Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Research Article

In vitro Delivery of HIV-1 Nef-Vpr DNA Construct Using the Human Antimicrobial Peptide LL-37

Author(s): Arash Nikyar, Azam Bolhassani*, Fatemeh Rouhollah* and Masoumeh Heshmati

Volume 19, Issue 10, 2022

Published on: 25 March, 2022

Page: [1083 - 1092] Pages: 10

DOI: 10.2174/1567201819666220217164055

Price: $65

Abstract

Background and Objectives: DNA-based therapeutic vaccines have been proposed as a promising strategy for the treatment of established HIV infections. However, these vaccines are often associated with certain shortcomings, such as poor immunogenicity and low transfection efficiency. In this study, we investigated the ability of LL-37 to deliver a potential immunogenic fusion construct comprising HIV-1 nef and vpr genes into a mammalian cell line.

Methods: First, the pEGFP-N1 eukaryotic expression vector harboring the HIV-1 nef-vpr fusion was produced free of endotoxin on a large scale. Then, DNA/LL-37 complexes were prepared by coincubation of pEGFP-nef-vpr with LL-37 for 45 minutes at different nitrogen to phosphate (N/P) ratios. The formation of DNA/peptide complexes was investigated by gel retardation assay. Next, the stability and morphological characteristics of the nanoparticles were evaluated. The toxicity of LL-37 and the nanoparticles in HEK-293T cells were assessed by MTT assay. The transfection efficiency of the DNA/LL-37 complexes was studied by fluorescence microscopy, flow cytometry, and western blot analysis.

Results: LL-37 formed stable complexes with pEGFP-nef-vpr (diameter of 150-200 nm) while providing good protection against nucleolytic and proteolytic degradation. The peptide significantly affected cell viability even at low concentrations. However, the LL-37/DNA complexes had no significant cytotoxic effect. Treatment of cells with pEGFP-N1/LL-37 and pEGFP-nef-vpr/LL-37 resulted in transfection of 36.32% ± 1.13 and 25.55% ± 2.07 of cells, respectively.

Conclusion: Given these findings and the important immunomodulatory and antiviral activities of LL- 37, the use of this peptide can be further exploited in the development of novel gene delivery strategies and vaccine design.

Keywords: HIV-1, Nef, Vpr, LL-37, transfection, gene transfer techniques.

Graphical Abstract
[1]
German Advisory Committee Blood (Arbeitskreis Blut) Subgroup. ‘Assessment of pathogens transmissible by blood,’ G.A.C.B. (Arbeitskreis; Blood’, S. ‘Assessment of P.T. by. Human Immunodeficiency Virus (HIV). Transfus. Med. Hemother., 2016, 43, 203-222.
[2]
Global, H.I.V. Hepatitis and STIs programme., Available from: https://www.who.int/teams/global-hiv-hepatitis-and-stis-programmes/data-use/hiv-data-and-statistics (Accessed Jan 8, 2021).
[3]
Liao, H-X.; Lynch, R.; Zhou, T.; Gao, F.; Alam, S.M.; Boyd, S.D.; Fire, A.Z.; Roskin, K.M.; Schramm, C.A.; Zhang, Z.; Zhu, J.; Shapiro, L.; Mullikin, J.C.; Gnanakaran, S.; Hraber, P.; Wiehe, K.; Kelsoe, G.; Yang, G.; Xia, S.M.; Montefiori, D.C.; Parks, R.; Lloyd, K.E.; Scearce, R.M.; Soderberg, K.A.; Cohen, M.; Kamanga, G.; Louder, M.K.; Tran, L.M.; Chen, Y.; Cai, F.; Chen, S.; Moquin, S.; Du, X.; Joyce, M.G.; Srivatsan, S.; Zhang, B.; Zheng, A.; Shaw, G.M.; Hahn, B.H.; Kepler, T.B.; Korber, B.T.; Kwong, P.D.; Mascola, J.R.; Haynes, B.F.; Young, A.; Mullikin, J.C.; Gnanakaran, S.; Hraber, P.; Wiehe, K.; Kelsoe, G.; Yang, G.; Xia, S-M.; Montefiori, D.C.; Parks, R.; Lloyd, K.E.; Scearce, R.M.; Soderberg, K.A.; Cohen, M.; Kamanga, G.; Louder, M.K.; Tran, L.M.; Chen, Y.; Cai, F.; Chen, S.; Moquin, S.; Du, X.; Joyce, M.G.; Srivatsan, S.; Zhang, B.; Zheng, A.; Shaw, G.M.; Hahn, B.H.; Kepler, T.B.; Korber, B.T.M.; Kwong, P.D.; Mascola, J.R.; Haynes, B.F. Co-evolution of a broadly neutralizing HIV-1 antibody and founder virus. Nature, 2013, 496(7446), 469-476.
[http://dx.doi.org/10.1038/nature12053] [PMID: 23552890]
[4]
Montaner, J.S.G.; Lima, V.D.; Harrigan, P.R.; Lourenço, L.; Yip, B.; Nosyk, B.; Wood, E.; Kerr, T.; Shannon, K.; Moore, D.; Hogg, R.S.; Barrios, R.; Gilbert, M.; Krajden, M.; Gustafson, R.; Daly, P.; Kendall, P. Expansion of HAART coverage is associated with sustained decreases in HIV/AIDS morbidity, mortality and HIV transmission: The “HIV Treatment as Prevention” experience in a Canadian setting. PLoS One, 2014, 9(2), e87872.
[http://dx.doi.org/10.1371/journal.pone.0087872] [PMID: 24533061]
[5]
Da-Yong-Lu, ; Wu, H.-Y.; Yarla, N.S.; Xu, B.; Ding, J.; Lu, T.-R. HAART in HIV / AIDS treatments, a current limitation. EC Orthop., 2017, 4, 140-146.
[6]
Khan, K.H. DNA vaccines: Roles against diseases. Germs, 2013, 3(1), 26-35.
[http://dx.doi.org/10.11599/germs.2013.1034] [PMID: 24432284]
[7]
Hobernik, D.; Bros, M. DNA vaccines-how far from clinical use? Int. J. Mol. Sci., 2018, 19(11), 19.
[http://dx.doi.org/10.3390/ijms19113605] [PMID: 30445702]
[8]
Li, G.; De Clercq, E. HIV genome-wide protein associations: A review of 30 years of research. Microbiol. Mol. Biol. Rev., 2016, 80(3), 679-731.
[http://dx.doi.org/10.1128/MMBR.00065-15] [PMID: 27357278]
[9]
Tristem, M.; Purvis, A.; Quicke, D.L.J. Complex evolutionary history of primate lentiviral vpr genes. Virology, 1998, 240(2), 232-237.
[http://dx.doi.org/10.1006/viro.1997.8929] [PMID: 9454696]
[10]
Basmaciogullari, S.; Pizzato, M. The activity of Nef on HIV-1 infectivity. Front. Microbiol., 2014, 5, 232.
[http://dx.doi.org/10.3389/fmicb.2014.00232] [PMID: 24904546]
[11]
Hel, Z.; Johnson, J.M.; Tryniszewska, E.; Tsai, W.P.; Harrod, R.; Fullen, J.; Tartaglia, J.; Franchini, G. A novel chimeric Rev, Tat, and Nef (Retanef) antigen as a component of an SIV/HIV vaccine. Vaccine, 2002, 20(25-26), 3171-3186.
[http://dx.doi.org/10.1016/S0264-410X(02)00258-X] [PMID: 12163269]
[12]
Perdiguero, B.; Gómez, C.E.; Cepeda, V.; Sánchez-Sampedro, L.; García-Arriaza, J.; Mejías-Pérez, E.; Jiménez, V.; Sánchez, C.; Sorzano, C.Ó.S.; Oliveros, J.C.; Delaloye, J.; Roger, T.; Calandra, T.; Asbach, B.; Wagner, R.; Kibler, K.V.; Jacobs, B.L.; Pantaleo, G.; Esteban, M. Virological and immunological characterization of novel NYVAC-based HIV/AIDS vaccine candidates expressing clade C trimeric soluble gp140(ZM96) and Gag(ZM96)-Pol-Nef(CN54) as virus-like particles. J. Virol., 2015, 89(2), 970-988.
[http://dx.doi.org/10.1128/JVI.02469-14] [PMID: 25355891]
[13]
Korber, B.; Fischer, W. T cell-based strategies for HIV-1 vaccines. Hum. Vaccin. Immunother., 2020, 16(3), 713-722.
[http://dx.doi.org/10.1080/21645515.2019.1666957] [PMID: 31584318]
[14]
Moretti, S.; Cafaro, A.; Tripiciano, A.; Picconi, O.; Buttò, S.; Ensoli, F.; Sgadari, C.; Monini, P.; Ensoli, B. HIV therapeutic vaccines aimed at intensifying combination antiretroviral therapy. Expert Rev. Vaccines, 2020, 19(1), 71-84.
[http://dx.doi.org/10.1080/14760584.2020.1712199] [PMID: 31957513]
[15]
Luo, L.; Wang, N.; Yue, Y.; Han, Y.; Lv, W.; Liu, Z.; Qiu, Z.; Lu, H.; Tang, X.; Zhang, T.; Zhao, M.; He, Y.; Shenghua, H.; Wang, M.; Li, Y.; Huang, S.; Li, Y.; Liu, J.; Tuofu, Z.; Routy, J.P.; Li, T. The effects of antiretroviral therapy initiation time on HIV reservoir size in Chinese chronically HIV infected patients: A prospective, multi-site cohort study. BMC Infect. Dis., 2019, 19(1), 257.
[http://dx.doi.org/10.1186/s12879-019-3847-0] [PMID: 30871484]
[16]
Yang, J.; Luo, Y.; Shibu, M.A.; Toth, I.; Skwarczynskia, M. Cell-penetrating peptides: Efficient vectors for vaccine delivery. Curr. Drug Deliv., 2019, 16(5), 430-443.
[http://dx.doi.org/10.2174/1567201816666190123120915] [PMID: 30760185]
[17]
Habault, J.; Poyet, J-L. Recent advances in cell penetrating peptide-based anticancer therapies. Molecules, 2019, 24(5), 927.
[http://dx.doi.org/10.3390/molecules24050927] [PMID: 30866424]
[18]
Pouniotis, D.; Tang, C-K.; Apostolopoulos, V.; Pietersz, G. Vaccine delivery by penetratin: Mechanism of antigen presentation by dendritic cells. Immunol. Res., 2016, 64(4), 887-900.
[http://dx.doi.org/10.1007/s12026-016-8799-5] [PMID: 27138940]
[19]
Kahlenberg, J.M.; Kaplan, M.J. Little peptide, big effects: The role of LL-37 in inflammation and autoimmune disease. J. Immunol., 2013, 191(10), 4895-4901.
[http://dx.doi.org/10.4049/jimmunol.1302005] [PMID: 24185823]
[20]
Xhindoli, D.; Pacor, S.; Benincasa, M.; Scocchi, M.; Gennaro, R.; Tossi, A. The human cathelicidin LL-37-A pore-forming antibacterial peptide and host-cell modulator. Biochim. Biophys. Acta, 2016, 1858(3), 546-566.
[http://dx.doi.org/10.1016/j.bbamem.2015.11.003] [PMID: 26556394]
[21]
Kuroda, K.; Okumura, K.; Isogai, H.; Isogai, E. The human cathelicidin antimicrobial peptide LL-37 and mimics are potential anticancer drugs. Front. Oncol., 2015, 5, 144.
[http://dx.doi.org/10.3389/fonc.2015.00144] [PMID: 26175965]
[22]
Sandgren, S.; Wittrup, A.; Cheng, F.; Jönsson, M.; Eklund, E.; Busch, S.; Belting, M. The human antimicrobial peptide LL-37 transfers extra-cellular DNA plasmid to the nuclear compartment of mammalian cells via lipid rafts and proteoglycan-dependent endocytosis. J. Biol. Chem., 2004, 279(17), 17951-17956.
[http://dx.doi.org/10.1074/jbc.M311440200] [PMID: 14963039]
[23]
Wong, A.; Bryzek, D.; Dobosz, E.; Scavenius, C.; Svoboda, P.; Rapala-Kozik, M.; Lesner, A.; Frydrych, I.; Enghild, J.; Mydel, P.; Pohl, J.; Thompson, P.R.; Potempa, J.; Koziel, J. A novel biological role for peptidyl-arginine deiminases: Citrullination of cathelicidin LL-37 controls the immunostimulatory potential of cell-free DNA. J. Immunol., 2018, 200(7), 2327-2340.
[http://dx.doi.org/10.4049/jimmunol.1701391] [PMID: 29475987]
[24]
Macleod, T.; Ward, J.; Alase, A.A.; Bridgewood, C.; Wittmann, M.; Stonehouse, N.J. Antimicrobial peptide LL-37 facilitates intracellular uptake of RNA aptamer Apt 21-2 without inducing an inflammatory or interferon response. Front. Immunol., 2019, 10, 857.
[http://dx.doi.org/10.3389/fimmu.2019.00857] [PMID: 31068939]
[25]
Hurtado, P.; Peh, C.A. LL-37 promotes rapid sensing of CpG oligodeoxynucleotides by B lymphocytes and plasmacytoid dendritic cells. J. Immunol., 2010, 184(3), 1425-1435.
[http://dx.doi.org/10.4049/jimmunol.0902305] [PMID: 20042575]
[26]
Zhang, X.; Oglęcka, K.; Sandgren, S.; Belting, M.; Esbjörner, E.K.; Nordén, B.; Gräslund, A. Dual functions of the human antimicrobial peptide LL-37-target membrane perturbation and host cell cargo delivery. Biochim. Biophys. Acta, 2010, 1798(12), 2201-2208.
[http://dx.doi.org/10.1016/j.bbamem.2009.12.011] [PMID: 20036634]
[27]
Yalçinkaya, M.; Yüksel, Ş. Investigation of LL-37-mediated SiRNA transfection. Turk. J. Biol., 2013, 37, 426-432.
[http://dx.doi.org/10.3906/biy-1208-50]
[28]
Nikyar, A.; Bolhassani, A.; Rouhollah, F.; Heshmati, M. Construction of a prokaryotic expression vector harboring two HIV-1 accessory genes. Med. Lab. J., 2021, 15, 11-17.
[29]
Davoodi, S.; Bolhassani, A.; Sadat, S.M.; Irani, S. Enhancing HIV-1 nef penetration into mammalian cells as an antigen candidate. J. Med. Microbiol. Infect. Dis., 2019, 7(1), 37-43.
[http://dx.doi.org/10.29252/JoMMID.7.1.2.37]
[30]
Vladár, A.E.; Hodoroaba, V.D. Characterization of nanoparticles by scanning electron microscopy; Charact. Nanoparticles Meas. Process. Nanoparticles, 2020, pp. 7-27.
[http://dx.doi.org/10.1016/B978-0-12-814182-3.00002-X]
[31]
Thermo scientific™ turbofect™ transfection reagent. Available from: https://www.fishersci.co.uk/shop/products/turbofect-cell-transfection-reagent/15391506 (Accessed Apr 6, 2021).
[32]
Martín-Moreno, A.; Jiménez Blanco, J.L.; Mosher, J.; Swanson, D.R.; García Fernández, J.M.; Sharma, A.; Ceña, V.; Muñoz-Fernández, M.A. Nanoparticle-delivered HIV peptides to dendritic cells a promising approach to generate a therapeutic vaccine. Pharmaceutics, 2020, 12(7), 1-17.
[http://dx.doi.org/10.3390/pharmaceutics12070656] [PMID: 32664555]
[33]
Giri, M.; Ugen, K.E.; Weiner, D.B. DNA vaccines against human immunodeficiency virus type 1 in the past decade. Clin. Microbiol. Rev., 2004, 17(2), 370-389.
[http://dx.doi.org/10.1128/CMR.17.2.370-389.2004] [PMID: 15084506]
[34]
Leslie, A.J.; Pfafferott, K.J.; Chetty, P.; Draenert, R.; Addo, M.M.; Feeney, M.; Tang, Y.; Holmes, E.C.; Allen, T.; Prado, J.G.; Altfeld, M.; Brander, C.; Dixon, C.; Ramduth, D.; Jeena, P.; Thomas, S.A.; St John, A.; Roach, T.A.; Kupfer, B.; Luzzi, G.; Edwards, A.; Taylor, G.; Lyall, H.; Tudor-Williams, G.; Novelli, V.; Martinez-Picado, J.; Kiepiela, P.; Walker, B.D.; Goulder, P.J.R. HIV evolution: CTL escape mutation and reversion after transmission. Nat. Med., 2004, 10(3), 282-289.
[http://dx.doi.org/10.1038/nm992] [PMID: 14770175]
[35]
Davoodi, S.; Bolhassani, A.; Sadat, S.M.; Irani, S. Design and in vitro delivery of HIV-1 multi-epitope DNA and peptide constructs using novel cell-penetrating peptides. Biotechnol. Lett., 2019, 41(11), 1283-1298.
[http://dx.doi.org/10.1007/s10529-019-02734-x] [PMID: 31531750]
[36]
Kogan, M.; Rappaport, J. HIV-1 accessory protein Vpr: Relevance in the pathogenesis of HIV and potential for therapeutic intervention. Retrovirology, 2011, 8(1), 25.
[http://dx.doi.org/10.1186/1742-4690-8-25] [PMID: 21489275]
[37]
Gomes, S.T.M.; da Silva Graça Amoras, E.; Gomes, É.R.; Queiroz, M.A.F.; Júnior, E.C.S.; de Vasconcelos Massafra, J.M.; da Silva Lemos, P.; Júnior, J.L.V.; Ishak, R.; Vallinoto, A.C.R. Immune escape mutations in HIV-1 controllers in the Brazilian Amazon region. BMC Infect. Dis., 2020, 20(1), 546.
[http://dx.doi.org/10.1186/s12879-020-05268-0] [PMID: 32711474]
[38]
Kadkhodayan, S.; Jafarzade, B.S.; Sadat, S.M.; Motevalli, F.; Agi, E.; Bolhassani, A. Combination of cell penetrating peptides and heterologous DNA prime/protein boost strategy enhances immune responses against HIV-1 Nef antigen in BALB/c mouse model. Immunol. Lett., 2017, 188, 38-45.
[http://dx.doi.org/10.1016/j.imlet.2017.06.003] [PMID: 28602843]
[39]
Jafarzade, B.S.; Bolhassani, A.; Sadat, S.M.; Yaghobi, R. Delivery of HIV-1 nef protein in mammalian cells using cell penetrating peptides as a candidate therapeutic vaccine. Int. J. Pept. Res. Ther., 2017, 23(1), 145-153.
[http://dx.doi.org/10.1007/s10989-016-9547-3]
[40]
Namazi, F.; Bolhassani, A.; Sadat, S.M.; Irani, S. In vitro delivery of HIV-1 nef antigen by histidine-rich nona-arginine and latarcin 1 peptide. J. Med. Microbiol. Infect. Dis., 2019, 7(4), 107-115.
[http://dx.doi.org/10.29252/JoMMID.7.4.107]
[41]
Rostami, B.; Irani, S.; Bolhassani, A.; Cohan, R.A. Gene and protein delivery using four cell penetrating peptides for HIV‐1 vaccine development. IUBMB Life, 2019., iub.2107.
[http://dx.doi.org/10.1002/iub.2107]
[42]
Omardien, S.; Brul, S.; Zaat, S.A.J. Antimicrobial activity of cationic antimicrobial peptides against gram-positives: Current progress made in understanding the mode of action and the response of bacteria. Front. Cell Dev. Biol., 2016, 4, 111.
[http://dx.doi.org/10.3389/fcell.2016.00111] [PMID: 27790614]
[43]
Lande, R.; Ganguly, D.; Facchinetti, V.; Frasca, L.; Conrad, C.; Gregorio, J.; Meller, S.; Chamilos, G.; Sebasigari, R.; Riccieri, V.; Bassett, R.; Amuro, H.; Fukuhara, S.; Ito, T.; Liu, Y.J.; Gilliet, M. Neutrophils activate plasmacytoid dendritic cells by releasing self-DNA-peptide complexes in systemic lupus erythematosus. Sci. Transl. Med., 2011, 3(73), 73ra19.
[http://dx.doi.org/10.1126/scitranslmed.3001180] [PMID: 21389263]
[44]
Wang, Y.; Agerberth, B.; Löthgren, A.; Almstedt, A.; Johansson, J. Apolipoprotein A-I binds and inhibits the human antibacterial/cytotoxic peptide LL-37. J. Biol. Chem., 1998, 273(50), 33115-33118.
[http://dx.doi.org/10.1074/jbc.273.50.33115] [PMID: 9837875]
[45]
Svensson, D.; Wilk, L.; Mörgelin, M.; Herwald, H.; Nilsson, B.O. LL-37-induced host cell cytotoxicity depends on cellular expression of the globular C1q receptor (p33). Biochem. J., 2016, 473(1), 87-98.
[http://dx.doi.org/10.1042/BJ20150798] [PMID: 26508735]
[46]
Wittrup, A.; Sandgren, S.; Lilja, J.; Bratt, C.; Gustavsson, N.; Mörgelin, M.; Belting, M. Identification of proteins released by mammalian cells that mediate DNA internalization through proteoglycan-dependent macropinocytosis. J. Biol. Chem., 2007, 282(38), 27897-27904.
[http://dx.doi.org/10.1074/jbc.M701611200] [PMID: 17623661]
[47]
Takahashi, T.; Kulkarni, N.N.; Lee, E.Y.; Zhang, L.J.; Wong, G.C.L.; Gallo, R.L. Cathelicidin promotes inflammation by enabling binding of self-RNA to cell surface scavenger receptors. Sci. Rep., 2018, 8(1), 4032.
[http://dx.doi.org/10.1038/s41598-018-22409-3] [PMID: 29507358]
[48]
Ganguly, D.; Chamilos, G.; Lande, R.; Gregorio, J.; Meller, S.; Facchinetti, V.; Homey, B.; Barrat, F.J.; Zal, T.; Gilliet, M. Self-RNA-antimicrobial peptide complexes activate human dendritic cells through TLR7 and TLR8. J. Exp. Med., 2009, 206(9), 1983-1994.
[http://dx.doi.org/10.1084/jem.20090480] [PMID: 19703986]
[49]
Kristensen, M.; Nielsen, H.M. Cell-penetrating peptides as tools to enhance non-injectable delivery of biopharmaceuticals. Tissue Barriers, 2016, 4(2), e1178369.
[http://dx.doi.org/10.1080/21688370.2016.1178369] [PMID: 27358757]
[50]
Seil, M.; Nagant, C.; Dehaye, J.P.; Vandenbranden, M.; Lensink, M.F. Spotlight on human LL-37, an immunomodulatory peptide with promising cell-penetrating properties. Pharmaceuticals (Basel), 2010, 3(11), 3435-3460.
[http://dx.doi.org/10.3390/ph3113435]
[51]
Chamilos, G.; Gregorio, J.; Meller, S.; Lande, R.; Kontoyiannis, D.P.; Modlin, R.L.; Gilliet, M. Cytosolic sensing of extracellular self-DNA transported into monocytes by the antimicrobial peptide LL37. Blood, 2012, 120(18), 3699-3707.
[http://dx.doi.org/10.1182/blood-2012-01-401364] [PMID: 22927244]
[52]
Zhang, Y.; Baycin-Hizal, D.; Kumar, A.; Priola, J.; Bahri, M.; Heffner, K.M.; Wang, M.; Han, X.; Bowen, M.A.; Betenbaugh, M.J. High-throughput lipidomic and transcriptomic analysis to compare SP2/0, CHO, and HEK-293 mammalian cell lines. Anal. Chem., 2017, 89(3), 1477-1485.
[http://dx.doi.org/10.1021/acs.analchem.6b02984] [PMID: 27991764]
[53]
Tabujew, I.; Lelle, M.; Peneva, K. Cell-penetrating peptides for nanomedicine-how to choose the right peptide. BioNanoMaterials, 2015, 16(1), 59-72.
[http://dx.doi.org/10.1515/bnm-2015-0001]
[54]
Wang, S.; Yan, C.; Zhang, X.; Shi, D.; Chi, L.; Luo, G.; Deng, J. Antimicrobial peptide modification enhances the gene delivery and bactericidal efficiency of gold nanoparticles for accelerating diabetic wound healing. Biomater. Sci., 2018, 6(10), 2757-2772.
[http://dx.doi.org/10.1039/C8BM00807H] [PMID: 30187036]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy