Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Hydrogen Sulfide (H2S) Signaling as a Protective Mechanism against Endogenous and Exogenous Neurotoxicants

Author(s): Michael Aschner*, Anatoly V. Skalny, Tao Ke, Joao BT da Rocha, Monica MB Paoliello, Abel Santamaria, Julia Bornhorst, Lu Rongzhu, Andrey A. Svistunov, Aleksandra B. Djordevic and Alexey A. Tinkov

Volume 20, Issue 10, 2022

Published on: 02 June, 2022

Page: [1908 - 1924] Pages: 17

DOI: 10.2174/1570159X20666220302101854

Price: $65

Abstract

In view of the significant role of H2S in brain functioning, it is proposed that H2S may also possess protective effects against adverse effects of neurotoxicants. Therefore, the objective of the present review is to discuss the neuroprotective effects of H2S against toxicity of a wide spectrum of endogenous and exogenous agents involved in the pathogenesis of neurological diseases as etiological factors or key players in disease pathogenesis. Generally, the existing data demonstrate that H2S possesses neuroprotective effects upon exposure to endogenous (amyloid β, glucose, and advanced-glycation end-products, homocysteine, lipopolysaccharide, and ammonia) and exogenous (alcohol, formaldehyde, acrylonitrile, metals, 6-hydroxydopamine, as well as 1-methyl-4-phenyl- 1,2,3,6- tetrahydropyridine (MPTP) and its metabolite 1-methyl-4-phenyl pyridine ion (MPP)) neurotoxicants. On the one hand, neuroprotective effects are mediated by S-sulfhydration of key regulators of antioxidant (Sirt1, Nrf2) and inflammatory response (NF-κB), resulting in the modulation of the downstream signaling, such as SIRT1/TORC1/CREB/BDNF-TrkB, Nrf2/ARE/HO-1, or other pathways. On the other hand, H2S appears to possess a direct detoxicative effect by binding endogenous (ROS, AGEs, Aβ) and exogenous (MeHg) neurotoxicants, thus reducing their toxicity. Moreover, the alteration of H2S metabolism through the inhibition of H2S-synthetizing enzymes in the brain (CBS, 3-MST) may be considered a significant mechanism of neurotoxicity. Taken together, the existing data indicate that the modulation of cerebral H2S metabolism may be used as a neuroprotective strategy to counteract neurotoxicity of a wide spectrum of endogenous and exogenous neurotoxicants associated with neurodegeneration (Alzheimer’s and Parkinson’s disease), fetal alcohol syndrome, hepatic encephalopathy, environmental neurotoxicant exposure, etc. In this particular case, modulation of H2S-synthetizing enzymes or the use of H2S-releasing drugs should be considered as the potential tools, although the particular efficiency and safety of such interventions are to be addressed in further studies.

Keywords: Hydrogen sulfide, sodium hydrosulfide, alcohol, amyloid, metals, neurotoxicants.

Graphical Abstract
[1]
Cuevasanta, E.; Möller, M.N.; Alvarez, B. Biological chemistry of hydrogen sulfide and persulfides. Arch. Biochem. Biophys., 2017, 617, 9-25.
[http://dx.doi.org/10.1016/j.abb.2016.09.018] [PMID: 27697462]
[2]
Li, Q.; Lancaster, J.R., Jr Chemical foundations of hydrogen sulfide biology. Nitric Oxide, 2013, 35, 21-34.
[http://dx.doi.org/10.1016/j.niox.2013.07.001] [PMID: 23850631]
[3]
Malone Rubright, S.L.; Pearce, L.L.; Peterson, J. Environmental toxicology of hydrogen sulfide. Nitric Oxide, 2017, 71, 1-13.
[http://dx.doi.org/10.1016/j.niox.2017.09.011] [PMID: 29017846]
[4]
Guidotti, T.L. Hydrogen sulfide: Advances in understanding human toxicity. Int. J. Toxicol., 2010, 29(6), 569-581.
[http://dx.doi.org/10.1177/1091581810384882] [PMID: 21076123]
[5]
Abe, K.; Kimura, H. The possible role of hydrogen sulfide as an endogenous neuromodulator. J. Neurosci., 1996, 16(3), 1066-1071.
[http://dx.doi.org/10.1523/JNEUROSCI.16-03-01066.1996] [PMID: 8558235]
[6]
Wang, R. Hydrogen sulfide: The third gasotransmitter in biology and medicine. Antioxid. Redox Signal., 2010, 12(9), 1061-1064.
[http://dx.doi.org/10.1089/ars.2009.2938] [PMID: 19845469]
[7]
Skovgaard, N.; Gouliaev, A.; Aalling, M.; Simonsen, U. The role of endogenous H2S in cardiovascular physiology. Curr. Pharm. Biotechnol., 2011, 12(9), 1385-1393.
[http://dx.doi.org/10.2174/138920111798280956] [PMID: 22309020]
[8]
Dilek, N.; Papapetropoulos, A.; Toliver-Kinsky, T.; Szabo, C. Hydrogen sulfide: An endogenous regulator of the immune system. Pharmacol. Res., 2020, 161, 105119.
[http://dx.doi.org/10.1016/j.phrs.2020.105119] [PMID: 32781284]
[9]
Zhu, X.Y.; Gu, H.; Ni, X. Hydrogen sulfide in the endocrine and reproductive systems. Expert Rev. Clin. Pharmacol., 2011, 4(1), 75-82.
[http://dx.doi.org/10.1586/ecp.10.125] [PMID: 22115350]
[10]
Calabrese, V.; Cornelius, C.; Dinkova-Kostova, A.T.; Calabrese, E.J.; Mattson, M.P. Cellular stress responses, the hormesis paradigm, and vitagenes: Novel targets for therapeutic intervention in neurodegenerative disorders. Antioxid. Redox Signal., 2010, 13(11), 1763-1811.
[http://dx.doi.org/10.1089/ars.2009.3074] [PMID: 20446769]
[11]
Calabrese, V.; Mancuso, C.; Calvani, M.; Rizzarelli, E.; Butterfield, D.A.; Stella, A.M. Nitric oxide in the central nervous system: Neuroprotection versus neurotoxicity. Nat. Rev. Neurosci., 2007, 8(10), 766-775.
[http://dx.doi.org/10.1038/nrn2214] [PMID: 17882254]
[12]
Paul, B.D.; Snyder, S.H. Gasotransmitter hydrogen sulfide signaling in neuronal health and disease. Biochem. Pharmacol., 2018, 149, 101-109.
[http://dx.doi.org/10.1016/j.bcp.2017.11.019] [PMID: 29203369]
[13]
Cao, X.; Cao, L.; Ding, L.; Bian, J.S. A new hope for a devastating disease: Hydrogen sulfide in Parkinson’s disease. Mol. Neurobiol., 2018, 55(5), 3789-3799.
[PMID: 28536975]
[14]
Wei, H.J.; Li, X.; Tang, X.Q. Therapeutic benefits of H2S in Alzheimer’s disease. J. Clin. Neurosci., 2014, 21(10), 1665-1669.
[http://dx.doi.org/10.1016/j.jocn.2014.01.006] [PMID: 24882562]
[15]
Zhang, M.; Shan, H.; Chang, P.; Wang, T.; Dong, W.; Chen, X.; Tao, L. Hydrogen sulfide offers neuroprotection on traumatic brain injury in parallel with reduced apoptosis and autophagy in mice. PLoS One, 2014, 9(1), e87241.
[http://dx.doi.org/10.1371/journal.pone.0087241] [PMID: 24466346]
[16]
Shan, H.; Qiu, J.; Chang, P.; Chu, Y.; Gao, C.; Wang, H.; Chen, G.; Luo, C.; Wang, T.; Chen, X.; Zhang, M.; Tao, L. Exogenous hydrogen sulfide offers neuroprotection on intracerebral hemorrhage injury through modulating endogenous H2S metabolism in mice. Front. Cell. Neurosci., 2019, 13, 349.
[http://dx.doi.org/10.3389/fncel.2019.00349] [PMID: 31440142]
[17]
Zhu, Y.; Shui, M.; Liu, X.; Hu, W.; Wang, Y. Increased autophagic degradation contributes to the neuroprotection of hydrogen sulfide against cerebral ischemia/reperfusion injury. Metab. Brain Dis., 2017, 32(5), 1449-1458.
[http://dx.doi.org/10.1007/s11011-017-0014-4] [PMID: 28421304]
[18]
Bełtowski, J. Synthesis, metabolism, and signaling mechanisms of hydrogen sulfide: An overview. Methods Mol. Biol., 2019, 2007, 1-8.
[http://dx.doi.org/10.1007/978-1-4939-9528-8_1] [PMID: 31148102]
[19]
Kimura, H. Signaling molecules: Hydrogen sulfide and polysulfide. Antioxid. Redox Signal., 2015, 22(5), 362-376.
[http://dx.doi.org/10.1089/ars.2014.5869] [PMID: 24800864]
[20]
Shibuya, N.; Tanaka, M.; Yoshida, M.; Ogasawara, Y.; Togawa, T.; Ishii, K.; Kimura, H. 3-Mercaptopyruvate sulfurtransferase produces hydrogen sulfide and bound sulfane sulfur in the brain. Antioxid. Redox Signal., 2009, 11(4), 703-714.
[http://dx.doi.org/10.1089/ars.2008.2253] [PMID: 18855522]
[21]
Shibuya, N.; Koike, S.; Tanaka, M.; Ishigami-Yuasa, M.; Kimura, Y.; Ogasawara, Y.; Fukui, K.; Nagahara, N.; Kimura, H. A novel pathway for the production of hydrogen sulfide from D-cysteine in mammalian cells. Nat. Commun., 2013, 4(1), 1366.
[http://dx.doi.org/10.1038/ncomms2371] [PMID: 23340406]
[22]
Kimura, H. Physiological role of hydrogen sulfide and polysulfide in the central nervous system. Neurochem. Int., 2013, 63(5), 492-497.
[http://dx.doi.org/10.1016/j.neuint.2013.09.003] [PMID: 24036365]
[23]
Shefa, U.; Kim, M.S.; Jeong, N.Y.; Jung, J. Antioxidant and cell-signaling functions of hydrogen sulfide in the central nervous system. Oxid. Med. Cell. Longev., 2018, 2018, 1873962.
[http://dx.doi.org/10.1155/2018/1873962] [PMID: 29507650]
[24]
Sen, N. Functional and molecular insights of hydrogen sulfide signaling and protein sulfhydration. J. Mol. Biol., 2017, 429(4), 543-561.
[http://dx.doi.org/10.1016/j.jmb.2016.12.015] [PMID: 28013031]
[25]
Zhang, D.; Du, J.; Tang, C.; Huang, Y.; Jin, H.H. 2S-induced sulfhydration: Biological function and detection methodology. Front. Pharmacol., 2017, 8, 608.
[http://dx.doi.org/10.3389/fphar.2017.00608] [PMID: 28932194]
[26]
Meng, G.; Zhao, S.; Xie, L.; Han, Y.; Ji, Y. Protein S-sulfhydration by hydrogen sulfide in cardiovascular system. Br. J. Pharmacol., 2018, 175(8), 1146-1156.
[http://dx.doi.org/10.1111/bph.13825] [PMID: 28432761]
[27]
Calabrese, V.; Cornelius, C.; Maiolino, L.; Luca, M.; Chiaramonte, R.; Toscano, M.A.; Serra, A. Oxidative stress, redox homeostasis and cellular stress response in Ménière’s disease: Role of vitagenes. Neurochem. Res., 2010, 35(12), 2208-2217.
[http://dx.doi.org/10.1007/s11064-010-0304-2] [PMID: 21042850]
[28]
Chen, G.F.; Xu, T.H.; Yan, Y.; Zhou, Y.R.; Jiang, Y.; Melcher, K.; Xu, H.E. Amyloid beta: Structure, biology and structure-based therapeutic development. Acta Pharmacol. Sin., 2017, 38(9), 1205-1235.
[http://dx.doi.org/10.1038/aps.2017.28] [PMID: 28713158]
[29]
Brothers, H.M.; Gosztyla, M.L.; Robinson, S.R. The physiological roles of Amyloid-β peptide hint at new ways to treat Alzheimer’s disease. Front. Aging Neurosci., 2018, 10, 118.
[http://dx.doi.org/10.3389/fnagi.2018.00118] [PMID: 29922148]
[30]
Wang, J.; Gu, B.J.; Masters, C.L.; Wang, Y.J. A systemic view of Alzheimer disease - insights from amyloid-β metabolism beyond the brain. Nat. Rev. Neurol., 2017, 13(10), 612-623.
[http://dx.doi.org/10.1038/nrneurol.2017.111] [PMID: 28960209]
[31]
Murphy, M.P.; LeVine, H., III Alzheimer’s disease and the amyloid-beta peptide. J. Alzheimers Dis., 2010, 19(1), 311-323.
[http://dx.doi.org/10.3233/JAD-2010-1221] [PMID: 20061647]
[32]
Zhang, H.; Gao, Y.; Zhao, F.; Dai, Z.; Meng, T.; Tu, S.; Yan, Y. Hydrogen sulfide reduces mRNA and protein levels of β-site amyloid precursor protein cleaving enzyme 1 in PC12 cells. Neurochem. Int., 2011, 58(2), 169-175.
[http://dx.doi.org/10.1016/j.neuint.2010.11.010] [PMID: 21095213]
[33]
He, X.L.; Yan, N.; Chen, X.S.; Qi, Y.W.; Yan, Y.; Cai, Z. Hydrogen sulfide down-regulates BACE1 and PS1 via activating PI3K/Akt pathway in the brain of APP/PS1 transgenic mouse. Pharmacol. Rep., 2016, 68(5), 975-982.
[http://dx.doi.org/10.1016/j.pharep.2016.05.006] [PMID: 27372924]
[34]
Nagpure, B.V.; Bian, J.S. Hydrogen sulfide inhibits A2A adenosine receptor agonist induced β-amyloid production in SH-SY5Y neuroblastoma cells via a cAMP dependent pathway. PLoS One, 2014, 9(2), e88508.
[http://dx.doi.org/10.1371/journal.pone.0088508] [PMID: 24523906]
[35]
He, X.L.; Yan, N.; Zhang, H.; Qi, Y.W.; Zhu, L.J.; Liu, M.J.; Yan, Y. Hydrogen sulfide improves spatial memory impairment and decreases production of Aβ in APP/PS1 transgenic mice. Neurochem. Int., 2014, 67, 1-8.
[http://dx.doi.org/10.1016/j.neuint.2014.01.004] [PMID: 24412510]
[36]
Zhang, H.; Gao, Y.; Zhao, F.L.; Qiao, P.F.; Yan, Y. Hydrogen sulfide-induced processing of the amyloid precursor protein in SH-SY5Y human neuroblastoma cells involves the PI3-K/Akt signaling pathway. Cell. Mol. Neurobiol., 2015, 35(2), 265-272.
[http://dx.doi.org/10.1007/s10571-014-0121-2] [PMID: 25293506]
[37]
Rosario-Alomar, M.F.; Quiñones-Ruiz, T.; Kurouski, D.; Sereda, V.; Ferreira, E.B.; Jesús-Kim, L.D.; Hernández-Rivera, S.; Zagorevski, D.V.; López-Garriga, J.; Lednev, I.K. Hydrogen sulfide inhibits amyloid formation. J. Phys. Chem. B, 2015, 119(4), 1265-1274.
[http://dx.doi.org/10.1021/jp508471v] [PMID: 25545790]
[38]
Zhao, F.L.; Qiao, P.F.; Yan, N.; Gao, D.; Liu, M.J.; Yan, Y. Hydrogen sulfide selectively inhibits γ-secretase activity and decreases mitochondrial Aβ production in neurons from APP/PS1 transgenic mice. Neurochem. Res., 2016, 41(5), 1145-1159.
[http://dx.doi.org/10.1007/s11064-015-1807-7] [PMID: 26708452]
[39]
Liu, Y.; Deng, Y.; Liu, H.; Yin, C.; Li, X.; Gong, Q. Hydrogen sulfide ameliorates learning memory impairment in APP/PS1 transgenic mice: A novel mechanism mediated by the activation of Nrf2. Pharmacol. Biochem. Behav., 2016, 150-151, 207-216.
[http://dx.doi.org/10.1016/j.pbb.2016.11.002] [PMID: 27883916]
[40]
Chen, L.; Shi, R.; She, X.; Gu, C.; Chong, L.; Zhang, L.; Li, R. Mineralocorticoid receptor antagonist-mediated cognitive improvement in a mouse model of Alzheimer’s type: Possible involvement of BDNF-H2 S-Nrf2 signaling. Fundam. Clin. Pharmacol., 2020, 34(6), 697-707.
[http://dx.doi.org/10.1111/fcp.12576] [PMID: 32484999]
[41]
Zhao, F.L.; Fang, F.; Qiao, P.F.; Yan, N.; Gao, D.; Yan, Y. AP39, a mitochondria-targeted hydrogen sulfide donor, supports cellular bioenergetics and protects against Alzheimer’s disease by preserving mitochondrial function in APP/PS1 mice and neurons. Oxid. Med. Cell. Longev., 2016, 2016, 8360738.
[http://dx.doi.org/10.1155/2016/8360738] [PMID: 27057285]
[42]
Liu, Y.Y.; Sparatore, A.; Del Soldato, P.; Bian, J.S. H2S releasing aspirin protects amyloid beta induced cell toxicity in BV-2 microglial cells. Neuroscience, 2011, 193, 80-88.
[http://dx.doi.org/10.1016/j.neuroscience.2011.07.023] [PMID: 21784135]
[43]
Giuliani, D.; Ottani, A.; Zaffe, D.; Galantucci, M.; Strinati, F.; Lodi, R.; Guarini, S. Hydrogen sulfide slows down progression of experimental Alzheimer’s disease by targeting multiple pathophysiological mechanisms. Neurobiol. Learn. Mem., 2013, 104, 82-91.
[http://dx.doi.org/10.1016/j.nlm.2013.05.006] [PMID: 23726868]
[44]
Liu, H.; Deng, Y.; Gao, J.; Liu, Y.; Li, W.; Shi, J.; Gong, Q. Sodium hydrosulfide attenuates beta-amyloid-induced cognitive deficits and neuroinflammation via modulation of MAPK/NF-κB pathway in rats. Curr. Alzheimer Res., 2015, 12(7), 673-683.
[http://dx.doi.org/10.2174/1567205012666150713102326] [PMID: 26165866]
[45]
Fan, H.; Guo, Y.; Liang, X.; Yuan, Y.; Qi, X.; Wang, M.; Ma, J.; Zhou, H. Hydrogen sulfide protects against amyloid beta-peptide induced neuronal injury via attenuating inflammatory responses in a rat model. J. Biomed. Res., 2013, 27(4), 296-304.
[PMID: 23885269]
[46]
Liu, Y.Y.; Bian, J.S. Hydrogen sulfide protects amyloid-β induced cell toxicity in microglia. J. Alzheimers Dis., 2010, 22(4), 1189-1200.
[http://dx.doi.org/10.3233/JAD-2010-101002] [PMID: 20930302]
[47]
Liu, Y.Y.; Sparatore, A.; Del Soldato, P.; Bian, J.S. ACS84, a novel hydrogen sulfide-releasing compound, protects against amyloid β-induced cell cytotoxicity. Neurochem. Int., 2011, 58(5), 591-598.
[http://dx.doi.org/10.1016/j.neuint.2011.01.023] [PMID: 21300120]
[48]
Xuan, A.; Long, D.; Li, J.; Ji, W.; Zhang, M.; Hong, L.; Liu, J. Hydrogen sulfide attenuates spatial memory impairment and hippocampal neuroinflammation in β-amyloid rat model of Alzheimer’s disease. J. Neuroinflammation, 2012, 9(1), 202.
[http://dx.doi.org/10.1186/1742-2094-9-202] [PMID: 22898621]
[49]
Sun, H.J.; Wu, Z.Y.; Nie, X.W.; Bian, J.S. Role of hydrogen sulfide and polysulfides in neurological diseases: Focus on protein S-persulfidation. Curr. Neuropharmacol., 2021, 19(6), 868-884.
[http://dx.doi.org/10.2174/1570159X18666200905143550] [PMID: 32888271]
[50]
Cao, L.; Cao, X.; Zhou, Y.; Nagpure, B.V.; Wu, Z.Y.; Hu, L.F.; Yang, Y.; Sethi, G.; Moore, P.K.; Bian, J.S. Hydrogen sulfide inhibits ATP-induced neuroinflammation and Aβ1-42 synthesis by suppressing the activation of STAT3 and cathepsin S. Brain Behav. Immun., 2018, 73, 603-614.
[http://dx.doi.org/10.1016/j.bbi.2018.07.005] [PMID: 29981830]
[51]
Congdon, E.E.; Sigurdsson, E.M. Tau-targeting therapies for Alzheimer disease. Nat. Rev. Neurol., 2018, 14(7), 399-415.
[http://dx.doi.org/10.1038/s41582-018-0013-z] [PMID: 29895964]
[52]
Vandini, E.; Ottani, A.; Zaffe, D.; Calevro, A.; Canalini, F.; Cavallini, G.M.; Rossi, R.; Guarini, S.; Giuliani, D. Mechanisms of hydrogen sulfide against the progression of severe Alzheimer’s disease in transgenic mice at different ages. Pharmacology, 2019, 103(1-2), 50-60.
[http://dx.doi.org/10.1159/000494113] [PMID: 30448835]
[53]
Talaei, F.; Van Praag, V.M.; Shishavan, M.H.; Landheer, S.W.; Buikema, H.; Henning, R.H. Increased protein aggregation in Zucker diabetic fatty rat brain: Identification of key mechanistic targets and the therapeutic application of hydrogen sulfide. BMC Cell Biol., 2014, 15(1), 1.
[http://dx.doi.org/10.1186/1471-2121-15-1] [PMID: 24393531]
[54]
Giovinazzo, D.; Bursac, B.; Sbodio, J.I.; Nalluru, S.; Vignane, T.; Snowman, A.M.; Albacarys, L.M.; Sedlak, T.W.; Torregrossa, R.; Whiteman, M.; Filipovic, M.R.; Snyder, S.H.; Paul, B.D. Hydrogen sulfide is neuroprotective in Alzheimer’s disease by sulfhydrating GSK3β and inhibiting Tau hyperphosphorylation. Proc. Natl. Acad. Sci. USA, 2021, 118(4), e2017225118.
[http://dx.doi.org/10.1073/pnas.2017225118] [PMID: 33431651]
[55]
Sen, T.; Saha, P.; Jiang, T.; Sen, N. Sulfhydration of AKT triggers Tau-phosphorylation by activating glycogen synthase kinase 3β in Alzheimer’s disease. Proc. Natl. Acad. Sci. USA, 2020, 117(8), 4418-4427.
[http://dx.doi.org/10.1073/pnas.1916895117] [PMID: 32051249]
[56]
Cui, W.; Zhang, Y.; Yang, C.; Sun, Y.; Zhang, M.; Wang, S. Hydrogen sulfide prevents Abeta-induced neuronal apoptosis by attenuating mitochondrial translocation of PTEN. Neuroscience, 2016, 325, 165-174.
[http://dx.doi.org/10.1016/j.neuroscience.2016.03.053] [PMID: 27026591]
[57]
Dienel, G.A. Brain glucose metabolism: Integration of energetics with function. Physiol. Rev., 2019, 99(1), 949-1045.
[http://dx.doi.org/10.1152/physrev.00062.2017] [PMID: 30565508]
[58]
Tomlinson, D.R.; Gardiner, N.J. Glucose neurotoxicity. Nat. Rev. Neurosci., 2008, 9(1), 36-45.
[http://dx.doi.org/10.1038/nrn2294] [PMID: 18094705]
[59]
Untereiner, A.; Wu, L. Hydrogen sulfide and glucose homeostasis: A tale of sweet and the stink. Antioxid. Redox Signal., 2018, 28(16), 1463-1482.
[http://dx.doi.org/10.1089/ars.2017.7046] [PMID: 28699407]
[60]
Wu, L.; Chen, Y.; Wang, C.Y.; Tang, Y.Y.; Huang, H.L.; Kang, X.; Li, X.; Xie, Y.R.; Tang, X.Q. Hydrogen sulfide inhibits high glucose-induced neuronal senescence by improving autophagic flux via up-regulation of SIRT1. Front. Mol. Neurosci., 2019, 12, 194.
[http://dx.doi.org/10.3389/fnmol.2019.00194] [PMID: 31481873]
[61]
Li, X.; Yu, P.; Yu, Y.; Xu, T.; Liu, J.; Cheng, Y.; Yang, X.; Cui, X.; Yin, C.; Liu, Y. Hydrogen sulfide ameliorates high glucose-induced pro-inflammation factors in HT-22 cells: Involvement of SIRT1-mTOR/NF-κB signaling pathway. Int. Immunopharmacol., 2021, 95, 107545.
[http://dx.doi.org/10.1016/j.intimp.2021.107545] [PMID: 33765609]
[62]
Zhu, L.; Chen, X.; He, X.; Qi, Y.; Yan, Y. Effect of exogenous hydrogen sulfide on BACE-1 enzyme expression and β-amyloid peptide metabolism in high-glucose primary neuronal culture. Nan Fang Yi Ke Da Xue Xue Bao, 2014, 34(4), 504-506, 510.
[PMID: 24752097]
[63]
Shayea, A.M.F.; Mousa, A.M.A.; Renno, W.M.; Nadar, M.S.; Qabazard, B.; Yousif, M.H.M. Chronic treatment with hydrogen sulfide donor GYY4137 mitigates microglial and astrocyte activation in the spinal cord of streptozotocin-induced diabetic rats. J. Neuropathol. Exp. Neurol., 2020, 79(12), 1320-1343.
[http://dx.doi.org/10.1093/jnen/nlaa127] [PMID: 33271602]
[64]
Mostafa, D.K.; El Azhary, N.M.; Nasra, R.A. The hydrogen sulfide releasing compounds ATB-346 and diallyl trisulfide attenuate streptozotocin-induced cognitive impairment, neuroinflammation, and oxidative stress in rats: Involvement of asymmetric dimethylarginine. Can. J. Physiol. Pharmacol., 2016, 94(7), 699-708.
[http://dx.doi.org/10.1139/cjpp-2015-0316] [PMID: 27088818]
[65]
Grieb, P. Intracerebroventricular streptozotocin injections as a model of Alzheimer’s disease: In search of a relevant mechanism. Mol. Neurobiol., 2016, 53(3), 1741-1752.
[http://dx.doi.org/10.1007/s12035-015-9132-3] [PMID: 25744568]
[66]
Li, J.; Liu, D.; Sun, L.; Lu, Y.; Zhang, Z. Advanced glycation end products and neurodegenerative diseases: Mechanisms and perspective. J. Neurol. Sci., 2012, 317(1-2), 1-5.
[http://dx.doi.org/10.1016/j.jns.2012.02.018] [PMID: 22410257]
[67]
Aaseth, J.; Skalny, A.V.; Roos, P.M.; Alexander, J.; Aschner, M.; Tinkov, A.A. Copper, iron, selenium and lipo-glycemic dysmetabolism in Alzheimer’s disease. Int. J. Mol. Sci., 2021, 22(17), 9461.
[http://dx.doi.org/10.3390/ijms22179461] [PMID: 34502369]
[68]
Zhang, H.; Zhuang, X.D.; Meng, F.H.; Chen, L.; Dong, X.B.; Liu, G.H.; Li, J.H.; Dong, Q.; Xu, J.D.; Yang, C.T. Calcitriol prevents peripheral RSC96 Schwann neural cells from high glucose & methylglyoxal-induced injury through restoration of CBS/H2S expression. Neurochem. Int., 2016, 92, 49-57.
[http://dx.doi.org/10.1016/j.neuint.2015.12.005] [PMID: 26707812]
[69]
Koike, S.; Nishimoto, S.; Ogasawara, Y. Cysteine persulfides and polysulfides produced by exchange reactions with H2S protect SH-SY5Y cells from methylglyoxal-induced toxicity through Nrf2 activation. Redox Biol., 2017, 12, 530-539.
[http://dx.doi.org/10.1016/j.redox.2017.03.020] [PMID: 28371750]
[70]
Koike, S.; Kayama, T.; Yamamoto, S.; Komine, D.; Tanaka, R.; Nishimoto, S.; Suzuki, T.; Kishida, A.; Ogasawara, Y. Polysulfides protect SH-SY5Y cells from methylglyoxal-induced toxicity by suppressing protein carbonylation: A possible physiological scavenger for carbonyl stress in the brain. Neurotoxicology, 2016, 55, 13-19.
[http://dx.doi.org/10.1016/j.neuro.2016.05.003] [PMID: 27163164]
[71]
Liu, Y.Y.; Nagpure, B.V.; Wong, P.T.; Bian, J.S. Hydrogen sulfide protects SH-SY5Y neuronal cells against d-galactose induced cell injury by suppression of advanced glycation end products formation and oxidative stress. Neurochem. Int., 2013, 62(5), 603-609.
[http://dx.doi.org/10.1016/j.neuint.2012.12.010] [PMID: 23274001]
[72]
Chen, C.; Li, X.H.; Tu, Y.; Sun, H.T.; Liang, H.Q.; Cheng, S.X.; Zhang, S. Aβ-AGE aggravates cognitive deficit in rats via RAGE pathway. Neuroscience, 2014, 257, 1-10.
[http://dx.doi.org/10.1016/j.neuroscience.2013.10.056] [PMID: 24188791]
[73]
Zhou, H.; Ding, L.; Wu, Z.; Cao, X.; Zhang, Q.; Lin, L.; Bian, J.S. Hydrogen sulfide reduces RAGE toxicity through inhibition of its dimer formation. Free Radic. Biol. Med., 2017, 104, 262-271.
[http://dx.doi.org/10.1016/j.freeradbiomed.2017.01.026] [PMID: 28108276]
[74]
Zhang, H.; Huang, Y.; Chen, S.; Tang, C.; Wang, G.; Du, J.; Jin, H. Hydrogen sulfide regulates insulin secretion and insulin resistance in diabetes mellitus, a new promising target for diabetes mellitus treatment? A review. J. Adv. Res., 2020, 27, 19-30.
[http://dx.doi.org/10.1016/j.jare.2020.02.013] [PMID: 33318863]
[75]
Kumar, A.; Palfrey, H.A.; Pathak, R.; Kadowitz, P.J.; Gettys, T.W.; Murthy, S.N. The metabolism and significance of homocysteine in nutrition and health. Nutr. Metab. (Lond.), 2017, 14(1), 78.
[http://dx.doi.org/10.1186/s12986-017-0233-z] [PMID: 29299040]
[76]
Jakubowski, H. Homocysteine modification in protein structure/function and human disease. Physiol. Rev., 2019, 99(1), 555-604.
[http://dx.doi.org/10.1152/physrev.00003.2018] [PMID: 30427275]
[77]
Moretti, R.; Dal Ben, M.; Gazzin, S.; Tiribelli, C. Homocysteine in neurology: From endothelium to neurodegeneration. Curr. Nutr. Food Sci., 2017, 13(3), 163-175.
[http://dx.doi.org/10.2174/1573401313666170213155338]
[78]
Tang, X.Q.; Shen, X.T.; Huang, Y.E.; Ren, Y.K.; Chen, R.Q.; Hu, B.; He, J.Q.; Yin, W.L.; Xu, J.H.; Jiang, Z.S. Hydrogen sulfide antagonizes homocysteine-induced neurotoxicity in PC12 cells. Neurosci. Res., 2010, 68(3), 241-249.
[http://dx.doi.org/10.1016/j.neures.2010.07.2039] [PMID: 20674619]
[79]
Kumar, M.; Ray, R.S.; Sandhir, R. Hydrogen sulfide attenuates homocysteine-induced neurotoxicity by preventing mitochondrial dysfunctions and oxidative damage: In vitro and in vivo studies. Neurochem. Int., 2018, 120, 87-98.
[http://dx.doi.org/10.1016/j.neuint.2018.07.010] [PMID: 30055195]
[80]
Tang, X.Q.; Chen, R.Q.; Ren, Y.K.; Soldato, P.D.; Sparatore, A.; Zhuang, Y.Y.; Fang, H.R.; Wang, C.Y. ACS6, a Hydrogen sulfide-donating derivative of sildenafil, inhibits homocysteine-induced apoptosis by preservation of mitochondrial function. Med. Gas Res., 2011, 1(1), 20.
[http://dx.doi.org/10.1186/2045-9912-1-20] [PMID: 22146536]
[81]
Kumar, M.; Sandhir, R. Hydrogen sulfide attenuates hyperhomocysteinemia-induced mitochondrial dysfunctions in brain. Mitochondrion, 2020, 50, 158-169.
[http://dx.doi.org/10.1016/j.mito.2019.11.004] [PMID: 31751655]
[82]
Kumar, M.; Sandhir, R. Neuroprotective effect of hydrogen sulfide in hyperhomocysteinemia is mediated through antioxidant action involving Nrf2. Neuromolecular Med., 2018, 20(4), 475-490.
[http://dx.doi.org/10.1007/s12017-018-8505-y] [PMID: 30105650]
[83]
Tang, X.Q.; Chen, R.Q.; Dong, L.; Ren, Y.K.; Del Soldato, P.; Sparatore, A.; Liao, D.F. Role of paraoxonase-1 in the protection of hydrogen sulfide-donating sildenafil (ACS6) against homocysteine-induced neurotoxicity. J. Mol. Neurosci., 2013, 50(1), 70-77.
[http://dx.doi.org/10.1007/s12031-012-9862-x] [PMID: 22843253]
[84]
Li, M.; Zhang, P.; Wei, H.J.; Li, M.H.; Zou, W.; Li, X.; Gu, H.F.; Tang, X.Q. Hydrogen sulfide ameliorates homocysteine-induced cognitive dysfunction by inhibition of reactive aldehydes involving upregulation of ALDH2. Int. J. Neuropsychopharmacol., 2017, 20(4), 305-315.
[PMID: 27988490]
[85]
Wang, C.Y.; Zou, W.; Liang, X.Y.; Jiang, Z.S.; Li, X.; Wei, H.J.; Tang, Y.Y.; Zhang, P.; Tang, X.Q. Hydrogen sulfide prevents homocysteine-induced endoplasmic reticulum stress in PC12 cells by upregulating SIRT-1. Mol. Med. Rep., 2017, 16(3), 3587-3593.
[http://dx.doi.org/10.3892/mmr.2017.7004] [PMID: 28713986]
[86]
Kang, X.; Li, C.; Xie, X.; Zhan, K.B.; Yang, S.Q.; Tang, Y.Y.; Zou, W.; Zhang, P.; Tang, X.Q. Hydrogen sulfide inhibits homocysteine-induced neuronal senescence by up-regulation of SIRT1. Int. J. Med. Sci., 2020, 17(3), 310-319.
[http://dx.doi.org/10.7150/ijms.38602] [PMID: 32132865]
[87]
Wei, H.J.; Xu, J.H.; Li, M.H.; Tang, J.P.; Zou, W.; Zhang, P.; Wang, L.; Wang, C.Y.; Tang, X.Q. Hydrogen sulfide inhibits homocysteine-induced endoplasmic reticulum stress and neuronal apoptosis in rat hippocampus via upregulation of the BDNF-TrkB pathway. Acta Pharmacol. Sin., 2014, 35(6), 707-715.
[http://dx.doi.org/10.1038/aps.2013.197] [PMID: 24747165]
[88]
He, J.; Wei, H.J.; Li, M.; Li, M.H.; Zou, W.; Zhang, P. k252a inhibits H2S-alleviated homocysteine-induced cognitive dysfunction in rats. Neurochem. J., 2021, 15(3), 308-316.
[http://dx.doi.org/10.1134/S1819712421030053]
[89]
Li, M.H.; Tang, J.P.; Zhang, P.; Li, X.; Wang, C.Y.; Wei, H.J.; Yang, X.F.; Zou, W.; Tang, X.Q. Disturbance of endogenous hydrogen sulfide generation and endoplasmic reticulum stress in hippocampus are involved in homocysteine-induced defect in learning and memory of rats. Behav. Brain Res., 2014, 262, 35-41.
[http://dx.doi.org/10.1016/j.bbr.2014.01.001] [PMID: 24423987]
[90]
Herskovits, A.Z.; Guarente, L. Sirtuin deacetylases in neurodegenerative diseases of aging. Cell Res., 2013, 23(6), 746-758.
[http://dx.doi.org/10.1038/cr.2013.70] [PMID: 23689277]
[91]
Chen, S.; Dong, Z.; Cheng, M.; Zhao, Y.; Wang, M.; Sai, N.; Wang, X.; Liu, H.; Huang, G.; Zhang, X. Homocysteine exaggerates microglia activation and neuroinflammation through microglia localized STAT3 overactivation following ischemic stroke. J. Neuroinflammation, 2017, 14(1), 187.
[http://dx.doi.org/10.1186/s12974-017-0963-x] [PMID: 28923114]
[92]
Kumar, M.; Sandhir, R. Hydrogen sulfide suppresses homocysteine-induced glial activation and inflammatory response. Nitric Oxide, 2019, 90, 15-28.
[http://dx.doi.org/10.1016/j.niox.2019.05.008] [PMID: 31146011]
[93]
Kamat, P.K.; Kalani, A.; Givvimani, S.; Sathnur, P.B.; Tyagi, S.C.; Tyagi, N. Hydrogen sulfide attenuates neurodegeneration and neurovascular dysfunction induced by intracerebral-administered homocysteine in mice. Neuroscience, 2013, 252, 302-319.
[http://dx.doi.org/10.1016/j.neuroscience.2013.07.051] [PMID: 23912038]
[94]
Kumar, M.; Sandhir, R. Hydrogen sulfide attenuates hyperhomocysteinemia-induced blood-brain barrier permeability by inhibiting MMP-9. Int. J. Neurosci., 2021, 1-11.
[http://dx.doi.org/10.1080/00207454.2020.1860967] [PMID: 33287606]
[95]
Kamat, P.K.; Kyles, P.; Kalani, A.; Tyagi, N. Hydrogen sulfide ameliorates homocysteine-induced Alzheimer’s disease-like pathology, blood-brain barrier disruption, and synaptic disorder. Mol. Neurobiol., 2016, 53(4), 2451-2467.
[http://dx.doi.org/10.1007/s12035-015-9212-4] [PMID: 26019015]
[96]
Kamat, P.K.; Kalani, A.; Tyagi, S.C.; Tyagi, N. Hydrogen sulfide epigenetically attenuates homocysteine-induced mitochondrial toxicity mediated through NMDA receptor in mouse brain endothelial (bEnd3) cells. J. Cell. Physiol., 2015, 230(2), 378-394.
[http://dx.doi.org/10.1002/jcp.24722] [PMID: 25056869]
[97]
Tang, X.Q.; Shen, X.T.; Huang, Y.E.; Chen, R.Q.; Ren, Y.K.; Fang, H.R.; Zhuang, Y.Y.; Wang, C.Y. Inhibition of endogenous hydrogen sulfide generation is associated with homocysteine-induced neurotoxicity: Role of ERK1/2 activation. J. Mol. Neurosci., 2011, 45(1), 60-67.
[http://dx.doi.org/10.1007/s12031-010-9477-z] [PMID: 21104457]
[98]
Yakovleva, O.; Bogatova, K.; Mukhtarova, R.; Yakovlev, A.; Shakhmatova, V.; Gerasimova, E.; Ziyatdinova, G.; Hermann, A.; Sitdikova, G. Hydrogen sulfide alleviates anxiety, motor, and cognitive dysfunctions in rats with maternal hyperhomocysteinemia via mitigation of oxidative stress. Biomolecules, 2020, 10(7), 995.
[http://dx.doi.org/10.3390/biom10070995] [PMID: 32630731]
[99]
Yakovleva, O.V.; Ziganshina, A.R.; Dmitrieva, S.A.; Arslanova, A.N.; Yakovlev, A.V.; Minibayeva, F.V.; Khaertdinov, N.N.; Ziyatdinova, G.K.; Giniatullin, R.A.; Sitdikova, G.F. Hydrogen sulfide ameliorates developmental impairments of rat offspring with prenatal hyperhomocysteinemia. Oxid. Med. Cell. Longev., 2018, 2018, 2746873.
[http://dx.doi.org/10.1155/2018/2746873] [PMID: 30581528]
[100]
Rhee, S.H. Lipopolysaccharide: Basic biochemistry, intracellular signaling, and physiological impacts in the gut. Intest. Res., 2014, 12(2), 90-95.
[http://dx.doi.org/10.5217/ir.2014.12.2.90] [PMID: 25349574]
[101]
Mohammad, S.; Thiemermann, C. Role of metabolic endotoxemia in systemic inflammation and potential interventions. Front. Immunol., 2021, 11, 594150.
[http://dx.doi.org/10.3389/fimmu.2020.594150] [PMID: 33505393]
[102]
Batista, C.R.A.; Gomes, G.F.; Candelario-Jalil, E.; Fiebich, B.L.; de Oliveira, A.C.P. Lipopolysaccharide-induced neuroinflammation as a bridge to understand neurodegeneration. Int. J. Mol. Sci., 2019, 20(9), 2293.
[http://dx.doi.org/10.3390/ijms20092293] [PMID: 31075861]
[103]
Kumar, M.; Arora, P.; Sandhir, R. Hydrogen sulfide reverses lps-induced behavioral deficits by suppressing microglial activation and promoting M2 polarization. J. Neuroimmune Pharmacol., 2021, 16(2), 483-499.
[http://dx.doi.org/10.1007/s11481-020-09920-z] [PMID: 32676889]
[104]
Lee, M.; Sparatore, A.; Del Soldato, P.; McGeer, E.; McGeer, P.L. Hydrogen sulfide-releasing NSAIDs attenuate neuroinflammation induced by microglial and astrocytic activation. Glia, 2010, 58(1), 103-113.
[http://dx.doi.org/10.1002/glia.20905] [PMID: 19544392]
[105]
Lazarević, M.; Mazzon, E.; Momčilović, M.; Basile, M.S.; Colletti, G.; Petralia, M.C.; Bramanti, P.; Nicoletti, F.; Miljković, Đ. The H₂S donor GYY4137 stimulates reactive oxygen species generation in BV2 cells while suppressing the secretion of TNF and nitric oxide. Molecules, 2018, 23(11), 2966.
[http://dx.doi.org/10.3390/molecules23112966] [PMID: 30441775]
[106]
Sakai, J.; Cammarota, E.; Wright, J.A.; Cicuta, P.; Gottschalk, R.A.; Li, N.; Fraser, I.D.C.; Bryant, C.E. Lipopolysaccharide-induced NF-κB nuclear translocation is primarily dependent on MyD88, but TNFα expression requires TRIF and MyD88. Sci. Rep., 2017, 7(1), 1428.
[http://dx.doi.org/10.1038/s41598-017-01600-y] [PMID: 28469251]
[107]
Gong, Q.H.; Wang, Q.; Pan, L.L.; Liu, X.H.; Huang, H.; Zhu, Y.Z. Hydrogen sulfide attenuates lipopolysaccharide-induced cognitive impairment: A pro-inflammatory pathway in rats. Pharmacol. Biochem. Behav., 2010, 96(1), 52-58.
[http://dx.doi.org/10.1016/j.pbb.2010.04.006] [PMID: 20399805]
[108]
Hu, L.F.; Wong, P.T.; Moore, P.K.; Bian, J.S. Hydrogen sulfide attenuates lipopolysaccharide-induced inflammation by inhibition of p38 mitogen-activated protein kinase in microglia. J. Neurochem., 2007, 100(4), 1121-1128.
[http://dx.doi.org/10.1111/j.1471-4159.2006.04283.x] [PMID: 17212697]
[109]
Yurinskaya, M.M.; Krasnov, G.S.; Kulikova, D.A.; Zatsepina, O.G.; Vinokurov, M.G.; Chuvakova, L.N.; Rezvykh, A.P.; Funikov, S.Y.; Morozov, A.V.; Evgen’ev, M.B.H. H2S counteracts proinflammatory effects of LPS through modulation of multiple pathways in human cells. Inflamm. Res., 2020, 69(5), 481-495.
[http://dx.doi.org/10.1007/s00011-020-01329-x] [PMID: 32157318]
[110]
Kshirsagar, V.; Thingore, C.; Gursahani, M.; Gawali, N.; Juvekar, A. Hydrogen sulfide ameliorates lipopolysaccharide-induced memory impairment in mice by reducing apoptosis, oxidative, and inflammatory effects. Neurotox. Res., 2021, 39(4), 1310-1322.
[http://dx.doi.org/10.1007/s12640-021-00374-6] [PMID: 34021860]
[111]
Walker, V. Ammonia metabolism and hyperammonemic disorders. Adv. Clin. Chem., 2014, 67, 73-150.
[http://dx.doi.org/10.1016/bs.acc.2014.09.002] [PMID: 25735860]
[112]
Oja, S.S.; Saransaari, P.; Korpi, E.R. Neurotoxicity of Ammonia. Neurochem. Res., 2017, 42(3), 713-720.
[http://dx.doi.org/10.1007/s11064-016-2014-x] [PMID: 27465396]
[113]
Kwon, K.W.; Nam, Y.; Choi, W.S.; Kim, T.W.; Kim, G.M.; Sohn, U.D. Hepatoprotective effect of sodium hydrosulfide on hepatic encephalopathy in rats. Korean J. Physiol. Pharmacol., 2019, 23(4), 263-270.
[http://dx.doi.org/10.4196/kjpp.2019.23.4.263] [PMID: 31297010]
[114]
Yuan, D.S.; Huang, Y.Q.; Fu, Y.J.; Xie, J.; Huang, Y.L.; Zhou, S.S.; Sun, P.Y.; Tang, X.Q. Hydrogen sulfide alleviates cognitive deficiency and hepatic dysfunction in a mouse model of acute liver failure. Exp. Ther. Med., 2020, 20(1), 671-677.
[http://dx.doi.org/10.3892/etm.2020.8680] [PMID: 32509026]
[115]
Jin, X.; Chen, D.; Wu, F.; Zhang, L.; Huang, Y.; Lin, Z.; Wang, X.; Wang, R.; Xu, L.; Chen, Y. Hydrogen sulfide protects against ammonia-induced neurotoxicity through activation of Nrf2/ARE signaling in astrocytic model of hepatic encephalopathy. Front. Cell. Neurosci., 2020, 14, 573422.
[http://dx.doi.org/10.3389/fncel.2020.573422] [PMID: 33192318]
[116]
Ostrovsky, Y.M. Endogenous ethanol--its metabolic, behavioral and biomedical significance. Alcohol, 1986, 3(4), 239-247.
[http://dx.doi.org/10.1016/0741-8329(86)90032-7] [PMID: 3530279]
[117]
Rehm, J. The risks associated with alcohol use and alcoholism. Alcohol Res. Health, 2011, 34(2), 135-143.
[PMID: 22330211]
[118]
Brust, J.C. Ethanol and cognition: Indirect effects, neurotoxicity and neuroprotection: A review. Int. J. Environ. Res. Public Health, 2010, 7(4), 1540-1557.
[http://dx.doi.org/10.3390/ijerph7041540] [PMID: 20617045]
[119]
Jiang, R.; Wei, H. Beneficial effects of octreotide in alcohol-induced neuropathic pain. Role of H 2S, BDNF, TNF-α and Nrf2. Acta Cir. Bras., 2021, 36(4), e360408.
[http://dx.doi.org/10.1590/acb360408] [PMID: 34076065]
[120]
Mohseni, F.; Bagheri, F.; Khaksari, M. Hydrogen sulfide attenuates the neurotoxicity in the animal model of fetal alcohol spectrum disorders. Neurotox. Res., 2020, 37(4), 977-986.
[http://dx.doi.org/10.1007/s12640-019-00152-5] [PMID: 31900896]
[121]
Read, E.; Zhu, J.; Yang, G. Disrupted H2S signaling by cigarette smoking and alcohol drinking: Evidence from cellular, animal, and clinical studies. Antioxidants, 2021, 10(1), 49.
[http://dx.doi.org/10.3390/antiox10010049] [PMID: 33401622]
[122]
Mohseni, F.; Bagheri, F.; Rafaiee, R.; Norozi, P.; Khaksari, M. Hydrogen sulfide improves spatial memory impairment via increases of BDNF expression and hippocampal neurogenesis following early postnatal alcohol exposure. Physiol. Behav., 2020, 215, 112784.
[http://dx.doi.org/10.1016/j.physbeh.2019.112784] [PMID: 31863854]
[123]
George, A.K.; Behera, J.; Kelly, K.E.; Mondal, N.K.; Richardson, K.P.; Tyagi, N. Exercise mitigates alcohol induced endoplasmic reticulum stress mediated cognitive impairment through ATF6-Herp signaling. Sci. Rep., 2018, 8(1), 5158.
[http://dx.doi.org/10.1038/s41598-018-23568-z] [PMID: 29581524]
[124]
George, A.K.; Behera, J.; Kelly, K.E.; Zhai, Y.; Tyagi, N. Hydrogen sulfide, endoplasmic reticulum stress and alcohol mediated neurotoxicity. Brain Res. Bull., 2017, 130, 251-256.
[http://dx.doi.org/10.1016/j.brainresbull.2017.02.002] [PMID: 28212849]
[125]
Reingruber, H.; Pontel, L.B. Formaldehyde metabolism and its impact on human health. Curr. Opin. Toxicol., 2018, 9, 28-34.
[http://dx.doi.org/10.1016/j.cotox.2018.07.001]
[126]
Tang, X.; Bai, Y.; Duong, A.; Smith, M.T.; Li, L.; Zhang, L. Formaldehyde in China: Production, consumption, exposure levels, and health effects. Environ. Int., 2009, 35(8), 1210-1224.
[http://dx.doi.org/10.1016/j.envint.2009.06.002] [PMID: 19589601]
[127]
Bernardini, L.; Barbosa, E.; Charão, M.F.; Brucker, N. Formaldehyde toxicity reports from in vitro and in vivo studies: A review and updated data. Drug Chem. Toxicol., 2020, 20, 1-13.
[http://dx.doi.org/10.1080/01480545.2020.1795190] [PMID: 32686516]
[128]
Songur, A.; Ozen, O.A.; Sarsilmaz, M. The toxic effects of formaldehyde on the nervous system. Rev. Environ. Contam. Toxicol., 2010, 203, 105-118.
[PMID: 19957118]
[129]
Mo, W.; He, R. The role of formaldehyde in cell proliferation and death. In: Formaldehyde and Cognition; Springer: Dordrecht, 2017.
[http://dx.doi.org/10.1007/978-94-024-1177-5_5]
[130]
Tulpule, K.; Dringen, R. Formaldehyde in brain: An overlooked player in neurodegeneration? J. Neurochem., 2013, 127(1), 7-21.
[http://dx.doi.org/10.1111/jnc.12356] [PMID: 23800365]
[131]
Tang, X.Q.; Fang, H.R.; Zhou, C.F.; Zhuang, Y.Y.; Zhang, P.; Gu, H.F.; Hu, B. A novel mechanism of formaldehyde neurotoxicity: Inhibition of hydrogen sulfide generation by promoting overproduction of nitric oxide. PLoS One, 2013, 8(1), e54829.
[http://dx.doi.org/10.1371/journal.pone.0054829] [PMID: 23359814]
[132]
Tang, X.Q.; Zhuang, Y.Y.; Zhang, P.; Fang, H.R.; Zhou, C.F.; Gu, H.F.; Zhang, H.; Wang, C.Y. Formaldehyde impairs learning and memory involving the disturbance of hydrogen sulfide generation in the hippocampus of rats. J. Mol. Neurosci., 2013, 49(1), 140-149.
[http://dx.doi.org/10.1007/s12031-012-9912-4] [PMID: 23108488]
[133]
Jiang, J.M.; Zhou, C.F.; Gao, S.L.; Tian, Y.; Wang, C.Y.; Wang, L.; Gu, H.F.; Tang, X.Q. BDNF-TrkB pathway mediates neuroprotection of hydrogen sulfide against formaldehyde-induced toxicity to PC12 cells. PLoS One, 2015, 10(3), e0119478.
[http://dx.doi.org/10.1371/journal.pone.0119478] [PMID: 25749582]
[134]
Tang, X.Q.; Ren, Y.K.; Zhou, C.F.; Yang, C.T.; Gu, H.F.; He, J.Q.; Chen, R.Q.; Zhuang, Y.Y.; Fang, H.R.; Wang, C.Y. Hydrogen sulfide prevents formaldehyde-induced neurotoxicity to PC12 cells by attenuation of mitochondrial dysfunction and pro-apoptotic potential. Neurochem. Int., 2012, 61(1), 16-24.
[http://dx.doi.org/10.1016/j.neuint.2012.04.011] [PMID: 22542418]
[135]
Sun, Y.; Liu, W.Z.; Liu, T.; Feng, X.; Yang, N.; Zhou, H.F. Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. J. Recept. Signal Transduct. Res., 2015, 35(6), 600-604.
[http://dx.doi.org/10.3109/10799893.2015.1030412] [PMID: 26096166]
[136]
Li, X.; Zhuang, Y.Y.; Wu, L.; Xie, M.; Gu, H.F.; Wang, B.; Tang, X.Q. Hydrogen sulfide ameliorates cognitive dysfunction in formaldehyde-exposed rats: Involvement in the upregulation of brain-derived neurotrophic factor. Neuropsychobiology, 2020, 79(2), 119-130.
[http://dx.doi.org/10.1159/000501294] [PMID: 31550727]
[137]
Li, X.; Zhang, K.Y.; Zhang, P.; Chen, L.X.; Wang, L.; Xie, M.; Wang, C.Y.; Tang, X.Q. Hydrogen sulfide inhibits formaldehyde-induced endoplasmic reticulum stress in PC12 cells by upregulation of SIRT-1. PLoS One, 2014, 9(2), e89856.
[http://dx.doi.org/10.1371/journal.pone.0089856] [PMID: 24587076]
[138]
Zhu, W.W.; Ning, M.; Peng, Y.Z.; Tang, Y.Y.; Kang, X.; Zhan, K.B.; Zou, W.; Zhang, P.; Tang, X.Q. Hydrogen sulfide inhibits formaldehyde-induced senescence in HT-22 cells via upregulation of leptin signaling. Neuromol. Med., 2019, 21(2), 192-203.
[http://dx.doi.org/10.1007/s12017-019-08536-8] [PMID: 30980234]
[139]
Brazdil, J.F.A. Acrylonitrile. In: Ullmann’s Encyclopedia of Industrial Chemistry; , 2012.
[140]
Caito, S.; Yu, Y.; Aschner, M. Differential response to acrylonitrile toxicity in rat primary astrocytes and microglia. Neurotoxicology, 2013, 37, 93-99.
[http://dx.doi.org/10.1016/j.neuro.2013.04.007] [PMID: 23628792]
[141]
Aschner, M. Neurotoxicity of acrylonitrile: Potential neuroprotectants. Neurotoxicity and Neurodegeneration: Local Effect and Global Impact--Program and Proceedings of the 13~(th) International Neurotoxicology Association Meeting & 11~(th) International Symposium on Neurobehavioral Methods and Effects in Occupational and Environmental Health, 2011.
[142]
Yang, B.; Zhao, W.; Yin, C.; Bai, Y.; Wang, S.; Xing, G.; Li, F.; Bian, J.; Aschner, M.; Cai, J.; Shi, H.; Lu, R. Acute acrylonitrile exposure inhibits endogenous H2S biosynthesis in rat brain and liver: The role of CBS/3-MPST-H2S pathway in its astrocytic toxicity. Toxicology, 2021, 451, 152685.
[http://dx.doi.org/10.1016/j.tox.2021.152685] [PMID: 33486070]
[143]
Yang, B.; Bai, Y.; Yin, C.; Qian, H.; Xing, G.; Wang, S.; Li, F.; Bian, J.; Aschner, M.; Lu, R. Activation of autophagic flux and the Nrf2/ARE signaling pathway by hydrogen sulfide protects against acrylonitrile-induced neurotoxicity in primary rat astrocytes. Arch. Toxicol., 2018, 92(6), 2093-2108.
[http://dx.doi.org/10.1007/s00204-018-2208-x] [PMID: 29725710]
[144]
Hernandez-Baltazar, D.; Zavala-Flores, L.M.; Villanueva-Olivo, A. The 6-hydroxydopamine model and parkinsonian pathophysiology: Novel findings in an older model. Neurologia, 2017, 32(8), 533-539.
[http://dx.doi.org/10.1016/j.nrl.2015.06.011] [PMID: 26304655]
[145]
Sarukhani, M.; Haghdoost-Yazdi, H.; Sarbazi Golezari, A.; Babayan-Tazehkand, A.; Dargahi, T.; Rastgoo, N. Evaluation of the antiparkinsonism and neuroprotective effects of hydrogen sulfide in acute 6-hydroxydopamine-induced animal model of Parkinson’s disease: Behavioral, histological and biochemical studies. Neurol. Res., 2018, 40(7), 523-531.
[http://dx.doi.org/10.1080/01616412.2017.1390903] [PMID: 29726751]
[146]
Sarookhani, M.R.; Haghdoost-Yazdi, H.; Sarbazi-Golezari, A.; Babayan-Tazehkand, A.; Rastgoo, N. Involvement of adenosine triphosphate-sensitive potassium channels in the neuroprotective activity of hydrogen sulfide in the 6-hydroxydopamine-induced animal model of Parkinson’s disease. Behav. Pharmacol., 2018, 29(4), 336-343.
[http://dx.doi.org/10.1097/FBP.0000000000000358] [PMID: 29239973]
[147]
Xie, L.; Hu, L.F.; Teo, X.Q.; Tiong, C.X.; Tazzari, V.; Sparatore, A.; Del Soldato, P.; Dawe, G.S.; Bian, J.S. Therapeutic effect of hydrogen sulfide-releasing L-Dopa derivative ACS84 on 6-OHDA-induced Parkinson’s disease rat model. PLoS One, 2013, 8(4), e60200.
[http://dx.doi.org/10.1371/journal.pone.0060200] [PMID: 23573240]
[148]
Yin, W.L.; Yin, W.G.; Huang, B.S.; Wu, L.X. Neuroprotective effects of lentivirus-mediated cystathionine-beta-synthase overexpression against 6-OHDA-induced parkinson’s disease rats. Neurosci. Lett., 2017, 657, 45-52.
[http://dx.doi.org/10.1016/j.neulet.2017.07.019] [PMID: 28764908]
[149]
Xie, L.; Tiong, C.X.; Bian, J.S. Hydrogen sulfide protects SH-SY5Y cells against 6-hydroxydopamine-induced endoplasmic reticulum stress. Am. J. Physiol. Cell Physiol., 2012, 303(1), C81-C91.
[http://dx.doi.org/10.1152/ajpcell.00281.2011] [PMID: 22555844]
[150]
Tiong, C.X.; Lu, M.; Bian, J.S. Protective effect of hydrogen sulphide against 6-OHDA-induced cell injury in SH-SY5Y cells involves PKC/PI3K/Akt pathway. Br. J. Pharmacol., 2010, 161(2), 467-480.
[http://dx.doi.org/10.1111/j.1476-5381.2010.00887.x] [PMID: 20735429]
[151]
Hu, L.F.; Lu, M.; Tiong, C.X.; Dawe, G.S.; Hu, G.; Bian, J.S. Neuroprotective effects of hydrogen sulfide on Parkinson’s disease rat models. Aging Cell, 2010, 9(2), 135-146.
[http://dx.doi.org/10.1111/j.1474-9726.2009.00543.x] [PMID: 20041858]
[152]
Yang, S.Q.; Tian, Q.; Li, D.; He, S.Q.; Hu, M.; Liu, S.Y.; Zou, W.; Chen, Y.J.; Zhang, P.; Tang, X.Q. Leptin mediates protection of hydrogen sulfide against 6-hydroxydopamine-induced Parkinson’s disease: Involving enhancement in Warburg effect. Neurochem. Int., 2020, 135, 104692.
[http://dx.doi.org/10.1016/j.neuint.2020.104692] [PMID: 32032636]
[153]
Jiang, W.; Zou, W.; Hu, M.; Tian, Q.; Xiao, F.; Li, M.; Zhang, P.; Chen, Y.J.; Jiang, J.M. Hydrogen sulphide attenuates neuronal apoptosis of substantia nigra by re-establishing autophagic flux via promoting leptin signalling in a 6-hydroxydopamine rat model of Parkinson’s disease. Clin. Exp. Pharmacol. Physiol., 2022, 49(1), 122-133.
[PMID: 34494284]
[154]
Hou, X.O.; Tu, H.Y.; Qian, H.C.; Li, Q.; Yang, Y.P.; Xu, G.Q.; Wang, F.; Liu, C.F.; Wang, Y.L.; Hu, L.F. AMPK S-sulfuration contributes to H2S donors-induced AMPK phosphorylation and autophagy activation in dopaminergic cells. Neurochem. Int., 2021, 150, 105187.
[http://dx.doi.org/10.1016/j.neuint.2021.105187] [PMID: 34534609]
[155]
Chia, S.J.; Tan, E.K.; Chao, Y.X. Historical perspective: Models of Parkinson’s disease. Int. J. Mol. Sci., 2020, 21(7), 2464.
[http://dx.doi.org/10.3390/ijms21072464] [PMID: 32252301]
[156]
Mustapha, M.; Mat Taib, C.N. MPTP-induced mouse model of Parkinson’s disease: A promising direction of therapeutic strategies. Bosn. J. Basic Med. Sci., 2021, 21(4), 422-433.
[PMID: 33357211]
[157]
Yuan, Y.Q.; Wang, Y.L.; Yuan, B.S.; Yuan, X.; Hou, X.O.; Bian, J.S.; Liu, C.F.; Hu, L.F. Impaired CBS-H2S signaling axis contributes to MPTP-induced neurodegeneration in a mouse model of Parkinson’s disease. Brain Behav. Immun., 2018, 67, 77-90.
[http://dx.doi.org/10.1016/j.bbi.2017.07.159] [PMID: 28774789]
[158]
Tang, X.Q.; Fan, L.L.; Li, Y.J.; Shen, X.T.; Zhuan, Y.Y.; He, J.Q.; Xu, J.H.; Hu, B.; Li, Y.J. Inhibition of hydrogen sulfide generation contributes to 1-methy-4-phenylpyridinium ion-induced neurotoxicity. Neurotox. Res., 2011, 19(3), 403-411.
[http://dx.doi.org/10.1007/s12640-010-9180-4] [PMID: 20361290]
[159]
Tang, X.Q.; Fang, H.R.; Li, Y.J.; Zhou, C.F.; Ren, Y.K.; Chen, R.Q.; Wang, C.Y.; Hu, B. Endogenous hydrogen sulfide is involved in asymmetric dimethylarginine-induced protection against neurotoxicity of 1-methyl-4-phenyl-pyridinium ion. Neurochem. Res., 2011, 36(11), 2176-2185.
[http://dx.doi.org/10.1007/s11064-011-0542-y] [PMID: 21748658]
[160]
Yin, W.L.; He, J.Q.; Hu, B.; Jiang, Z.S.; Tang, X.Q. Hydrogen sulfide inhibits MPP(+)-induced apoptosis in PC12 cells. Life Sci., 2009, 85(7-8), 269-275.
[http://dx.doi.org/10.1016/j.lfs.2009.05.023] [PMID: 19540852]
[161]
Li, J.; Li, M.; Wang, C.; Zhang, S.; Gao, Q.; Wang, L.; Ma, L. NaSH increases SIRT1 activity and autophagy flux through sulfhydration to protect SH-SY5Y cells induced by MPP~. Cell Cycle, 2020, 19(17), 2216-2225.
[http://dx.doi.org/10.1080/15384101.2020.1804179] [PMID: 32787548]
[162]
Kida, K.; Yamada, M.; Tokuda, K.; Marutani, E.; Kakinohana, M.; Kaneki, M.; Ichinose, F. Inhaled hydrogen sulfide prevents neurodegeneration and movement disorder in a mouse model of Parkinson’s disease. Antioxid. Redox Signal., 2011, 15(2), 343-352.
[http://dx.doi.org/10.1089/ars.2010.3671] [PMID: 21050138]
[163]
Xiao, F.; Zhang, P.; Chen, A.H.; Wang, C.Y.; Zou, W.; Gu, H.F.; Tang, X.Q. Hydrogen sulfide inhibits MPP+-induced aldehyde stress and endoplasmic reticulum stress in PC12 cells: Involving upregulation of BDNF. Exp. Cell Res., 2016, 348(1), 106-114.
[http://dx.doi.org/10.1016/j.yexcr.2016.09.006] [PMID: 27641114]
[164]
Hou, X.; Yuan, Y.; Sheng, Y.; Yuan, B.; Wang, Y.; Zheng, J.; Liu, C.F.; Zhang, X.; Hu, L.F. GYY4137, an H2S slow-releasing donor, prevents nitrative stress and α-synuclein nitration in an MPTP mouse model of Parkinson’s disease. Front. Pharmacol., 2017, 8, 741.
[http://dx.doi.org/10.3389/fphar.2017.00741] [PMID: 29163149]
[165]
Tang, X.Q.; Zhuang, Y.Y.; Fan, L.L.; Fang, H.R.; Zhou, C.F.; Zhang, P.; Hu, B. Involvement of K(ATP)/PI (3)K/AKT/Bcl-2 pathway in hydrogen sulfide-induced neuroprotection against the toxicity of 1-methy-4-phenylpyridinium ion. J. Mol. Neurosci., 2012, 46(2), 442-449.
[http://dx.doi.org/10.1007/s12031-011-9608-1] [PMID: 21800153]
[166]
Lu, M.; Zhao, F.F.; Tang, J.J.; Su, C.J.; Fan, Y.; Ding, J.H.; Bian, J.S.; Hu, G. The neuroprotection of hydrogen sulfide against MPTP-induced dopaminergic neuron degeneration involves uncoupling protein 2 rather than ATP-sensitive potassium channels. Antioxid. Redox Signal., 2012, 17(6), 849-859.
[http://dx.doi.org/10.1089/ars.2011.4507] [PMID: 22360462]
[167]
Liu, Y.; Liao, S.; Quan, H.; Lin, Y.; Li, J.; Yang, Q. Involvement of microRNA-135a-5p in the Protective Effects of Hydrogen Sulfide Against Parkinson’s Disease. Cell. Physiol. Biochem., 2016, 40(1-2), 18-26.
[http://dx.doi.org/10.1159/000452521] [PMID: 27842305]
[168]
Caito, S.; Aschner, M. Neurotoxicity of metals. Handb. Clin. Neurol., 2015, 131, 169-189.
[http://dx.doi.org/10.1016/B978-0-444-62627-1.00011-1] [PMID: 26563789]
[169]
Ijomone, O.M.; Olung, N.F.; Akingbade, G.T.; Okoh, C.O.A.; Aschner, M. Environmental influence on neurodevelopmental disorders: Potential association of heavy metal exposure and autism. J. Trace Elem. Med. Biol., 2020, 62, 126638.
[http://dx.doi.org/10.1016/j.jtemb.2020.126638] [PMID: 32891009]
[170]
Ijomone, O.M.; Ifenatuoha, C.W.; Aluko, O.M.; Ijomone, O.K.; Aschner, M. The aging brain: Impact of heavy metal neurotoxicity. Crit. Rev. Toxicol., 2020, 50(9), 801-814.
[http://dx.doi.org/10.1080/10408444.2020.1838441] [PMID: 33210961]
[171]
Han, J.; Yang, X.; Chen, X.; Li, Z.; Fang, M.; Bai, B.; Tan, D. Hydrogen sulfide may attenuate methylmercury-induced neurotoxicity via mitochondrial preservation. Chem. Biol. Interact., 2017, 263, 66-73.
[http://dx.doi.org/10.1016/j.cbi.2016.12.020] [PMID: 28027877]
[172]
Yoshida, E.; Toyama, T.; Shinkai, Y.; Sawa, T.; Akaike, T.; Kumagai, Y. Detoxification of methylmercury by hydrogen sulfide-producing enzyme in Mammalian cells. Chem. Res. Toxicol., 2011, 24(10), 1633-1635.
[http://dx.doi.org/10.1021/tx200394g] [PMID: 21951228]
[173]
Oliveira, C.S.; Piccoli, B.C.; Aschner, M.; Rocha, J.B.T. Chemical speciation of selenium and mercury as determinant of their neurotoxicity. Adv. Neurobiol., 2017, 18, 53-83.
[http://dx.doi.org/10.1007/978-3-319-60189-2_4] [PMID: 28889263]
[174]
Bridges, C.C.; Krasnikov, B.F.; Joshee, L.; Pinto, J.T.; Hallen, A.; Li, J.; Zalups, R.K.; Cooper, A.J. New insights into the metabolism of organomercury compounds: Mercury-containing cysteine S-conjugates are substrates of human glutamine transaminase K and potent inactivators of cystathionine γ-lyase. Arch. Biochem. Biophys., 2012, 517(1), 20-29.
[http://dx.doi.org/10.1016/j.abb.2011.11.002] [PMID: 22093698]
[175]
Silva-Adaya, D.; Ramos-Chávez, L.A.; Petrosyan, P.; González-Alfonso, W.L.; Pérez-Acosta, A.; Gonsebatt, M.E. Early neurotoxic effects of inorganic arsenic modulate cortical GSH levels associated with the activation of the Nrf2 and NFκB pathways, expression of amino acid transporters and NMDA receptors and the production of hydrogen sulfide. Front. Cell. Neurosci., 2020, 14, 17.
[http://dx.doi.org/10.3389/fncel.2020.00017] [PMID: 32194376]
[176]
Rafaiee, R.; Khastar, H.; Garmabi, B.; Taleb, M.; Norouzi, P.; Khaksari, M. Hydrogen sulfide protects hippocampal CA1 neurons against lead mediated neuronal damage via reduction oxidative stress in male rats. J. Chem. Neuroanat., 2021, 112, 101917.
[http://dx.doi.org/10.1016/j.jchemneu.2020.101917] [PMID: 33444772]
[177]
Cheng, X.J.; Gu, J.X.; Pang, Y.P.; Liu, J.; Xu, T.; Li, X.R.; Hua, Y.Z.; Newell, K.A.; Huang, X.F.; Yu, Y.; Liu, Y. Tacrine-hydrogen sulfide donor hybrid ameliorates cognitive impairment in the aluminum chloride mouse model of Alzheimer’s disease. ACS Chem. Neurosci., 2019, 10(8), 3500-3509.
[http://dx.doi.org/10.1021/acschemneuro.9b00120] [PMID: 31244052]
[178]
Mezzaroba, L.; Alfieri, D.F.; Colado, S.A.N.; Vissoci, R.E.M. The role of zinc, copper, manganese and iron in neurodegenerative diseases. Neurotoxicology, 2019, 74, 230-241.
[http://dx.doi.org/10.1016/j.neuro.2019.07.007] [PMID: 31377220]
[179]
González-Domínguez, R.; García-Barrera, T.; Gómez-Ariza, J.L. Homeostasis of metals in the progression of Alzheimer’s disease. Biometals, 2014, 27(3), 539-549.
[http://dx.doi.org/10.1007/s10534-014-9728-5] [PMID: 24668390]
[180]
Cicero, C.E.; Mostile, G.; Vasta, R.; Rapisarda, V.; Signorelli, S.S.; Ferrante, M.; Zappia, M.; Nicoletti, A. Metals and neurodegenerative diseases. A systematic review. Environ. Res., 2017, 159, 82-94.
[http://dx.doi.org/10.1016/j.envres.2017.07.048] [PMID: 28777965]
[181]
Shimoji, M.; Hara, H.; Kamiya, T.; Okuda, K.; Adachi, T. Hydrogen sulfide ameliorates zinc-induced cell death in neuroblastoma SH-SY5Y cells. Free Radic. Res., 2017, 51(11-12), 978-985.
[http://dx.doi.org/10.1080/10715762.2017.1400666] [PMID: 29092635]
[182]
Lee, S.R. Cellular toxicity of zinc can be attenuated by sodium hydrogen sulfide in neuronal SH-SY5Y cell. Mol. Cell. Toxicol., 2018, 14(4), 425-436.
[http://dx.doi.org/10.1007/s13273-018-0047-8]
[183]
Goto, N.; Hara, H.; Kondo, M.; Yasuda, N.; Kamiya, T.; Okuda, K.; Adachi, T. Hydrogen sulfide increases copper-dependent neurotoxicity via intracellular copper accumulation. Metallomics, 2020, 12(6), 868-875.
[http://dx.doi.org/10.1039/d0mt00015a] [PMID: 32315022]
[184]
Ren, M.; Xu, Q.; Bai, Y.; Wang, S.; Kong, F. Construction of a dual-response fluorescent probe for copper (II) ions and hydrogen sulfide (H2S) detection in cells and its application in exploring the increased copper-dependent cytotoxicity in present of H2S. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2021, 249, 119299.
[http://dx.doi.org/10.1016/j.saa.2020.119299] [PMID: 33341745]
[185]
Wang, Y.; Wang, S.; Xin, Y.; Zhang, J.; Wang, S.; Yang, Z.; Liu, C. Hydrogen sulfide alleviates the anxiety-like and depressive-like behaviors of type 1 diabetic mice via inhibiting inflammation and ferroptosis. Life Sci., 2021, 278, 119551.
[http://dx.doi.org/10.1016/j.lfs.2021.119551] [PMID: 33945828]
[186]
Wang, L.; Cai, H.; Hu, Y.; Liu, F.; Huang, S.; Zhou, Y.; Yu, J.; Xu, J.; Wu, F. A pharmacological probe identifies cystathionine β-synthase as a new negative regulator for ferroptosis. Cell Death Dis., 2018, 9(10), 1005.
[http://dx.doi.org/10.1038/s41419-018-1063-2] [PMID: 30258181]
[187]
Wang, Y.; Yu, R.; Wu, L.; Yang, G. Hydrogen sulfide guards myoblasts from ferroptosis by inhibiting ALOX12 acetylation. Cell. Signal., 2021, 78, 109870.
[http://dx.doi.org/10.1016/j.cellsig.2020.109870] [PMID: 33290842]
[188]
Arif, H.M.; Qian, Z.M.; Wang, R. Signaling integration of hydrogen sulfide and iron on cellular functions. Antioxid. Redox Signal., 2021.
[PMID: 34498949]
[189]
Wang, M.; Tang, W.; Xin, H.; Zhu, Y.Z. S-Propargyl-Cysteine, a novel hydrogen sulfide donor, inhibits inflammatory hepcidin and relieves anemia of inflammation by inhibiting IL-6/STAT3 pathway. PLoS One, 2016, 11(9), e0163289.
[http://dx.doi.org/10.1371/journal.pone.0163289] [PMID: 27649298]
[190]
Xin, H.; Wang, M.; Tang, W.; Shen, Z.; Miao, L.; Wu, W.; Li, C.; Wang, X.; Xin, X.; Zhu, Y.Z. Hydrogen sulfide attenuates inflammatory hepcidin by reducing IL-6 secretion and promoting SIRT1-mediated STAT3 deacetylation. Antioxid. Redox Signal., 2016, 24(2), 70-83.
[http://dx.doi.org/10.1089/ars.2015.6315] [PMID: 26154696]
[191]
Zhang, M.W.; Yang, G.; Zhou, Y.F.; Qian, C.; Mu, M.D.; Ke, Y.; Qian, Z.M. Regulating ferroportin-1 and transferrin receptor-1 expression: A novel function of hydrogen sulfide. J. Cell. Physiol., 2019, 234(4), 3158-3169.
[http://dx.doi.org/10.1002/jcp.27431] [PMID: 30370692]
[192]
Zhou, Y.F.; Wu, X.M.; Zhou, G.; Mu, M.D.; Zhang, F.L.; Li, F.M.; Qian, C.; Du, F.; Yung, W.H.; Qian, Z.M.; Ke, Y. Cystathionine β-synthase is required for body iron homeostasis. Hepatology, 2018, 67(1), 21-35.
[http://dx.doi.org/10.1002/hep.29499] [PMID: 28859237]
[193]
Gao, C.; Chang, P.; Yang, L.; Wang, Y.; Zhu, S.; Shan, H.; Zhang, M.; Tao, L. Neuroprotective effects of hydrogen sulfide on sodium azide-induced oxidative stress in PC12 cells. Int. J. Mol. Med., 2018, 41(1), 242-250.
[PMID: 29115393]
[194]
Mohammed, R.A.; Mansour, S.M. Sodium hydrogen sulfide upregulates cystathionine β-synthase and protects striatum against 3-nitropropionic acid-induced neurotoxicity in rats. J. Pharm. Pharmacol., 2021, 73(3), 310-321.
[http://dx.doi.org/10.1093/jpp/rgaa072] [PMID: 33793881]
[195]
Ghanbari, F.; Khaksari, M.; Vaezi, G.; Hojati, V.; Shiravi, A. Hydrogen sulfide protects hippocampal neurons against methamphetamine neurotoxicity via inhibition of apoptosis and neuroinflammation. J. Mol. Neurosci., 2019, 67(1), 133-141.
[http://dx.doi.org/10.1007/s12031-018-1218-8] [PMID: 30456731]
[196]
Gao, S.; Li, W.; Zou, W.; Zhang, P.; Tian, Y.; Xiao, F.; Gu, H.; Tang, X. H2S protects PC12 cells against toxicity of corticosterone by modulation of BDNF-TrkB pathway. Acta Biochim. Biophys. Sin. (Shanghai), 2015, 47(11), 915-924.
[http://dx.doi.org/10.1093/abbs/gmv098] [PMID: 26423115]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy