Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Antiviral Compounds Based on Natural Astragalus polysaccharides (APS): Research and Foresight in the Strategies for Combating SARS-CoV-2 (COVID-19)

Author(s): Elahe Aleebrahim-Dehkordi, Ehsan Heidari-Soureshjani, Alisam Aryan, Zahra Ganjirad, Faezeh Soveyzi, Afsaneh Hoseinsalari, Mohamad Mehdi Derisi and Mahmoud Rafieian-Kopaei*

Volume 22, Issue 17, 2022

Published on: 21 April, 2022

Page: [2299 - 2307] Pages: 9

DOI: 10.2174/1389557522666220301143113

Price: $65

Abstract

Today, finding natural polymers with desirable properties for use in various industries is one of the critical axes of research in the world. Polysaccharides are a group of natural polymers that have various applications in the pharmaceutical industry. The attachment of monosaccharides forms polysaccharides through glycosidic bonds that are widely found in various sources, including plants. Genus Astragalus belongs to the Fabaceae family. Plants belonging to this genus have different polysaccharides. Astragalus polysaccharides (APS) have attracted a great deal of attention among natural polymers because they are non-toxic, biodegradable, and biocompatible. Currently, APS have great drug potential for curing or treating various diseases. Due to the different biological activities of polysaccharides, including Astragalus, this study has investigated the chemical structure of APS, reporting on the antiviral and anti-inflammatory activities as well as stimulation of cytokine secretion by these polysaccharides. Also, in this study, the pharmaceutical approaches of APS compounds, as a natural, new and inexpensive source, have been discussed as suitable candidates for use in pharmaceutical formulations and preparation of new drugs to control COVID-19 infection

Keywords: Natural polymers, polysaccharide, Astragalus, viral infections, SARS-CoV-2, COVID-19.

« Previous
Graphical Abstract
[1]
Zheng, Y.; Ren, W.; Zhang, L.; Zhang, Y.; Liu, D.; Liu, Y. A review of the pharmacological action of astragalus polysaccharide. Front. Pharmacol., 2020, 11, 349.
[http://dx.doi.org/10.3389/fphar.2020.00349] [PMID: 32265719]
[2]
Li, Z.X.; Zhao, G.D.; Xiong, W.; Linghu, K.G.; Ma, Q.S.; Cheang, W.S.; Yu, H.; Wang, Y. Immunomodulatory effects of a new whole ingredients extract from astragalus: A combined evaluation on chemistry and pharmacology. Chin. Med., 2019, 14, 12.
[http://dx.doi.org/10.1186/s13020-019-0234-0] [PMID: 30962814]
[3]
Liu, P.; Zhao, H.; Luo, Y. Anti-aging implications of Astragalus membranaceus (Huangqi): A well-known Chinese tonic. Aging Dis., 2017, 8(6), 868-886.
[http://dx.doi.org/10.14336/AD.2017.0816] [PMID: 29344421]
[4]
Zhang, K.; Pugliese, M.; Pugliese, A.; Passantino, A. Biological active ingredients of traditional Chinese herb Astragalus membranaceus on treatment of diabetes: A systematic review. Mini Rev. Med. Chem., 2015, 15(4), 315-329.
[http://dx.doi.org/10.2174/1389557515666150227113431] [PMID: 25723453]
[5]
Kallon, S.; Li, X.; Ji, J.; Chen, C.; Xi, Q.; Chang, S.; Xue, C.; Ma, J.; Xie, Q.; Zhang, Y. Astragalus polysaccharide enhances immunity and inhibits H9N2 avian influenza virus in vitro and in vivo . J. Anim. Sci. Biotechnol., 2013, 4(1), 22.
[http://dx.doi.org/10.1186/2049-1891-4-22] [PMID: 23786718]
[6]
Chen, X.; Han, W.; Wang, G.; Zhao, X. Application prospect of polysaccharides in the development of anti-novel coronavirus drugs and vaccines. Int. J. Biol. Macromol., 2020, 164, 331-343.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.07.106] [PMID: 32679328]
[7]
Lee, D.Y.W.; Li, Q.Y.; Liu, J.; Efferth, T. Traditional Chinese herbal medicine at the forefront battle against COVID-19: Clinical experience and scientific basis. Phytomedicine, 2021, 80, 153337.
[http://dx.doi.org/10.1016/j.phymed.2020.153337] [PMID: 33221457]
[8]
Costela-Ruiz, V.J.; Illescas-Montes, R.; Puerta-Puerta, J.M.; Ruiz, C.; Melguizo-Rodríguez, L. SARS-CoV-2 infection: The role of cytokines in COVID-19 disease. Cytokine Growth Factor Rev., 2020, 54, 62-75.
[http://dx.doi.org/10.1016/j.cytogfr.2020.06.001] [PMID: 32513566]
[9]
Li, C.; You, P.M.; Wang, C.X.; He, J.X.; Xiao, W.Y.; Guo, Z. Research progress on the molecular mechanism of antioxidation of astragalus polysaccharide. J. Minzu Univ. China, 2019, 40(04), 78-82.
[http://dx.doi.org/10.3969/j.issn.1009-2102.2019.04.014]
[10]
Duan, L.X.; Chen, T.L.; Li, M.; Chen, M.; Zhou, Y.Q.; Cui, G.H.; Zhao, A.H.; Jia, W.; Huang, L.Q.; Qi, X. Use of the metabolomics approach to characterize Chinese medicinal material Huangqi. Mol. Plant, 2012, 5(2), 376-386.
[http://dx.doi.org/10.1093/mp/ssr093] [PMID: 22138859]
[11]
Gong, A.G.W.; Duan, R.; Wang, H.Y.; Kong, X.P.; Dong, T.T.X.; Tsim, K.W.K.; Chan, K. Evaluation of the pharmaceutical properties and value of Astragali Radix. Medicines (Basel), 2018, 5(2), 46.
[http://dx.doi.org/10.3390/medicines5020046] [PMID: 29883402]
[12]
Yu, Y.; Shen, M.; Song, Q.; Xie, J. Biological activities and pharmaceutical applications of polysaccharide from natural resources: A review. Carbohydr. Polym., 2018, 183, 91-101.
[http://dx.doi.org/10.1016/j.carbpol.2017.12.009] [PMID: 29352896]
[13]
Xie, J.-H.; Jin, M.-L.; Morris, G.A.; Zha, X.-Q.; Chen, H.-Q.; Yi, Y. Advances on bioactive polysaccharides from medicinal plants. Crit. Rev. Food Sci. Nutr., 2016, 56(sup1), S60-S84.
[http://dx.doi.org/10.1080/10408398.2015.1069255]
[14]
Chen, R.-Z.; Tan, L.; Jin, C.-G.; Lu, J.; Tian, L.; Chang, Q.-Q. Extraction, isolation, characterization and antioxidant activity of polysaccharides from Astragalus membranaceus . Ind. Crops Prod., 2015, 77, 434-443.
[http://dx.doi.org/10.1016/j.indcrop.2015.08.006]
[15]
Wang, K.-P.; Wang, J.; Li, Q.; Zhang, Q.-L.; You, R.-X.; Cheng, Y. Structural differences and conformational characterization of five bioactive polysaccharides from Lentinus edodes . Int. Food Res. J., 2014, 62, 223-232.
[http://dx.doi.org/10.1016/j.foodres.2014.02.047]
[16]
Wang, J.-M.; Sun, X.-Y.; Ouyang, J.-M Structural characterization, antioxidant activity, and biomedical application of astragalus polysaccharide degradation products. Int. J. Polym. Sci., 2018, 2018, 5136185.
[http://dx.doi.org/10.1155/2018/5136185]
[17]
Wang, J.; Jia, J.; Song, L.; Gong, X.; Xu, J.; Yang, M. Extraction, structure, and pharmacological activities of astragalus polysaccharides. Appl. Sci. (Basel), 2019, 9(1), 122.
[http://dx.doi.org/10.3390/app9010122]
[18]
Wen, L.; Liu, X.; Liu, Y.; Zhang, Y.; Zhao, L.; Deng, X. Effect of astragalus polysaccharide (APS-P) on the proliferation and mobilization of murine hematopoietic stem cells Basic Med. Sci. Clin., 2003, 23, 306-309.
[19]
Du, X.; Zhao, B.; Li, J.; Cao, X.; Diao, M.; Feng, H.; Chen, X.; Chen, Z.; Zeng, X. Astragalus polysaccharides enhance immune responses of HBV DNA vaccination via promoting the dendritic cell maturation and suppressing Treg frequency in mice. Int. Immunopharmacol., 2012, 14(4), 463-470.
[http://dx.doi.org/10.1016/j.intimp.2012.09.006] [PMID: 23006659]
[20]
Guo, Q.; Sun, X.; Zhang, Z.; Zhang, L.; Yao, G.; Li, F.; Yang, X.; Song, L.; Jiang, G. The effect of astragalus polysaccharide on the Epstein-Barr virus lytic cycle. Acta Virol., 2014, 58(1), 76-80.
[http://dx.doi.org/10.4149/av_2014_01_76] [PMID: 24717032]
[21]
Jin-Hu, W.; Juan-Cong, D.; Ji-Xue, Z.; Shun-Zi, J.; Hai-Yu, Z.; Shan-Yu, Z. Effects of different molecule weight astragalus polysacharin isolated from annual astragalus membra-neaceus on experssions of inflammatory cytokines in RAW264. 7 cells. J. Jilin Univ. (Med. Ed.), 2011, 6, 1051-1056.
[22]
Zhang, S.; Zhang, T.; Teng, K.; Wang, A.; Yu, Y.; Zhang, HJ. Effect of astragalus polysaccharide powder injection on the density of microvessels and mast cells in ovalbulmin-sensitized rat skin. Hua Nan Nong Ye Da Xue Xue Bao, 2010, 15(1), 67-71. Available from: http://xuebao.cau.edu.cn
[23]
Zhang, Y.; Li, J.-T.; Liu, Y.-Q.; Li, J.; Su, W.; Yan, C. Effects of Astragalus polysaccharides on immune balance and the expression of nitric oxide in pulmonary fibrosis rats. Chin. J. Gerontol., 2009, 10, 1185-1187.
[24]
Li, S.P.; Zhao, X.J.; Wang, J.Y. Synergy of astragalus polysaccharides and probiotics ( Lactobacillus and Bacillus cereus ) on immunity and intestinal microbiota in chicks. Poult. Sci., 2009, 88(3), 519-525.
[http://dx.doi.org/10.3382/ps.2008-00365] [PMID: 19211520]
[25]
Shan, J-j; Wang, Y; Weng, Y-q; Xie, C-Y; Liu, D; Hu, Z-BJCT Comparing compositions and immunoactivities of polysaccharide in hair root of Astragalus membranaceus and cultivated A. membranaceus, 2002, 33(12), 1096-1098.
[26]
Li, W.; Song, K.; Wang, S.; Zhang, C.; Zhuang, M.; Wang, Y.; Liu, T. Anti-tumor potential of astragalus polysaccharides on breast cancer cell line mediated by macrophage activation. Mater. Sci. Eng. C, 2019, 98, 685-695.
[http://dx.doi.org/10.1016/j.msec.2019.01.025] [PMID: 30813073]
[27]
Hou, Y.-C.; Wu, J.-M.; Wang, M.-Y.; Wu, M.-H.; Chen, K.-Y.; Yeh, S.-L.; Lin, M.T. Modulatory effects of astragalus polysaccharides on T-cell polarization in mice with polymicrobial sepsis. Mediators Inflamm., 2015, 2015, 826319.
[http://dx.doi.org/10.1155/2015/826319] [PMID: 26693207]
[28]
Li, J.; Zhong, Y.; Li, H.; Zhang, N.; Ma, W.; Cheng, G.; Liu, F.; Liu, F.; Xu, J. Enhancement of astragalus polysaccharide on the immune responses in pigs inoculated with foot-and-mouth disease virus vaccine. Int. J. Biol. Macromol., 2011, 49(3), 362-368.
[http://dx.doi.org/10.1016/j.ijbiomac.2011.05.015] [PMID: 21640133]
[29]
Liu, Q.Y.; Yao, Y.M.; Zhang, S.W.; Sheng, Z.Y. Astragalus polysaccharides regulate T cell-mediated immunity via CD11c(high)CD45RB(low) DCs in vitro . J. Ethnopharmacol., 2011, 136(3), 457-464.
[http://dx.doi.org/10.1016/j.jep.2010.06.041] [PMID: 20620204]
[30]
Liu, Q.Y.; Yao, Y.M.; Yu, Y.; Dong, N.; Sheng, Z.Y. Astragalus polysaccharides attenuate postburn sepsis via inhibiting negative immunoregulation of CD4+ CD25(high) T cells. PLoS One, 2011, 6(6), e19811.
[http://dx.doi.org/10.1371/journal.pone.0019811] [PMID: 21698274]
[31]
Li, W.; Hu, X.; Wang, S.; Jiao, Z.; Sun, T.; Liu, T.; Song, K. Characterization and anti-tumor bioactivity of astragalus polysaccharides by immunomodulation. Int. J. Biol. Macromol., 2020, 145, 985-997.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.09.189] [PMID: 31669273]
[32]
Tian, Q-E.; Li, H.D.; Yan, M.; Cai, H.L.; Tan, Q.Y.; Zhang, W.Y. Astragalus polysaccharides can regulate cytokine and P-glycoprotein expression in H22 tumor-bearing mice. World J. Gastroenterol., 2012, 18(47), 7079-7086.
[http://dx.doi.org/10.3748/wjg.v18.i47.7079] [PMID: 23323011]
[33]
Wang, X.; Li, Y.; Yang, X.; Yao, J. Astragalus polysaccharide reduces inflammatory response by decreasing permeability of LPS-infected Caco2 cells. Int. J. Biol. Macromol., 2013, 61, 347-352.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.07.013] [PMID: 23916649]
[34]
Chen, L.; Huang, G. The antiviral activity of polysaccharides and their derivatives. Int. J. Biol. Macromol., 2018, 115, 77-82.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.04.056] [PMID: 29654857]
[35]
Jin, M.; Zhao, K.; Huang, Q.; Shang, P. Structural features and biological activities of the polysaccharides from Astragalus membranaceus . Int. J. Biol. Macromol., 2014, 64, 257-266.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.12.002] [PMID: 24325861]
[36]
Huang, X.; Wang, D.; Hu, Y.; Lu, Y.; Guo, Z.; Kong, X.; Sun, J. Effect of sulfated astragalus polysaccharide on cellular infectivity of infectious bursal disease virus. Int. J. Biol. Macromol., 2008, 42(2), 166-171.
[http://dx.doi.org/10.1016/j.ijbiomac.2007.10.019] [PMID: 18061660]
[37]
Yin, X.; Chen, L.; Liu, Y.; Yang, J.; Ma, C.; Yao, Z.; Yang, L.; Wei, L.; Li, M. Enhancement of the innate immune response of bladder epithelial cells by astragalus polysaccharides through upregulation of TLR4 expression. Biochem. Biophys. Res. Commun., 2010, 397(2), 232-238.
[http://dx.doi.org/10.1016/j.bbrc.2010.05.090] [PMID: 20546703]
[38]
Bouyahya, A.; El Omari, N.; Elmenyiy, N.; Hakkour, M.; Balahbib, A.; Guaouguaou, F.E. Therapeutic strategies of COVID-19: From natural compounds to vaccine trials. Biointerface Res. Appl. Chem., 2021, 11(1), 8318-8373.
[39]
Bansal, P.; Goyal, A.; Cusick, A., IV; Lahan, S.; Dhaliwal, H.S.; Bhyan, P.; Bhattad, P.B.; Aslam, F.; Ranka, S.; Dalia, T.; Chhabra, L.; Sanghavi, D.; Sonani, B.; Davis, J.M. III Hydroxychloroquine: A comprehensive review and its controversial role in coronavirus disease 2019. Ann. Med., 2021, 53(1), 117-134.
[http://dx.doi.org/10.1080/07853890.2020.1839959] [PMID: 33095083]
[40]
Tahvildari, A.; Arbabi, M.; Farsi, Y.; Jamshidi, P.; Hasanzadeh, S.; Calcagno, T.M.; Nasiri, M.J.; Mirsaeidi, M. Clinical features, diagnosis, and treatment of COVID-19 in hospitalized patients: A systematic review of case reports and case series. Front. Med. (Lausanne), 2020, 7, 231.
[http://dx.doi.org/10.3389/fmed.2020.00231] [PMID: 32574328]
[41]
Junaid, K.; Qasim, S.; Yasmeen, H.; Ejaz, H.; Alsrhani, A.; Ullah, M.I. Potential inhibitory effect of vitamins against COVID-19. Comput. Mater. Contin., 2021, 66(1), 707-714.
[http://dx.doi.org/10.32604/cmc.2020.012976]
[42]
Kim, J.S.; Lee, J.Y.; Yang, J.W.; Lee, K.H.; Effenberger, M.; Szpirt, W.; Kronbichler, A.; Shin, J.I. Immunopathogenesis and treatment of cytokine storm in COVID-19. Theranostics, 2021, 11(1), 316-329.
[http://dx.doi.org/10.7150/thno.49713] [PMID: 33391477]
[43]
Sadeghi, S.; Soudi, S.; Shafiee, A.; Hashemi, S.M. Mesenchymal stem cell therapies for COVID-19: Current status and mechanism of action. Life Sci., 2020, 262, 118493.
[http://dx.doi.org/10.1016/j.lfs.2020.118493] [PMID: 32979360]
[44]
Lin, J.H.; Lu, C.L.; Wu, H.J.; Wang, W.J. Reply to Letter to the Editor: Therapeutic plasma exchange resolving COVID-19 related ARDS. J. Formos. Med. Assoc., 2020, 119(12), 1890-1892.
[http://dx.doi.org/10.1016/j.jfma.2020.07.031]
[45]
Awadasseid, A.; Wu, Y.; Tanaka, Y.; Zhang, W. Current advances in the development of SARS-CoV-2 vaccines. Int. J. Biol. Sci., 2021, 17(1), 8-19.
[http://dx.doi.org/10.7150/ijbs.52569] [PMID: 33390829]
[46]
Irvani, S.S.N.; Golmohammadi, M.; Pourhoseingholi, M.A.; Shokouhi, S.; Darazam, I.A. Effectiveness of Interferon Beta 1a, compared to Interferon Beta 1b and the usual therapeutic regimen to treat adults with moderate to severe COVID-19: structured summary of a study protocol for a randomized controlled trial. Trials, 2020, 21(1), 473.
[http://dx.doi.org/10.1186/s13063-020-04382-3] [PMID: 32493468]
[47]
Gbinigie, K.; Frie, K. Should chloroquine and hydroxychloroquine be used to treat COVID-19? A rapid review. BJGP Open, 2020, 4(2) bjgpopen20X101069.
[http://dx.doi.org/10.3399/bjgpopen20X101069] [PMID: 32265182]
[48]
Sarma, P.; Kaur, H.; Kumar, H.; Mahendru, D.; Avti, P.; Bhattacharyya, A.; Prajapat, M.; Shekhar, N.; Kumar, S.; Singh, R.; Singh, A.; Dhibar, D.P.; Prakash, A.; Medhi, B. Virological and clinical cure in COVID-19 patients treated with hydroxychloroquine: A systematic review and meta-analysis. J. Med. Virol., 2020, 92(7), 776-785.
[http://dx.doi.org/10.1002/jmv.25898] [PMID: 32297988]
[49]
Talaie, H.; Hosseini, S.M.; Nazari, M.; Fakhri, Y.; Mousavizadeh, A.; Vatanpour, H.; Firoozfar, A. Is there any potential management against COVID-19? A systematic review and meta-analysis. Daru, 2020, 28(2), 765-777.
[http://dx.doi.org/10.1007/s40199-020-00367-4] [PMID: 32812187]
[50]
Ramezankhani, R.; Solhi, R.; Memarnejadian, A.; Nami, F.; Hashemian, S.M.R.; Tricot, T.; Vosough, M.; Verfaillie, C. Therapeutic modalities and novel approaches in regenerative medicine for COVID-19. Int. J. Antimicrob. Agents, 2020, 56(6), 106208.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.106208] [PMID: 33213829]
[51]
Kaur, S.P.; Gupta, V. COVID-19 Vaccine: A comprehensive status report. Virus Res., 2020, 288, 198114.
[http://dx.doi.org/10.1016/j.virusres.2020.198114] [PMID: 32800805]
[52]
Yang, Q.Z.; Liu, D.W.; Tian, Y.X.; Huang, L.F. Research progress on chemical structure and pharmacological activity of astragalus polysaccharide. Beifang Yuanyi, 2015, 7, 168-175.
[53]
Lu, X.; Mo, X.; Guo, H.; Zhang, Y. Sulfation modification and anticoagulant activity of the polysaccharides obtained from persimmon ( Diospyros kaki L.) fruits. Int. J. Biol. Macromol., 2012, 51(5), 1189-1195.
[http://dx.doi.org/10.1016/j.ijbiomac.2012.08.028] [PMID: 22960188]
[54]
Takano, R.; Nagai, T.; Wu, X.; Xu, X-Y.; Huy, N.T.; Kamei, K. sulfation of polysaccharides using monomethyl sulfate. J. Carbohydr. Chem., 2000, 19(9), 1185-1190.
[http://dx.doi.org/10.1080/07328300008544142]
[55]
Wang, X.; Wang, S.; Li, Y.; Wang, F.; Yang, X.; Yao, J. Sulfated astragalus polysaccharide can regulate the inflammatory reaction induced by LPS in Caco2 cells. Int. J. Biol. Macromol., 2013, 60, 248-252.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.05.037] [PMID: 23751319]
[56]
Wang, X.; Shen, J.; Li, S.; Zhi, L.; Yang, X.; Yao, J. Sulfated Astragalus polysaccharide regulates the inflammatory reaction in LPS-infected broiler chicks. Int. J. Biol. Macromol., 2014, 69, 146-150.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.05.004] [PMID: 24820152]
[57]
Wang, C.; Jin, Y.; Zhang, Y.; Li, C.; Zhang, X. JCJVM Effects of eight polysaccharides in Chinese herbal and sulfated polysaccharides on NDV. Chin. J. Vet. Med., 2012, 8, 42-45.
[58]
Huang, X.; Hu, Y.; Zhao, X.; Lu, Y.; Wang, J.; Zhang, F.; Sun, J. Sulfated modification can enhance the adjuvant activity of astragalus polysaccharide for ND vaccine. Carbohydr. Polym., 2008, 73(2), 303-308.
[http://dx.doi.org/10.1016/j.carbpol.2007.11.032]
[59]
Shi, Z.; Huang, X.; Li, D.; Sun, J.; Ju, Y.; Hu, Y.J.A.H.V.M. Effects of sulfated astragalus polysaccharides on immune responses of chickens inoculated with IBD vaccine. Anim. Husb. Vet. Med., 2009, 2, 6-8.
[60]
Jung, H.Y.; Bae, I.Y.; Lee, S.; Lee, H.G. Effect of the degree of sulfation on the physicochemical and biological properties of Pleurotus eryngii polysaccharides. Food Hydrocoll., 2011, 25(5), 1291-1295.
[http://dx.doi.org/10.1016/j.foodhyd.2010.12.002]
[61]
Wang, Y; Chen, Y; Du, H; Yang, J; Ming, K Song, M comparison of the anti-duck hepatitis A virus activities of phosphorylated and sulfated Astragalus polysaccharides. 2017, 242(3), 344-353.
[http://dx.doi.org/10.1177/1535370216672750]
[62]
Niu, Y.; Wang, H.; Xie, Z.; Whent, M.; Gao, X.; Zhang, X. Structural analysis and bioactivity of a polysaccharide from the roots of Astragalus membranaceus (Fisch) Bge. var. mongolicus (Bge.). Hsiao. Food Chem., 2011, 128(3), 620-626.
[http://dx.doi.org/10.1016/j.foodchem.2011.03.055]
[63]
Shimizu, N.; Tomoda, M.; Kanari, M.; Gonda, R. An acidic polysaccharide having activity on the reticuloendothelial system from the root of Astragalus mongholicus . Chem. Pharm. Bull. (Tokyo), 1991, 39(11), 2969-2972.
[http://dx.doi.org/10.1248/cpb.39.2969] [PMID: 1799943]
[64]
Yin, J-Y.; Chan, B.C-L.; Yu, H.; Lau, I.Y-K.; Han, X-Q.; Cheng, S-W.; Wong, C.K.; Lau, C.B.; Xie, M.Y.; Fung, K.P.; Leung, P.C.; Han, Q.B. Separation, structure characterization, conformation and immunomodulating effect of a hyperbranched heteroglycan from Radix Astragali. Carbohydr. Polym., 2012, 87(1), 667-675.
[http://dx.doi.org/10.1016/j.carbpol.2011.08.045] [PMID: 34663019]
[65]
Wang, Y.; Zhao, Y.; Zhang, Q.; Qiao, S.; Chunhui, Q.; Zhang, Y.J.C.T. Isolation and structure elucidation of novel glucan from Astragalus mongholicus. J. Chin. Tradit. Herb. Drugs., 2001, 32(11), 962-964.
[66]
Fu, J.; Huang, L.; Zhang, H.; Yang, S.; Chen, S. Structural features of a polysaccharide from Astragalus membranaceus (Fisch.) Bge. var. mongholicus (Bge.). Hsiao. J. Asian Nat. Prod. Res., 2013, 15(6), 687-692.
[http://dx.doi.org/10.1080/10286020.2013.778832] [PMID: 23659640]
[67]
Li, Q.; Zhao, G.; Lü, H.; Li, X.J.C.P.J. Physical and chemical analysis of a new heteropolysaccharide from radix astragalus. J. Chin. Pharm. Sci., 2009, 44(9), 654-656.
[68]
Li, C. Effect and mechanism of astragalus polysaccharide on proliferation and apoptosis of human erythroleukemia K562 cells. J. South. Med. Univ., 2014, 4-33.
[http://dx.doi.org/10.7666/d.Y2617974]
[69]
Chen, X.W.; Ma, S.L. Study on extraction of Astragalus polysaccharide by enzymatic method. Shanghai J. Tradit. Chin. Med., 2005, 39, 56-58.
[http://dx.doi.org/10.16305/j.1007-1334.2005.01.025]
[70]
Lv, X.; Chen, D.; Yang, L.; Zhu, N.; Li, J.; Zhao, J.; Hu, Z.; Wang, F.J.; Zhang, L.W. Comparative studies on the immunoregulatory effects of three polysaccharides using high content imaging system. Int. J. Biol. Macromol., 2016, 86, 28-42.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.01.048] [PMID: 26783639]
[71]
Liao, J.; Li, C.; Huang, J.; Liu, W.; Chen, H.; Liao, S.; Chen, H.; Rui, W. Structure characterization of honey-processed astragalus polysaccharides and its anti-inflammatory activity in vitro . Molecules, 2018, 23(1), 168.
[http://dx.doi.org/10.3390/molecules23010168] [PMID: 29342936]
[72]
Pu, X.; Ma, X.; Liu, L.; Ren, J.; Li, H.; Li, X.; Yu, S.; Zhang, W.; Fan, W. Structural characterization and antioxidant activity in vitro of polysaccharides from angelica and astragalus. Carbohydr. Polym., 2016, 137, 154-164.
[http://dx.doi.org/10.1016/j.carbpol.2015.10.053] [PMID: 26686116]
[73]
Li, S-g. Zhang, Y Characterization and renal protective effect of a polysaccharide from Astragalus membranaceus. Carbohydr. Polym., 2009, 78(2), 343-348.
[http://dx.doi.org/10.1016/j.carbpol.2009.04.013]
[74]
Hemmati, K.; Ghaemy, M. Synthesis of new thermo/pH sensitive drug delivery systems based on tragacanth gum polysaccharide. Int. J. Biol. Macromol., 2016, 87, 415-425.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.03.005] [PMID: 26955747]
[75]
Salatin, S.; Jelvehgari, M. Natural polysaccharide based nanoparticles for drug/gene delivery. Pharm. Sci., 2017, 23(2), 84-94.
[http://dx.doi.org/10.15171/PS.2017.14]
[76]
Barclay, T.G.; Day, C.M.; Petrovsky, N.; Garg, S. Review of polysaccharide particle-based functional drug delivery. Carbohydr. Polym., 2019, 221, 94-112.
[http://dx.doi.org/10.1016/j.carbpol.2019.05.067] [PMID: 31227171]
[77]
Kang, B.; Opatz, T.; Landfester, K.; Wurm, F.R. Carbohydrate nanocarriers in biomedical applications: functionalization and construction. Chem. Soc. Rev., 2015, 44(22), 8301-8325.
[http://dx.doi.org/10.1039/C5CS00092K] [PMID: 26278884]
[78]
Hasegawa, U.; Sawada, S.; Shimizu, T.; Kishida, T.; Otsuji, E.; Mazda, O.; Akiyoshi, K. Raspberry-like assembly of cross-linked nanogels for protein delivery. J. Control. Release, 2009, 140(3), 312-317.
[http://dx.doi.org/10.1016/j.jconrel.2009.06.025] [PMID: 19573568]
[79]
Sithole, M.N.; Choonara, Y.E.; du Toit, L.C.; Kumar, P.; Pillay, V. A review of semi-synthetic biopolymer complexes: Modified polysaccharide nano-carriers for enhancement of oral drug bioavailability. Pharm. Dev. Technol., 2017, 22(2), 283-295.
[http://dx.doi.org/10.1080/10837450.2016.1212882] [PMID: 27470222]
[80]
Hai, D.; Hoon, J.; Ki, Y.; Dong, K. Disulfide-crosslinked heparin-pluronic nanogels as a redox-sensitive nanocarrier for intracellular protein delivery. J. Bioact. Compat. Polym., 2011, 26(3), 287-300.
[http://dx.doi.org/10.1177/0883911511406031]
[81]
Debele, T.A.; Mekuria, S.L.; Tsai, H.C. Polysaccharide based nanogels in the drug delivery system: Application as the carrier of pharmaceutical agents. Mater. Sci. Eng. C, 2016, 68, 964-981.
[http://dx.doi.org/10.1016/j.msec.2016.05.121] [PMID: 27524098]
[82]
Wen, Y.; Oh, J.K. Intracellular delivery cellulose-based bionanogels with dual temperature/pH-response for cancer therapy. Colloids Surf. B Biointerfaces, 2015, 133, 246-253.
[http://dx.doi.org/10.1016/j.colsurfb.2015.06.017] [PMID: 26119370]
[83]
Šimkovic, I. What could be greener than composites made from polysaccharides? Carbohydr. Polym., 2008, 74(4), 759-762.
[http://dx.doi.org/10.1016/j.carbpol.2008.07.009]
[84]
Chen, Y.; Guo, J.J.; Healy, D.P.; Zhan, S. Effect of integrated traditional Chinese medicine and western medicine on the treatment of severe acute respiratory syndrome: A meta-analysis. Pharm. Pract. (Granada), 2007, 5(1), 1-9.
[http://dx.doi.org/10.4321/S1886-36552007000100001] [PMID: 25214911]
[85]
Aleebrahim-Dehkordi, E.; Reyhanian, A.; Hasanpour-Dehkordi, A. Clinical manifestation and the risk of exposure to SARS-CoV-2 (COVID-19). Int. J. Prev. Med., 2020, 11(1), 86.
[http://dx.doi.org/10.4103/ijpvm.IJPVM_145_20] [PMID: 33042483]
[86]
Walton, K.L.; Johnson, K.E.; Harrison, C.A. Targeting TGF-β mediated SMAD signaling for the prevention of fibrosis. Front. Pharmacol., 2017, 8, 461.
[http://dx.doi.org/10.3389/fphar.2017.00461] [PMID: 28769795]
[87]
Chen, R.-R.; Li, Y.-J.; Chen, J.-J.; Lu, C.-L. A review for natural polysaccharides with anti-pulmonary fibrosis properties, which may benefit to patients infected by 2019-nCoV. Carbohydr. Polym., 2020, 247(1), 116740.
[http://dx.doi.org/10.1016/j.carbpol.2020.116740] [PMID: 32829859]
[88]
He, T.-B.; Huang, Y.-P.; Yang, L.; Liu, T.-T.; Gong, W.-Y.; Wang, X.-J.; Sheng, J.; Hu, J.M. Structural characterization and immunomodulating activity of polysaccharide from Dendrobium officinale. Int. J. Biol. Macromol., 2016, 83, 34-41.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.11.038] [PMID: 26592697]
[89]
Wang, L.; Zhang, P.; Li, X.; Zhang, Y.; Zhan, Q.; Wang, C. Lowmolecular-weight fucoidan attenuates bleomycin-induced pulmonary fibrosis: Possible role in inhibiting TGF-β1-induced epithelialmesenchymal transition through ERK pathway. Am. J. Transl. Res., 2019, 11(4), 2590-2602.
[PMID: 31105865]
[90]
Yang, J.X.; Sun, Y.; Gao, L.; Meng, Q.; Yang, B.Y. Long non-coding RNA DANCR facilitates glioma malignancy by sponging miR-33a-5p. Neoplasma, 2018, 65(5), 790-798.
[http://dx.doi.org/10.4149/neo_2018_170724N498] [PMID: 29940760]
[91]
Qian, W.; Cai, X.; Qian, Q.; Wang, D.; Zhang, L. Angelica sinensis polysaccharide suppresses epithelial-mesenchymal transition and pulmonary fibrosis via a DANCR/AUF-1/FOXO3 regulatory axis. Aging Dis., 2020, 11(1), 17-30.
[http://dx.doi.org/10.14336/AD.2019.0512] [PMID: 32010478]
[92]
Zhou, S.; Zhou, Y.; Yu, J.; Du, Y.; Tan, Y.; Ke, Y.; Wang, J.; Han, B.; Ge, F. Ophiocordyceps lanpingensis polysaccharides attenuate pulmonary fibrosis in mice. Biomed. Pharmacother., 2020, 126, 110058.
[http://dx.doi.org/10.1016/j.biopha.2020.110058] [PMID: 32145591]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy