECO exerts a vasorelaxant ability through the sGC-cGMP induction pathway, vascular cyclooxygenase pathway, and the opening of K+ channels. However, AECO had no inhibitory effect on aortic ACE-2.

Conclusion: The study illustrates the beneficial action of AECO as an antihypertensive and vasorelaxant agent.

Keywords: Calamintha officinalis, hypertension, L-NAME, antihypertensive effect, cardiovascular diseases, ACE-2.

Graphical Abstract
[1]
Lim, S.S.; Vos, T.; Flaxman, A.D.; Danaei, G.; Shibuya, K.; Adair-Rohani, H.; Amann, M.; Anderson, H.R.; Andrews, K.G.; Aryee, M.; Atkinson, C.; Bacchus, L.J.; Bahalim, A.N.; Balakrishnan, K.; Balmes, J.; Barker-Collo, S.; Baxter, A.; Bell, M.L.; Blore, J.D.; Blyth, F.; Memish, Z.A. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet, 2012, 380(9859), 2224-2260.
[PMID: 23245609]
[2]
Maione, F.; Cicala, C.; Musciacco, G.; De Feo, V.; Amat, A.G.; Ialenti, A.; Mascolo, N. Phenols, alkaloids and terpenes from medicinal plants with antihypertensive and vasorelaxant activities. A review of natural products as leads to potential therapeutic agents. Nat. Prod. Commun., 2013, 8(4), 539-544.
[http://dx.doi.org/10.1177/1934578X1300800434] [PMID: 23738474]
[3]
Azizah, N.; Halimah, E.; Puspitasari, I.M.; Hasanah, A.N. Simultaneous use of herbal medicines and antihypertensive drugs among hyper-tensive patients in the community: A review. J. Multidiscip. Healthc., 2021, 14, 259-270.
[http://dx.doi.org/10.2147/JMDH.S289156] [PMID: 33568913]
[4]
Verma, T.; Sinha, M.; Bansal, N.; Yadav, S.R.; Shah, K.; Chauhan, N.S. Plants used as antihypertensive. Nat. Prod. Bioprospect., 2021, 11(2), 155-184.
[http://dx.doi.org/10.1007/s13659-020-00281-x] [PMID: 33174095]
[5]
Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; Niu, P.; Zhan, F.; Ma, X.; Wang, D.; Xu, W.; Wu, G.; Gao, G.F.; Tan, W. China Novel Coronavirus Investigating and Research Team. A novel coronavirus from patients with pneumo-nia in China, 2019. N. Engl. J. Med., 2020, 382(8), 727-733.
[http://dx.doi.org/10.1056/NEJMoa2001017] [PMID: 31978945]
[6]
Kabir, M.A.; Ahmed, R.; Chowdhury, R.; Iqbal, S.M.A.; Paulmurugan, R.; Demirci, U.; Asghar, W. Management of COVID-19: current status and future prospects. Microbes Infect., 2021, 23(4-5), 104832.
[http://dx.doi.org/10.1016/j.micinf.2021.104832] [PMID: 33872807]
[7]
Tay, M.Z.; Poh, C.M.; Rénia, L.; MacAry, P.A.; Ng, L.F.P. The trinity of COVID-19: immunity, inflammation and intervention. Nat. Rev. Immunol., 2020, 20(6), 363-374.
[http://dx.doi.org/10.1038/s41577-020-0311-8] [PMID: 32346093]
[8]
Almutlaq, M.; Alamro, A.A.; Alroqi, F.; Barhoumi, T. Classical and counter-regulatory reninangiotensin system: potential key roles in COVID-19 pathophysiology. CJCOpen, 2021, 3(8), 1060-1074.
[http://dx.doi.org/10.1016/j.cjco.2021.04.004]
[9]
Harwansh, R.K.; Bahadur, S. herbal medicine in fighting against COVID-19: new battle with an old weapon. Curr. Pharm. Biotechnol., 2022, 23(2), 235-260.
[http://dx.doi.org/10.2174/1389201022666210322124348] [PMID: 33749558]
[10]
Zhang, X.; Li, S.; Niu, S. ACE2 and COVID-19 and the resulting ARDS. Postgrad. Med. J., 2020, 96(1137), 403-407.
[http://dx.doi.org/10.1136/postgradmedj-2020-137935] [PMID: 32522846]
[11]
Donoghue, M.; Hsieh, F.; Baronas, E.; Godbout, K.; Gosselin, M.; Stagliano, N.; Donovan, M.; Woolf, B.; Robison, K.; Jeyaseelan, R.; Breitbart, R.E.; Acton, S. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ. Res., 2000, 87(5), E1-E9.
[http://dx.doi.org/10.1161/01.RES.87.5.e1] [PMID: 10969042]
[12]
Tipnis, S.R.; Hooper, N.M.; Hyde, R.; Karran, E.; Christie, G.; Turner, A.J. A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase. J. Biol. Chem., 2000, 275(43), 33238-33243.
[http://dx.doi.org/10.1074/jbc.M002615200] [PMID: 10924499]
[13]
Vickers, C.; Hales, P.; Kaushik, V.; Dick, L.; Gavin, J.; Tang, J.; Godbout, K.; Parsons, T.; Baronas, E.; Hsieh, F.; Acton, S.; Patane, M.; Nichols, A.; Tummino, P. Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase. J. Biol. Chem., 2002, 277(17), 14838-14843.
[http://dx.doi.org/10.1074/jbc.M200581200] [PMID: 11815627]
[14]
Lemhadri, A.; Zeggwagh, N.A.; Maghrani, M.; Jouad, H.; Michel, J.B.; Eddouks, M. Hypoglycaemic effect of Calamintha officinalis Moench. in normal and streptozotocin-induced diabetic rats. J. Pharm. Pharmacol., 2004, 56(6), 795-799.
[http://dx.doi.org/10.1211/0022357023510] [PMID: 15231045]
[15]
Junior, A.G.; Tolouei, S.E.L.; Dos Reis Lívero, F.A.; Gasparotto, F.; Boeing, T.; de Souza, P. Natural agents modulating ACE-2: A review of compounds with potential against SARS-CoV-2 infection. Curr. Pharm. Des., 2021, 27(13), 1588-1596.
[http://dx.doi.org/10.2174/1381612827666210114150607] [PMID: 33459225]
[16]
Eddouks, M.; Ajebli, M.; Hebi, M. Ethnopharmacological survey of medicinal plants used in Daraa-Tafilalet region (Province of Errachid-ia), Morocco. J. Ethnopharmacol., 2017, 198, 516-530.
[http://dx.doi.org/10.1016/j.jep.2016.12.017] [PMID: 28003130]
[17]
Singh, P.P.; Jha, S.; Irchhaiya, R. Antidiabetic and antioxidant activity of hydroxycinnamic acids from Calamintha officinalis Moench. Med. Chem. Res., 2012, 21(8), 1717-1721.
[http://dx.doi.org/10.1007/s00044-011-9690-5]
[18]
Panizzi, L.; Flamini, G.; Cioni, P.L.; Morelli, I. Composition and antimicrobial properties of essential oils of four Mediterranean Lamiace-ae. J. Ethnopharmacol., 1993, 39(3), 167-170.
[http://dx.doi.org/10.1016/0378-8741(93)90032-Z] [PMID: 8258973]
[19]
Zoheir, K.; Bnouham, M.; Legssyer, A.; Ziyyat, A.; Berrabah, M.; Aziz, M.; Bensaid, M.; Mekhfi, H. Antithrombotic, antiaggregant, and antico-agulant effect of methanolic fraction of Calamintha officinalis: In vitro and ex vivo experiments. J. Nat. Rem., 2018, 3358-2320.
[20]
Monforte, M.T.; Tzakou, O.; Nostro, A.; Zimbalatti, V.; Galati, E.M. Chemical composition and biological activities of Calamintha offici-nalis Moench essential oil. J. Med. Food, 2011, 14(3), 297-303.
[http://dx.doi.org/10.1089/jmf.2009.0191] [PMID: 21142949]
[21]
Zenebe, W.; Pechánová, O.; Andriantsitohaina, R. Red wine polyphenols induce vasorelaxation by increased nitric oxide bioactivity. Physiol. Res., 2003, 52(4), 425-432.
[PMID: 12899654]
[22]
Christian, K.K.; Kouame, B.A.; Mamyrbekova-Bekro, J.A. bekro Y études chimique et pharmacologique de deux plantes utilisées dans le traitement traditionnel de l’hypertension artérielle à assoumoukro (Côte D’ivoire). Eur. J. Sci. Res., 2013, •••, 448-462.
[23]
Benito, S.; Lopez, D.; Sáiz, M.P.; Buxaderas, S.; Sánchez, J.; Puig-Parellada, P.; Mitjavila, M.T. A flavonoid-rich diet increases nitric oxide production in rat aorta. Br. J. Pharmacol., 2002, 135(4), 910-916.
[http://dx.doi.org/10.1038/sj.bjp.0704534] [PMID: 11861318]
[24]
Akdad, M.; Eddouks, M. Cardiovascular effects of Micromeria graeca (L.) Benth. ex Rchb in normotensive and hypertensive rats. Endocr. Metab. Immune Disord. Drug Targets, 2020, 20(8), 1253-1261.
[PMID: 31822260]
[25]
Amssayef, A.; Ajebli, M.; Eddouks, M. Aqueous extract of Oakmoss produces antihypertensive activity in L-NAME-induced hypertensive rats through sGC-cGMP pathway. Clin. Exp. Hypertens., 2021, 43(1), 49-55.
[PMID: 32706597]
[26]
Akdad, M.; Ajebli, M.; Breuer, A.; Khallouki, F.; Owen, R.W.; Eddouks, M. Study of antihypertensive activity of Anvillea radiata in l-name-induced hypertensive rats and HPLC-ESI-MS analysis. Endocr. Metab. Immune Disord. Drug Targets, 2020, 20(7), 1059-1072.
[http://dx.doi.org/10.2174/1871530319666191115114023] [PMID: 31729295]
[27]
Evans, W.C. Trease, and Evans pharmacognosy; 14; Singapore: Harcourt Brace and company, Asia Pvt. Ltd., 1997, pp. 12-68.
[28]
Bruneton, J. Pharmacognosie, Phytochemistry-Medicinal plants; 3rd ed., 1999, p. 310-312.
[29]
Kokate, CK. Practical Pharmacognosy; Vallabh Prakashan: New Delhi, 1994, p. 107-111.
[30]
Chebli, B.; Achouri, M.; Idrissi, H.M.; Hmamouchi, M. 2016. Antifungal activity of essential oils from several medicinal plants against four postharvest citrus pathogens. Phytopathol. Mediterr., 2003, 42, 251-256.
[31]
Ahmad, M.; Lim, C.P.; Akowuah, G.A.; Ismail, N.N.; Hashim, M.A.; Hor, S.Y.; Ang, L.F.; Yam, M.F.; Yam, M.F. Safety assessment of standardised methanol extract of Cinnamomum burmannii. Phytomedicine, 2013, 20(12), 1124-1130.
[http://dx.doi.org/10.1016/j.phymed.2013.05.005] [PMID: 23827665]
[32]
OECD. OECD guideline 425: acute oral toxicity-up-and-down procedure.OECD Guidelines for the Testing of Chemicals; Organization for Economic Cooperation and Development: Paris, France, 2001, p. 2.
[33]
Ajebli, M.; Eddouks, M. Eucalyptus globulus possesses antihypertensive activity in L-NAME-induced hypertensive rats and relaxesiso-lated rat thoracic aorta through the nitric oxide pathway. Nat. Prod. Res., 2019, 10, 1-3.
[PMID: 30966776]
[34]
Mohamed, E.A.H.; Lim, C.P.; Ebrika, O.S.; Asmawi, M.Z.; Sadikun, A.; Yam, M.F. Toxicity evaluation of a standardised 50% ethanol extract of Orthosiphon stamineus. J. Ethnopharmacol., 2011, 133(2), 358-363.
[http://dx.doi.org/10.1016/j.jep.2010.10.008] [PMID: 20937371]
[35]
Morteza-Semnani, K.; Akbarzadeh, M. The essential oil composition of Calamintha officinalis moench from Iran. Jeobp., 2014, 10(6), 494-498.
[36]
Kopincová, J.; Púzserová, A. Bernátová, I L-NAME in the cardiovascular system - nitric oxide synthase activator. Pharmacol. Rep., 2012, 64(3), 511-520.
[http://dx.doi.org/10.1016/S1734-1140(12)70846-0] [PMID: 22814004]
[37]
Potue, P.; Wunpathe, C.; Maneesai, P.; Kukongviriyapan, U.; Prachaney, P.; Pakdeechote, P. Nobiletin alleviates vascular alterations through modulation of Nrf-2/HO-1 and MMP pathways in l-NAME induced hypertensive rats. Food Funct., 2019, 10(4), 1880-1892.
[http://dx.doi.org/10.1039/C8FO02408A] [PMID: 30864566]
[38]
Török, J. Participation of nitric oxide in different models of experimental hypertension. Physiol. Res., 2008, 57(6), 813-825.
[http://dx.doi.org/10.33549/physiolres.931581] [PMID: 19154086]
[39]
Ribeiro, Rde.A. ; Fiuza de Melo, M.M.; De Barros, F.; Gomes, C.; Trolin, G. Acute antihypertensive effect in conscious rats produced by some medicinal plants used in the state of São Paulo. J. Ethnopharmacol., 1986, 15(3), 261-269.
[http://dx.doi.org/10.1016/0378-8741(86)90164-9] [PMID: 3724206]
[40]
Moon, H.K.; Kang, P.; Lee, H.S.; Min, S.S.; Seol, G.H. Effects of 1,8-cineole on hypertension induced by chronic exposure to nicotine in rats. J. Pharm. Pharmacol., 2014, 66(5), 688-693.
[http://dx.doi.org/10.1111/jphp.12195]
[41]
Rawat, P.; Singh, P.K.; Vipin, K. Antihypertensive medicinal plants, and their mod of action. J. Herb. Med., 2016, 6, 107-118.
[http://dx.doi.org/10.1016/j.hermed.2016.06.001]
[42]
Keli, S.; Hertog, M.; Feskens, E.; Kromhout, D. Flavonoids, antioxidant vitamins and risk of stroke. The Zutphen elderly study. Arch. Intern. Med., 1996, 156, 637-642.
[http://dx.doi.org/10.1001/archinte.1996.00440060059007] [PMID: 8629875]
[43]
Hertog, M.G.; Feskens, E.J.; Kromhout, D. Antioxidant flavonols and coronary heart disease risk. Lancet, 1997, 349(9053), 699.
[http://dx.doi.org/10.1016/S0140-6736(05)60135-3] [PMID: 9078206]
[44]
Duarte, J.; Pérez Vizcaíno, F.; Utrilla, P.; Jiménez, J.; Tamargo, J.; Zarzuelo, A. Vasodilatory effects of flavonoids in rat aortic smooth muscle. Structure-activity relationships. Gen. Pharmacol., 1993, 24(4), 857-862.
[http://dx.doi.org/10.1016/0306-3623(93)90159-U] [PMID: 8224739]
[45]
Rice-evans, A. packer, L. Flavonoids in health and disease; Marcel Dekker Inc.: New York, 1998.
[46]
Paola Romecín, M.; Atucha, L.; O’Valle, N.M.; Castillo, F.; Clara Ortiz, M.; García-Estañ, J. Beneficial effects of different flavonoids on vascular and renal function in L-NAME hypertensive rats. Nutrients, 2018, 10, 484.
[http://dx.doi.org/10.3390/nu10040484]
[47]
McGilvery, C.; Reed, J. Aroma therapy; Ultimate Editions: London, 1993.
[48]
Laude, E.A.; Morice, A.H.; Grattan, T.J. The antitussive effects of menthol, camphor and cineole in conscious guinea-pigs. Pulm. Pharmacol., 1994, 7(3), 179-184.
[http://dx.doi.org/10.1006/pulp.1994.1021] [PMID: 7827436]
[49]
Juergens, U.R.; Stöber, M.; Schmidt-Schilling, L.; Kleuver, T.; Vetter, H. Antiinflammatory effects of euclyptol (1.8-cineole) in bronchial asthma: inhibition of arachidonic acid metabolism in human blood monocytes ex vivo. Eur. J. Med. Res., 1998, 3(9), 407-412.
[PMID: 9737886]
[50]
Santos, F.A.; Rao, V.S. 1,8-cineol, a food flavoring agent, prevents ethanol-induced gastric injury in rats. Dig. Dis. Sci., 2001, 46(2), 331-337.
[http://dx.doi.org/10.1023/A:1005604932760] [PMID: 11281182]
[51]
Moon, H.K.; Kang, P.; Lee, H.S.; Min, S.S.; Seol, G.H. Effects of 1,8-cineole on hypertension induced by chronic exposure to nicotine in rats. J. Pharm. Pharmacol., 2014, 66(5), 688-693.
[http://dx.doi.org/10.1111/jphp.12195] [PMID: 24341327]
[52]
Vane, J.; Corin, R.E. Prostacyclin: a vascular mediator. Eur. J. Vasc. Endovasc. Surg., 2003, 26(6), 571-578.
[http://dx.doi.org/10.1016/S1078-5884(03)00385-X] [PMID: 14603414]
[53]
Humbert, M.; Ghofrani, H.A. The molecular targets of approved treatments for pulmonary arterial hypertension. Thorax, 2016, 71(1), 73-83.
[http://dx.doi.org/10.1136/thoraxjnl-2015-207170] [PMID: 26219978]
[54]
Alfranca, A.; Iñiguez, M.A.; Fresno, M.; Redondo, J.M. Prostanoid signal transduction and gene expression in the endothelium: role in cardiovascular diseases. Cardiovasc. Res., 2006, 70(3), 446-456.
[http://dx.doi.org/10.1016/j.cardiores.2005.12.020] [PMID: 16458868]
[55]
Tsai, E.J.; Kass, D.A. Cyclic GMP signaling in cardiovascular pathophysiology and therapeutics. Pharmacol. Ther., 2009, 122(3), 216-238.
[http://dx.doi.org/10.1016/j.pharmthera.2009.02.009] [PMID: 19306895]
[56]
Wu, C.; Chen, X.; Cai, Y.; Xia, J.; Zhou, X.; Xu, S.; Huang, H.; Zhang, L.; Zhou, X.; Du, C.; Zhang, Y.; Song, J.; Wang, S.; Chao, Y.; Yang, Z.; Xu, J.; Zhou, X.; Chen, D.; Xiong, W.; Xu, L.; Zhou, F.; Jiang, J.; Bai, C.; Zheng, J.; Song, Y. Risk factors associated with acute respira-tory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern. Med., 2020, 180(7), 934-943.
[http://dx.doi.org/10.1001/jamainternmed.2020.0994] [PMID: 32167524]
[57]
Hernández Prada, J.A.; Ferreira, A.J.; Katovich, M.J.; Shenoy, V.; Qi, Y.; Santos, R.A.; Castellano, R.K.; Lampkins, A.J.; Gubala, V.; Os-trov, D.A.; Raizada, M.K. Structure-based identification of small-molecule angiotensin-converting enzyme 2 activators as novel antihyper-tensive agents. Hypertension, 2008, 51(5), 1312-1317.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.107.108944] [PMID: 18391097]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy