Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Review Article

Recent Development in the Synthesis of Thiazoles

Author(s): Dau Xuan Duc* and Nguyen Thi Chung

Volume 19, Issue 6, 2022

Published on: 17 May, 2022

Page: [702 - 730] Pages: 29

DOI: 10.2174/1570179419666220216122637

Price: $65

Abstract

Background: Thiazole-containing compounds are widely found in natural products as well as synthetic sources. Many thiazole-based compounds possess a broad spectrum of bioactivities, and some of them are well-known drugs in the markets. The use of thiazole derivatives in other fields such as organic materials, cosmetics, and organic synthesis has also been widely reported. Due to a wide range of applicability, the synthesis of thiazole-containing compounds has attracted extensive interest from chemists, and many studies in the synthesis of thiazole skeleton have been reported recently.

Objective: This review article will discuss recent studies in the synthesis of thiazoles (from2012). Besides the well-established Hantzsch thiazole synthesis, a large number of novel methods have been developed for the synthesis of thiazole derivatives. In most cases, reaction mechanisms have also been described.

Conclusion: The synthesis of thiazole derivatives has drawn great attention from chemists, and many studies in the synthesis of these heterocycles have been reported recently. The classical method, the Hantzsch thiazole synthesis has received great research interest from chemists. Moreover, many new methods have been established to synthesize thiazole-derived compounds. Unquestionably, more and more approaches to access thiazole skeleton will appear in the literature. The application of well-established thiazole synthesis methods to the synthesis of drugs, organic materials, and natural products will almost certainly be studied.

Keywords: α-haloketones, thioamides, acetophenones, isocyanides, thioureas, Hantzsch cyclization, thiosemicarbazides, thiazoles.

Graphical Abstract
[1]
Borelli, C.; Schaller, M.; Niewerth, M.; Nocker, K.; Baasner, B.; Berg, D.; Tiemann, R.; Tietjen, K.; Fugmann, B.; Lang-Fugmann, S.; Korting, H.C. Modes of action of the new arylguanidine abafungin beyond interference with ergosterol biosynthesis and in vitro activity against medically important fungi. Chemotherapy, 2008, 54(4), 245-259.
[http://dx.doi.org/10.1159/000142334] [PMID: 18587237]
[2]
(a)Ojika, M.; Suzuki, Y.; Tsukamoto, A.; Sakagami, Y.; Fudou, R.; Yoshimura, T.; Yamanaka, S. Cystothiazoles A and B, new bithiazole-type antibiotics from the myxobacterium Cystobacter fuscus. J. Antibiot. (Tokyo), 1998, 51(3), 275-281.
[http://dx.doi.org/10.7164/antibiotics.51.275] [PMID: 958906211404] [http://dx.doi.org/10.1016/S0040-4020(98)00694-2]
[3]
Aridoss, G.; Amirthaganesan, S.; Kim, M.S.; Kim, J.T.; Jeong, Y.T. Synthesis, spectral and biological evaluation of some new thiazolidinones and thiazoles based on t-3-alkyl-r-2,c-6-diarylpiperidin-4-ones. Eur. J. Med. Chem., 2009, 44(10), 4199-4210.
[http://dx.doi.org/10.1016/j.ejmech.2009.05.015] [PMID: 19535178]
[4]
Arshad, A.; Osman, H.; Bagley, M.C.; Lam, C.K.; Mohamad, S.; Zahariluddin, A.S.; Zahariluddin, M. Synthesis and antimicrobial properties of some new thiazolyl coumarin derivatives. Eur. J. Med. Chem., 2011, 46(9), 3788-3794.
[http://dx.doi.org/10.1016/j.ejmech.2011.05.044] [PMID: 21712145]
[5]
Sarojini, B.K.; Krishna, B.G.; Darshanraj, C.G.; Bharath, B.R.; Manjunatha, H. Synthesis, characterization, in vitro and molecular docking studies of new 2,5-dichloro thienyl substituted thiazole derivatives for antimicrobial properties. Eur. J. Med. Chem., 2010, 45(8), 3490-3496.
[http://dx.doi.org/10.1016/j.ejmech.2010.03.039] [PMID: 20451305]
[6]
Keating, G.M. Dasatinib: A review in chronic myeloid leukaemia and Ph+ acute lymphoblastic leukaemia. Drugs, 2017, 77(1), 85-96.
[http://dx.doi.org/10.1007/s40265-016-0677-x] [PMID: 28032244]
[7]
Popsavin, M.; Spaić, S.; Svircev, M.; Kojić, V.; Bogdanović, G.; Popsavin, V. Synthesis and antitumour activity of new tiazofurin analogues bearing a 2,3-anhydro functionality in the furanose ring. Bioorg. Med. Chem. Lett., 2007, 17(15), 4123-4127.
[http://dx.doi.org/10.1016/j.bmcl.2007.05.050] [PMID: 17543526]
[8]
Ramla, M.M.; Omar, M.A.; El-Khamry, A.M.; El-Diwani, H.I. Synthesis and antitumor activity of 1-substituted-2-methyl-5-nitrobenzimidazoles. Bioorg. Med. Chem., 2006, 14(21), 7324-7332.
[http://dx.doi.org/10.1016/j.bmc.2006.06.033] [PMID: 16860558]
[9]
Liu, Z.Y.; Wang, Y.M.; Li, Z.R.; Jiang, J.D.; Boykin, D.W. Synthesis and anticancer activity of novel 3,4-diarylthiazol-2(3H)-ones (imines). Bioorg. Med. Chem. Lett., 2009, 19(19), 5661-5664.
[http://dx.doi.org/10.1016/j.bmcl.2009.08.025] [PMID: 19713108]
[10]
Keiser, J.; Utzinger, J. Efficacy of current drugs against soil-transmitted helminth infections: systematic review and meta-analysis. JAMA, 2008, 299(16), 1937-1948.
[http://dx.doi.org/10.1001/jama.299.16.1937] [PMID: 18430913]
[11]
Tracy, J.W.; Catto, B.A.; Webster, L.T. Jr Reductive metabolism of niridazole by adult Schistosoma mansoni. Correlation with covalent drug binding to parasite macromolecules. Mol. Pharmacol., 1983, 24(2), 291-299.
[PMID: 6193406]
[12]
Igual-Adell, R.; Oltra-Alcaraz, C.; Soler-Company, E.; Sánchez-Sánchez, P.; Matogo-Oyana, J.; Rodríguez-Calabuig, D. Efficacy and safety of ivermectin and thiabendazole in the treatment of strongyloidiasis. Expert Opin. Pharmacother., 2004, 5(12), 2615-2619.
[http://dx.doi.org/10.1517/14656566.5.12.2615] [PMID: 15571478]
[13]
Portugal, R.; Schaffel, R.; Almeida, L.; Spector, N.; Nucci, M. Thiabendazole for the prophylaxis of strongyloidiasis in immunosuppressed patients with hematological diseases: a randomized double-blind placebo-controlled study. Haematologica, 2002, 87(6), 663-664.
[PMID: 12031927]
[14]
White, C.A. Jr Nitazoxanide: a new broad spectrum antiparasitic agent. Expert Rev. Anti Infect. Ther., 2004, 2(1), 43-49.
[http://dx.doi.org/10.1586/14787210.2.1.43] [PMID: 15482170]
[15]
Kalkhambkar, R.G.; Kulkarni, G.M.; Shivkumar, H.; Rao, R.N. Synthesis of novel triheterocyclic thiazoles as anti-inflammatory and analgesic agents. Eur. J. Med. Chem., 2007, 42(10), 1272-1276.
[http://dx.doi.org/10.1016/j.ejmech.2007.01.023] [PMID: 17337096]
[16]
Giri, R.S.; Thaker, H.M.; Giordano, T.; Williams, J.; Rogers, D.; Sudersanam, V.; Vasu, K.K. Design, synthesis and characterization of novel 2-(2,4-disubstituted-thiazole-5-yl)-3-aryl-3H-quinazoline-4-one derivatives as inhibitors of NF-kappaB and AP-1 mediated transcription activation and as potential anti-inflammatory agents. Eur. J. Med. Chem., 2009, 44(5), 2184-2189.
[http://dx.doi.org/10.1016/j.ejmech.2008.10.031] [PMID: 19064304]
[17]
Holla, B.S.; Malini, K.V.; Rao, B.S.; Sarojini, B.K.; Kumari, N.S. Synthesis of some new 2,4-disubstituted thiazoles as possible antibacterial and anti-inflammatory agents. Eur. J. Med. Chem., 2003, 38(3), 313-318.
[http://dx.doi.org/10.1016/S0223-5234(02)01447-2] [PMID: 12667698]
[18]
Aljada, A.; Garg, R.; Ghanim, H.; Mohanty, P.; Hamouda, W.; Assian, E.; Dandona, P. Nuclear factor-kappaB suppressive and inhibitor-kappaB stimulatory effects of troglitazone in obese patients with type 2 diabetes: evidence of an antiinflammatory action? J. Clin. Endocrinol. Metab., 2001, 86(7), 3250-3256.
[PMID: 11443197]
[19]
Selvin, E.; Bolen, S.; Yeh, H.C.; Wiley, C.; Wilson, L.M.; Marinopoulos, S.S.; Feldman, L.; Vassy, J.; Wilson, R.; Bass, E.B.; Brancati, F.L. Cardiovascular outcomes in trials of oral diabetes medications: a systematic review. Arch. Intern. Med., 2008, 168(19), 2070-2080.
[http://dx.doi.org/10.1001/archinte.168.19.2070] [PMID: 18955635]
[20]
Lee, J.H.; Woo, Y.A.; Hwang, I.C.; Kim, C.Y.; Kim, D.D.; Shim, C.K.; Chung, S.J. Quantification of CKD-501, lobeglitazone, in rat plasma using a liquid-chromatography/tandem mass spectrometry method and its applications to pharmacokinetic studies. J. Pharm. Biomed. Anal., 2009, 50(5), 872-877.
[http://dx.doi.org/10.1016/j.jpba.2009.06.003] [PMID: 19577404]
[21]
Kempf, D.J.; Sham, H.L.; Marsh, K.C.; Flentge, C.A.; Betebenner, D.; Green, B.E.; McDonald, E.; Vasavanonda, S.; Saldivar, A.; Wideburg, N.E.; Kati, W.M.; Ruiz, L.; Zhao, C.; Fino, L.; Patterson, J.; Molla, A.; Plattner, J.J.; Norbeck, D.W. Discovery of ritonavir, a potent inhibitor of HIV protease with high oral bioavailability and clinical efficacy. J. Med. Chem., 1998, 41(4), 602-617.
[http://dx.doi.org/10.1021/jm970636+] [PMID: 9484509]
[22]
Turan-Zitouni, G.; Ozdemir, A.; Kaplancikli, Z.A. Synthesis and antiviral activity of some (3,4-diaryl-3H-thiazole-2-ylidene) pyrimi-din-2-yl amine derivatives. Phosphorus Sulfur Silicon Relat. Elem., 2011, 186(2), 233-239.
[http://dx.doi.org/10.1080/10426507.2010.494643]
[23]
Barreca, M.L.; Chimirri, A.; De Luca, L.; Monforte, A.M.; Monforte, P.; Rao, A.; Zappalà, M.; Balzarini, J.; De Clercq, E.; Pannecouque, C.; Witvrouw, M. Discovery of 2,3-diaryl-1,3-thiazolidin-4-ones as potent anti-HIV-1 agents. Bioorg. Med. Chem. Lett., 2001, 11(13), 1793-1796.
[http://dx.doi.org/10.1016/S0960-894X(01)00304-3] [PMID: 11425562]
[24]
Dawood, K.M.; Abdel-Gawad, H.; Rageb, E.A.; Ellithey, M.; Mohamed, H.A. Synthesis, anticonvulsant, and anti-inflammatory evaluation of some new benzotriazole and benzofuran-based heterocycles. Bioorg. Med. Chem., 2006, 14(11), 3672-3680.
[http://dx.doi.org/10.1016/j.bmc.2006.01.033] [PMID: 16464601]
[25]
Siddiqui, N.; Ahsan, W. Triazole incorporated thiazoles as a new class of anticonvulsants: design, synthesis and in vivo screening. Eur. J. Med. Chem., 2010, 45(4), 1536-1543.
[http://dx.doi.org/10.1016/j.ejmech.2009.12.062] [PMID: 20116140]
[26]
Siddiqui, N.; Arshad, M.F.; Khan, S.A. Synthesis of some new coumarin incorporated thiazolyl semicarbazones as anticonvulsants. Acta Pol. Pharm., 2009, 66(2), 161-167.
[PMID: 19719050]
[27]
Romero, M.; Franzosi, M.G. Nizatidine. Medicina (Firenze), 1989, 9(1), 93-96.
[PMID: 2567957]
[28]
Chremos, A.N. Pharmacodynamics of famotidine in humans. Am. J. Med., 1986, 81(4B), 3-7.
[http://dx.doi.org/10.1016/0002-9343(86)90593-0] [PMID: 2877572]
[29]
Wu, H.; Zhang, Y.; Huang, J.; Zhang, Y.; Liu, G.; Sun, N.; Yu, Z.; Zhou, Y. Clinical trial of arotinolol in the treatment of hypertension: dippers vs. non-dippers. Hypertens. Res., 2001, 24(5), 605-610.
[http://dx.doi.org/10.1291/hypres.24.605] [PMID: 11675958]
[30]
Liu, X.Y.; Wang, R.L.; Xu, W.R.; Tang, L.D.; Wang, S.Q.; Chou, K.C. Docking and molecular dynamics simulations of peroxisome proliferator activated receptors interacting with pan agonist sodelglitazar. Protein Pept. Lett., 2011, 18(10), 1021-1027.
[http://dx.doi.org/10.2174/092986611796378701] [PMID: 21592078]
[31]
Carter, J.S.; Kramer, S.; Talley, J.J.; Penning, T.; Collins, P.; Graneto, M.J.; Seibert, K.; Koboldt, C.M.; Masferrer, J.; Zweifel, B. Synthesis and activity of sulfonamide-substituted 4,5-diaryl thiazoles as selective cyclooxygenase-2 inhibitors. Bioorg. Med. Chem. Lett., 1999, 9(8), 1171-1174.
[http://dx.doi.org/10.1016/S0960-894X(99)00157-2] [PMID: 10328307]
[32]
Love, B.L.; Barrons, R.; Veverka, A.; Snider, K.M. Urate-lowering therapy for gout: focus on febuxostat. Pharmacotherapy, 2010, 30(6), 594-608.
[http://dx.doi.org/10.1592/phco.30.6.594] [PMID: 20500048]
[33]
Lu, X.; Liu, X.; Wan, B.; Franzblau, S.G.; Chen, L.; Zhou, C.; You, Q. Synthesis and evaluation of anti-tubercular and antibacterial activities of new 4-(2,6-dichlorobenzyloxy)phenyl thiazole, oxazole and imidazole derivatives. Part 2. Eur. J. Med. Chem., 2012, 49, 164-171.
[http://dx.doi.org/10.1016/j.ejmech.2012.01.007] [PMID: 22264895]
[34]
Makam, P.; Thakur, P.K.; Kannan, T. In vitro and in silico antimalarial activity of 2-(2-hydrazinyl) thiazole derivatives. Eur. J. Pharm. Sci., 2014, 52, 138-145.
[http://dx.doi.org/10.1016/j.ejps.2013.11.001] [PMID: 24231338]
[35]
Namitha, T.H.; Saranya, S.N.; Kumar, A.; Vinod, B.; Daisy, P.A. A review on synthesis and biological activity of thiazole and its derivatives. Int. J. Pharm. Sci. Rev. Res., 2021, 29, 189-193.
[36]
Borcea, A.M.; Ionuț, I.; Crișan, O.; Oniga, O. An overview of the synthesis and antimicrobial, antiprotozoal, and antitumor activity of thiazole and bisthiazole derivatives. Molecules, 2021, 26(3), 624-649.
[http://dx.doi.org/10.3390/molecules26030624] [PMID: 33504100]
[37]
Kumawat, M.K. Thiazole Containing Heterocycles with Antimalarial Activity. Curr. Drug Discov. Technol., 2018, 15(3), 196-200.
[http://dx.doi.org/10.2174/1570163814666170725114159] [PMID: 28745209]
[38]
Wu, X.; Kassie, F.; Mersch-Sundermann, V. Induction of apoptosis in tumor cells by naturally occurring sulfur-containing compounds. Mutat. Res., 2005, 589(2), 81-102.
[http://dx.doi.org/10.1016/j.mrrev.2004.11.001] [PMID: 15795163]
[39]
Das, J.; Chen, P.; Norris, D.; Padmanabha, R.; Lin, J.; Moquin, R.V.; Shen, Z.; Cook, L.S.; Doweyko, A.M.; Pitt, S.; Pang, S.; Shen, D.R.; Fang, Q.; de Fex, H.F.; McIntyre, K.W.; Shuster, D.J.; Gillooly, K.M.; Behnia, K.; Schieven, G.L.; Wityak, J.; Barrish, J.C. 2-aminothiazole as a novel kinase inhibitor template. Structure-activity relationship studies toward the discovery of N-(2-chloro-6-methylphenyl)-2-[[6-[4-(2-hydroxyethyl)-1- piperazinyl)]-2-methyl-4-pyrimidinyl]amino)]-1,3-thiazole-5-carboxamide (dasatinib, BMS-354825) as a potent pan-Src kinase inhibitor. J. Med. Chem., 2006, 49(23), 6819-6832.
[http://dx.doi.org/10.1021/jm060727j] [PMID: 17154512]
[40]
Pratt, J.; Jae, H-S.; Rosenberg, S.; Spina, K.; Winn, M.; Buckner, S.; Novosad, E.; Kerkman, D.; Shiosaki, K.; Opgenorth, T.; DeBernardis, H. 5-Membered ring heterocyclic carboxylic acids as angiotensin II antagonists. Bioorg. Med. Chem. Lett., 1994, 4(1), 169-172.
[http://dx.doi.org/10.1016/S0960-894X(01)81141-0]
[41]
Mahmoodi, N.O.; Parvizi, J.; Sharifzadeh, B.; Rassa, M. Facile regioselective synthesis of novel bis-thiazole derivatives and their antimicrobial activity. Arch. Pharm. (Weinheim), 2013, 346(12), 860-864.
[http://dx.doi.org/10.1002/ardp.201300187] [PMID: 24136795]
[42]
Denisova, A.B.; Sosnovskikh, V.Y.; Dehaen, W.; Toppet, S.; Van Meervelt, L.; Bakulev, V.A. The regioselectivity of the formation of 2-pyrazolylthiazoles and their precursors from the reaction of 2-hydrazinothiazoles with 4,4,4-trifluoro-1-hetaryl-1,3-butanediones. J. Fluor. Chem., 2002, 115(2), 183-192.
[http://dx.doi.org/10.1016/S0022-1139(02)00060-X]
[43]
Korol, N.I.; Slivka, M.V. Recent progress in the synthesis of thiazolo[3,2-b][1,2,4]triazoles (microreview). Chem. Heterocycl. Compd., 2017, 53(8), 852-854.
[http://dx.doi.org/10.1007/s10593-017-2136-3]
[44]
Langille, N.F.; Dakin, L.A.; Panek, J.S. Sonogashira coupling of functionalized trifloyl oxazoles and thiazoles with terminal alkynes: synthesis of disubstituted heterocycles. Org. Lett., 2002, 4(15), 2485-2488.
[http://dx.doi.org/10.1021/ol026099r] [PMID: 12123357]
[45]
Bulut, I.; Chávez, P.; Mirloup, A.; Huaulmé, Q.; Hébraud, A.; Heinrich, B.; Fall, S.; Méry, S.; Ziessel, R.; Heiser, T.; Lévêque, P.; Leclerc, N. Thiazole-based scaffolding for high performance solar cells. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2016, 4(19), 4296-4303.
[http://dx.doi.org/10.1039/C6TC00531D]
[46]
Sanguineti, A.; Sassi, M.; Turrisi, R.; Ruffo, R.; Vaccaro, G.; Meinardi, F.; Beverina, L. High Stokes shift perylene dyes for luminescent solar concentrators. Chem. Commun. (Camb.), 2013, 49(16), 1618-1620.
[http://dx.doi.org/10.1039/c2cc38708e] [PMID: 23338660]
[47]
Turrisi, R.; Sunguineti, A.; Sassi, M.; Savoie, B.; Takai, A.; Patriaca, G.E.; Salomone, M.M.; Ruffo, R.; Vaccaro, G.; Meinardi, F.; Marks, T.J.; Facchetti, A.; Beverina, I.J. Stokes shift/emission efficiency trade-off in donor–acceptor perylenemonoimides for luminescent solar concentrators. J. Mater. Chem. A Mater. Energy Sustain., 2015, 3(15), 8045-8054.
[http://dx.doi.org/10.1039/C5TA01134E]
[48]
Kubota, Y.; Tanaka, S.; Funabiki, K.; Matsui, M. Synthesis and fluorescence properties of thiazole-boron complexes bearing a β-ketoiminate ligand. Org. Lett., 2012, 14(17), 4682-4685.
[http://dx.doi.org/10.1021/ol302179r] [PMID: 22928905]
[49]
Lin, Y.; Fan, H.; Li, Y.; Zhan, X. Thiazole-based organic semiconductors for organic electronics. Adv. Mater., 2012, 24(23), 3087-3106, 3081.
[http://dx.doi.org/10.1002/adma.201200721] [PMID: 22581766]
[50]
Kudrjasova, J.; Herckens, R.; Penxten, H.; Adriaensens, P.; Lutsen, L.; Vanderzande, D.; Maes, W. Direct arylation as a versatile tool towards thiazolo [5,4-d]thiazole-based semiconducting materials. Org. Biomol. Chem., 2014, 12(26), 4663-4672.
[http://dx.doi.org/10.1039/C4OB00360H] [PMID: 24865374]
[51]
Timtcheva, I.; Maximova, V.; Deligeorgiev, T.; Zaneva, D.; Ivanov, I. New asymmetric monomethine cyanine dyes for nucleic-acid labelling: absorption and fluorescence spectral characteristics. J. Photochem. Photobiol. Chem., 2000, 130(1), 7-11.
[http://dx.doi.org/10.1016/S1010-6030(99)00207-5]
[52]
Rucker, V.C.; Foister, S.; Melander, C.; Dervan, P.B. Sequence specific fluorescence detection of double strand DNA. J. Am. Chem. Soc., 2003, 125(5), 1195-1202.
[http://dx.doi.org/10.1021/ja021011q] [PMID: 12553822]
[53]
Radhakrishnan, R.; Sreejalekshmi, K.G. Computational design, synthesis, and structure property evaluation of 1,3-thiazole-based color-tunable multi-heterocyclic small organic fluorophores as multifunctional molecular materials. J. Org. Chem., 2018, 83(7), 3453-3466.
[http://dx.doi.org/10.1021/acs.joc.7b02978] [PMID: 29334220]
[54]
Kutsunugi, Y.; Coudret, C.; Micheau, J.C.; Kawai, T. Photomodulation of the proton affinity and acid gated photochromism of a novel dimethylaminophenyl thiazole diarylethene. Dyes Pigments, 2012, 92(2), 838-846.
[http://dx.doi.org/10.1016/j.dyepig.2011.05.006]
[55]
Murai, T.; Hori, F.; Maruyama, T. Intramolecular cyclization of in situ generated adducts formed between thioamide dianions and thioformamides leading to generation of 5-amino-2-thiazolines and 5-aminothiazoles, and their fluorescence properties. Org. Lett., 2011, 13(7), 1718-1721.
[http://dx.doi.org/10.1021/ol200231z] [PMID: 21384885]
[56]
Ando, S.; Murakami, R.; Nishida, J.; Tada, H.; Inoue, Y.; Tokito, S.; Yamashita, Y. n-type organic field-effect transistors with very high electron mobility based on thiazole oligomers with trifluoromethy-lphenyl groups. J. Am. Chem. Soc., 2005, 127(43), 14996-14997.
[http://dx.doi.org/10.1021/ja055686f] [PMID: 16248617]
[57]
Batista, R.M.F.; Costa, S.P.G.; Raposo, M.M.M. Synthesis of new fluorescent 2-(2′,2″-bithienyl)-1,3-benzothiazoles. Tetrahedron Lett., 2004, 45(13), 2825-2828.
[http://dx.doi.org/10.1016/j.tetlet.2004.02.048]
[58]
Ren, J.; Wang, S.M.; Wu, L-F.; Xu, Z-X.; Dong, B-H. Synthesis and properties of novel Y-shaped NLO molecules containing thiazole and imidazole chromophores. Dyes Pigments, 2008, 76(2), 310-314.
[http://dx.doi.org/10.1016/j.dyepig.2006.09.003]
[59]
Kiryanov, A.A.; Sampson, P.; Seed, A.J. Synthesis of 2-alkoxy-substituted thiophenes, 1,3-thiazoles, and related S-heterocycles via Lawesson’s reagent-mediated cyclization under microwave irradiation: applications for liquid crystal synthesis. J. Org. Chem., 2001, 66(23), 7925-7929.
[http://dx.doi.org/10.1021/jo016063x] [PMID: 11701063]
[60]
Mori, A.; Sekiguchi, A.; Masui, K.; Shimada, T.; Horie, M.; Osakada, K.; Kawamoto, M.; Ikeda, T. Facile synthesis of 2,5-diarylthiazoles via palladium-catalyzed tandem C-H substitutions. design of tunable light emission and liquid crystalline characteristics. J. Am. Chem. Soc., 2003, 125, 1700-1701.
[PMID: 12580586]
[61]
Bach, T.; Heuser, S. Synthesis of 2-(o-hydroxyaryl)-4-arylthiazoles by regioselective Pd(0)-catalyzed cross-coupling. Tetrahedron Lett., 2000, 41(11), 1707-1710.
[http://dx.doi.org/10.1016/S0040-4039(00)00018-6]
[62]
Paul, M.; Sudkaow, P.; Wessels, A.; Schlörer, N.E.; Neudörfl, J.M.; Berkessel, A. Breslow intermediates from aromatic N-heterocyclic carbenes (benzimidazolin-2-ylidenes, thiazolin-2-ylidenes). Angew. Chem. Int. Ed. Engl., 2018, 57(27), 8310-8315.
[http://dx.doi.org/10.1002/anie.201801676] [PMID: 29645334]
[63]
Fink, B.E.; Mortensen, D.S.; Stauffer, S.R.; Aron, Z.D.; Katzenellenbogen, J.A. Novel structural templates for estrogen-receptor ligands and prospects for combinatorial synthesis of estrogens. Chem. Biol., 1999, 6(4), 205-219.
[http://dx.doi.org/10.1016/S1074-5521(99)80037-4] [PMID: 10099132]
[64]
Kaur, H.; Kaur, H.; Chawla, A.; Badgel, U.S.; Dhawan, R.K.A. Review: Synthesis scheme of antimicrobial and anicancer thiazoles derivatives. J. Glob. Trends Pharm. Sci., 2014, 5, 1684-1691.
[65]
Jain, N.; Singh, B. An overview of biological and synthetic aspects of thiazole derivatives in heterocyclic chemistry. World J. Res. Rev., 2016, 3, 52-57.
[66]
Ali, S.H.; Sayed, A.R. Review of the synthesis and biological activity of thiazoles. Synth. Commun., 2021, 51(5), 670-700.
[http://dx.doi.org/10.1080/00397911.2020.1854787]
[67]
Abdu-Rahem, L.R.; Ahmad, A.K.; Abachi, F.T. Synthesis and medicinal attributes of thiazole derivatives: A review. Sys. Rev. Pharm., 2021, 12, 290-295.
[68]
Hassan, A.; Hassan, H.A.; Abdelhamid, D.; Abuo-Rahma, G.E.A. Synthetic approaches toward certain structurally related antimicrobial thiazole derivatives. Heterocycles, 2021, 102, 1675-1728.
[http://dx.doi.org/10.3987/REV-21-956]
[69]
Smirnova, N.G.; Zavarzin, I.V.; Krayushkin, M.M. Synthesis off condensed thiazole. Chem. Heterocycl. Compd., 2006, 42(2), 144-165.
[http://dx.doi.org/10.1007/s10593-006-0064-8]
[70]
Dey, S.; Das, A.; Hossain, M.F. Synthetic strategies for hydrazinyl thiazole derivatives. ChemistrySelect, 2020, 5(48), 15153-15166.
[http://dx.doi.org/10.1002/slct.202003993]
[71]
Nayak, S.; Gaonkar, S.L. A Review on recent synthetic strategies and pharmacological importance of 1,3-thiazole derivatives. Mini Rev. Med. Chem., 2019, 19(3), 215-238.
[http://dx.doi.org/10.2174/1389557518666180816112151] [PMID: 30112994]
[72]
Pathania, S.; Rawal, R.K. Green synthesis strategies towards thiazoles: a sustainable approach. Chem. Heterocycl. Compd., 2020, 56(4), 445-454.
[http://dx.doi.org/10.1007/s10593-020-02679-4]
[73]
Narasimhamurthy, K.H.; Sajith, A.M.; Joy, M.N.; Rangappa, K.S. An overview of recent developments in the synthesis of substituted thiazoles. ChemistrySelect, 2020, 5(19), 5629-5656.
[http://dx.doi.org/10.1002/slct.202001133]
[74]
Duc, D.X. Recent Progress in the Synthesis of Furan. Mini Rev. Org. Chem., 2019, 16(5), 422-452.
[http://dx.doi.org/10.2174/1570193X15666180608084557]
[75]
Duc, D.X. Recent progress in the synthesis of pyrroles. Curr. Org. Synth., 2020, 24, 622-657.
[76]
Duc, D.X. Recent achievement in the synthesis of thiophenes. Mini Rev. Org. Chem., 2021, 18(1), 110-134.
[http://dx.doi.org/10.2174/1570193X17999200507095224]
[77]
Duc, D.X. Recent achievement in the synthesis of benzo[b]furans. Curr. Org. Synth., 2020, 17(7), 498-517.
[http://dx.doi.org/10.2174/1570179417666200625212639] [PMID: 32586253]
[78]
Duc, D.X. Recent progress in the synthesis of benzo[b]thiophenes. Curr. Org. Chem., 2020, 24(19), 2256-2271.
[http://dx.doi.org/10.2174/1385272824999200820151545]
[79]
Hantzsch, A.; Weber, J.H. Ueber verbindungen des thiazols (pyridins der thiophenreihe). Ber. Dtsch. Chem. Ges., 1887, 20(2), 3118-3132.
[http://dx.doi.org/10.1002/cber.188702002200]
[80]
Banothu, J.; Vaarla, K.; Bavantula, R.; Crooks, P.A. Sodium fluoride as an efficient catalyst for the synthesis of 2,4-disubstituted-1,3-thiazoles and selenazoles at ambient temperature. Chin. Chem. Lett., 2014, 25(1), 172-175.
[http://dx.doi.org/10.1016/j.cclet.2013.10.001]
[81]
Heravi, M.M.; Poormohammad, N.; Beheshtiha, Y.S.; Baghernejad, B. Efficient synthesis of 2,4-disubstituted thiazoles unde griding. Synth. Commun., 2011, 41(4), 579-582.
[http://dx.doi.org/10.1080/00397911003629440]
[82]
Il’kin, V.G.; Berseneva, V.S.; Slepukhin, P.A.; Bakulev, V.A. An efficient method for the synthesis of 2-thiazoleacetic acid N-sulfonyl amidines. Chem. Heterocycl. Compd., 2018, 54(12), 1153-1160.
[http://dx.doi.org/10.1007/s10593-019-02407-7]
[83]
Zhai, J-J.; Jiang, J-A.; Zhang, S-L.; Chen, C.; Liu, H.W.; Liao, D-H.; Ji, Y-F. Stereoselective or exclusive synthesis of ethyl (Z)-2-(2-substituted-thiazol-4-yl)pent-2-enoates from ethyl (E/Z)-2-(2-bromoacetyl)pent-2-enoate. Synlett, 2013, 24(11), 1399-1404.
[http://dx.doi.org/10.1055/s-0033-1338954]
[84]
Asma; Kalluraya, B.; Manju, N.; Sharath, C.L. Synthesis and antioxidant activity study of carbothioamide and their corresponding thiazole derivatives. J. Heterocycl. Chem., 2020, 57(8), 3105-3115.
[http://dx.doi.org/10.1002/jhet.4018]
[85]
Muthyala, M.K.; Kumar, A. A novel and efficient one pot synthesis of 2,4-disubstituted thiazoles and oxazoles using phenyl trimethylammoniumtribromide in ionic liquid. J. Heterocycl. Chem., 2012, 49(4), 959-964.
[http://dx.doi.org/10.1002/jhet.904]
[86]
Guernon, J.M.; Wu, Y-J. 3-Bromocyclohexane-1,2-dione as a useful reagent for Hantzsch synthesis of thiazoles and the synthesis of related heterocycles. Tetrahedron Lett., 2011, 52(28), 3633-3635.
[http://dx.doi.org/10.1016/j.tetlet.2011.05.028]
[87]
Suntsova, P.O.; Eltyshev, A.K.; Pospelova, T.A.; Slepukhin, P.A.; Benassi, E.; Belskaya, N.P. Design and synthesis of disubstituted and trisubstituted thiazoles as multifunctional fluorophores with large Stokes shifts. Dyes Pigments, 2019, 166, 60-71.
[http://dx.doi.org/10.1016/j.dyepig.2019.02.051]
[88]
Kumar, D.; Kumar, N.M.; Patel, G.; Gupta, S.; Varma, R.S. A facile and eco-friendly synthesis of diarylthiazoles and diarylimidazoles in water. Tetrahedron Lett., 2011, 52(16), 1983-1986.
[http://dx.doi.org/10.1016/j.tetlet.2011.02.069]
[89]
Prakash, O.; Sharma, N.; Ranjan, P. HTIB-mediated one-pot synthesis of some 2-substituted 4-stỷylthiazoles from (E)-4-arylbut-3-en-2-ones. Synth. Commun., 2013, 43(4), 582-586.
[http://dx.doi.org/10.1080/00397911.2011.604815]
[90]
Azizi, N.; Rahimi, Z.; Alipour, M. Deep eutectic solvent-assisted one-pot synthesis of 2-aminothiazole and 2-aminoxazole derivatives. C. R. Chim., 2015, 18(6), 626-629.
[http://dx.doi.org/10.1016/j.crci.2014.10.001]
[91]
Zhang, J.; Li, P.; Zeng, H.; Huang, Y.; Hong, W. Highly efficient and green synthesis of 2,4-diphenyl substituted thiazoles. Synth. Commun., 2020, 50(5), 745-741.
[http://dx.doi.org/10.1080/00397911.2020.1718711]
[92]
Täuscher, E.; Weiß, D.; Beckert, R.; Görls, H. Synthesis and characterization of new 4-hydroxy-1,3-thiazoles. Synthesis, 2010, 10, 1603-1608.
[93]
Tomassetti, M.; Lupidi, G.; Piermattei, P.; Rossi, F.V.; Lillini, S.; Bianchini, G.; Aramini, A.; Ciufolini, M.A.; Marcantoni, E. Catalyst-free synthesis of polysubstituted 5-acylamino-1,3-thiazoles via hantzsch cyclization of α-chloroglycinates. Molecules, 2019, 24(21), 3846-3460.
[http://dx.doi.org/10.3390/molecules24213846] [PMID: 31731437]
[94]
Donohoe, T.J.; Kabeshov, M.A.; Rathi, A.H.; Smith, I.E.D. Direct preparation of heteroaromatic compounds from alkenes. Synlett, 2010, 19(19), 2956-2958.
[http://dx.doi.org/10.1055/s-0030-1259034]
[95]
Donohoe, T.J.; Kabeshov, M.A.; Rathi, A.H.; Smith, I.E.D. Direct preparation of thiazoles, imidazoles, imidazopyridines and thiazolidines from alkenes. Org. Biomol. Chem., 2012, 10(5), 1093-1101.
[http://dx.doi.org/10.1039/C1OB06587D] [PMID: 22159268]
[96]
Moghaddam, F.M.; Goudarzi, M. Utility of N-bromosuccinimide–water combination as a green reagent for synthesis of N,S-heterocycles and dithiocarbamates from styrenes. Synlett, 2020, 31(18), 1823-1827.
[http://dx.doi.org/10.1055/s-0040-1707258]
[97]
Halimehjani, A.Z.; Hasani, L.; Alaei, M.A.; Saidi, M.R. Dithiocarbamates as an efficient intermediate for the synthesis of 2-(alkylsulfanyl)thiazoles in water. Tetrahedron Lett., 2016, 57(8), 883-886.
[http://dx.doi.org/10.1016/j.tetlet.2016.01.045]
[98]
Wu, G.; Zheng, R.; Nelson, J.; Zhang, L. One-step synthesis of methanesulfonyloxymethyl ketones via gold-catalyzed oxidation of terminal alkynes: a combination of ligand and counter anion enables high efficiency and a one-pot synthesis of 2,4-disubstituted thiazoles. Adv. Synth. Catal., 2014, 356(6), 1229-1234.
[http://dx.doi.org/10.1002/adsc.201300855]
[99]
Shibasaki, K.; Togo, H. 2-amino-4-arylthiazoles through one-pot transformation of alkylarenes with NBS and thioureas. Eur. J. Org. Chem., 2019, 2019(14), 2520-2527.
[http://dx.doi.org/10.1002/ejoc.201900100]
[100]
Lalithamba, H.S.; Uma, K.; Gowthami, T.S.; Nagendra, G. Synthesis of terminal thiazoles from N-protected amino acids and a study of their antibacterial activities. Org. Prep. Proced. Int., 2020, 52(3), 181-191.
[http://dx.doi.org/10.1080/00304948.2020.1721959]
[101]
Zavozin, A.G.; Ignat’ev, N.V.; Schulte, M.; Zlotin, S.G. Synthesis of thiazole derivatives bearing an incorporated Z-5-aminopent-3-enoic acid fragment. Tetrahedron, 2013, 69(34), 6975-6980.
[http://dx.doi.org/10.1016/j.tet.2013.06.060]
[102]
Facchinetti, V.; Avellar, M.M.; Nery, A.C.S.; Gomes, C.R.B.; Vasconcelos, T.R.A.; de Souza, M.V.N. An eco-friendly, hantzsch-based, solvent-free approach to 2-aminothiazoles and 2-aminoselenazoles. Synthesis, 2016, 48, 437-440.
[103]
Bodireddy, M.R.; Khaja Mohinuddin, P.M.; Gundala, T.R.; Gangi Reddy, N.C. Lactic acid mediated tandem one-pot synthesis of 2-Aminothiazole derivatives: A rapid, scalable and sustainable process. Cogent Chem., 2016, 2(1), 1154237.
[http://dx.doi.org/10.1080/23312009.2016.1154237]
[104]
Abedi-Jazini, Z.; Safari, J.; Zarnegar, Z.; Sadeghi, M. A simple and efficient method for the synthesis of 2-aminothiazoles under mild conditions. Polycycl. Aromat. Compd., 2018, 38(3), 231-235.
[http://dx.doi.org/10.1080/10406638.2016.1200104]
[105]
Zarnegar, Z.; Shokrani, Z.; Safari, J. Asparagine functionalized Al2O3 nanoparticle as a superior heterogeneous organocatalyst in the synthesis of 2-aminothiazoles. J. Mol. Struct., 2019, 1185, 143-152.
[http://dx.doi.org/10.1016/j.molstruc.2019.02.080]
[106]
Safari, J.; Shokrani, Z.; Zarnegar, Z. Asparagine as a green organocatalyst for the synthesis of 2-aminothiazoles. Polycycl. Aromat. Compd., 2020, 40(4), 1105-1111.
[http://dx.doi.org/10.1080/10406638.2018.1528287]
[107]
Prevost, J.R.C.; Kozlova, A.; Es Saadi, B.; Yildiz, E.; Modaffari, S.; Lambert, D.M.; Pochet, L.; Wouters, J.; Dolušic´, E.; Frédérick, R. Convenient one-pot formation of highly functionalized 5-bromo-2-aminothiazoles, potential endocannabinoid hydrolase MAGL inhibitors. Tetrahedron Lett., 2018, 59(49), 4315-4319.
[http://dx.doi.org/10.1016/j.tetlet.2018.10.055]
[108]
Kidwai, M.; Chauhan, R.; Bhatnagar, D. Eco-friendly synthesis of 2-aminothiazoles using Nafion-H as a recyclable catalyst in PEG–water solvent system. J. Sulfur Chem., 2011, 32(1), 37-44.
[http://dx.doi.org/10.1080/17415993.2010.533773]
[109]
Shi, H-B.; Zhang, S-J.; Lin, Y-F.; Hu, W-X.; Cai, C-M. Study on condensation of N-aryl thioureas with 3-bromoacetylacetone: synthesis of aminothiazoles and iminodihydrothiazoles, and their in vitro antiproliferative activity on human cervical cancer cells. J. Heterocycl. Chem., 2011, 48(5), 1061-1066.
[http://dx.doi.org/10.1002/jhet.602]
[110]
Narsaiah, A.V.; Ghogare, R.S.; Biradar, D.O. Glycerin as alternative solvent for the synthesis of Thiazoles. Org. Commun., 2011, 4, 75-81.
[111]
Sun, M.; Xu, Q.; Xu, J.; Wu, Y.; Wang, Y.; Zuo, D.; Guan, Q.; Bao, K.; Wang, J.; Wu, Y.; Zhang, W. Synthesis and bioevaluation of N,4-diaryl-1,3-thiazole-2-amines as tubulin inhibitors with potent antiproliferative activity. PLoS One, 2017, 12(3), e0174006.
[http://dx.doi.org/10.1371/journal.pone.0174006] [PMID: 28333984]
[112]
Deepti, V.; Kumari, M.A.; Harikrishna, N.; Ramesh, G.; Rao, C.V. Synthesis of novel 2-amino thiazole derivatives. Pharma Chem., 2013, 5, 181-184.
[113]
Hassan, A.A.; Mohamed, S.K.; Mohamed, N.K.; El-Shaieb, K.M.A.; Abdel-Aziz, A.T.; Mague, J.T.; Akkurt, M. Facile and convenient synthesis of 2,4-disubstituted and 2,3,4-trisubstituted 1,3-thiazoles. J. Sulfur Chem., 2016, 37(2), 162-175.
[http://dx.doi.org/10.1080/17415993.2015.1114621]
[114]
Namera, D.L.; Bhoya, U.C.; Shah, A.K. Convenient synthesis of thiazole derivatives grouping with pyrazole ring under the microwave. Der. Chemica Sinica, 2015, 6, 12-18.
[115]
Baba, N.H.K.; Ashok, D.; Rao, B.A.; Madderla, S.; Murthy, N.Y.S. Microwave-assisted synthesis and biological evaluation of thiazole-substituted dibenzofurans. Heterocycl. Commun., 2018, 24(3), 171-176.
[http://dx.doi.org/10.1515/hc-2017-0247]
[116]
Venzke, D.; Flores, A.F.C.; Quina, F.H.; Pizzuti, L.; Pereira, C.M.P. Ultrasound promoted greener synthesis of 2-(3,5-diaryl-4,5-dihydro-1H-pyrazol-1-yl)-4-phenylthiazoles. Ultrason. Sonochem., 2011, 18(1), 370-374.
[http://dx.doi.org/10.1016/j.ultsonch.2010.07.002] [PMID: 20728398]
[117]
Aggarwal, R.; Kumar, S.; Singh, S.P. Sodium carbonate-mediated facile synthesis of 4-substituted-2-(3,5-dimethylpyrazol-1-yl)thiazoles under solvent-free conditions. J. Sulfur Chem., 2012, 33(5), 521-525.
[http://dx.doi.org/10.1080/17415993.2012.711331]
[118]
Sridevi, B.; Tangella, Y.; Babu, K.S.; Nanubolu, J.B.; Rani, R.S.; Kumar, C.G.; Meshram, H.M.; Kamal, A. Sulfamic acid catalyzed one-pot, three-component green. New J. Chem., 2017, 41, 3745-3749.
[http://dx.doi.org/10.1039/C7NJ00042A]
[119]
Madhav, B.; Murthy, S.N.; Kumar, B.S.P.A.; Ramesh, K.; Nageswar, Y.V.D. A tandem one-pot aqueous phase synthesis of thiazoles/selenazoles. Tetrahedron Lett., 2012, 53(30), 3835-3838.
[http://dx.doi.org/10.1016/j.tetlet.2012.04.097]
[120]
Nikpassand, M.; Fekri, L.Z.; Sanagou, S. Green synthesis of 2-hydrazonyl-4-phenylthiazoles using KIT-6 mesoporous silica coated magnetite nanoparticles. Dyes Pigments, 2017, 136, 140-144.
[http://dx.doi.org/10.1016/j.dyepig.2016.08.044]
[121]
de Andrade, V.C.S.; de Mattos, M.C.S. One-pot telescoped synthesis of thiazole derivatives from β-keto esters and thioureas promoted by tribromoisocyanuric acid. Synthesis, 2018, 50(24), 4867-4874.
[http://dx.doi.org/10.1055/s-0037-1610243]
[122]
de Andrade, V.S.C.; de Mattos, M.C.S. One-pot synthesis of 4-aryl-2-aminothiazoles from styrenes and thioureas promoted by tribromoisocyanuric acid. Tetrahedron Lett., 2020, 61(30), 152164.
[http://dx.doi.org/10.1016/j.tetlet.2020.152164]
[123]
Meng, G.; Wang, M.; Zheng, A.; Dou, J.; Guo, Z. Efficient one-pot synthesis of ethyl 2-substitued-4-methylthiazole-5-carboxylates. Green Chem. Lett. Rev., 2014, 7(1), 46-49.
[http://dx.doi.org/10.1080/17518253.2014.895858]
[124]
Chinnaraja, D.; Rajalakshmi, R. A facile, solvent and catalyst free, microwave assisted one pot synthesis of hydrazinyl thiazole derivatives. J. Saudi Chem. Soc., 2015, 19(2), 200-206.
[http://dx.doi.org/10.1016/j.jscs.2014.05.001]
[125]
Sujatha, K.; Vedula, R.R. Novel one-pot expeditious synthesis of 2,4-disubstituted thiazoles through a three-component reaction under solvent free conditions. Synth. Commun., 2018, 48(3), 302-308.
[http://dx.doi.org/10.1080/00397911.2017.1399422]
[126]
Dawane, B.S.; Shaikh, B.M.; Khandare, N.T.; Kamble, V.T.; Chobe, S.S.; Konda, S.G. Eco-friendly polyethylene glycol-400: a rapid and efficient recyclable reaction medium for the synthesis of thiazole derivatives. Green Chem. Lett. Rev., 2010, 3(3), 205208.
[http://dx.doi.org/10.1080/17518251003709506]
[127]
Raut, D.G.; Bhosale, R.B. One-pot PEG-mediated syntheses of 2-(2-hydrazinyl) thiazole derivatives: novel route. J. Sulfur Chem., 2018, 39(1), 1-7.
[http://dx.doi.org/10.1080/17415993.2017.1371175]
[128]
Kaldareh, M.F.; Mokhtary, M.; Nikpassand, M. Deep eutectic solvent mediated one-pot synthesis of hydrazinyl-4-phenyl-1,3-thiazoles. Polycycl. Aromat. Compd., 2019, 41(5), 1012-1019.
[http://dx.doi.org/10.1080/10406638.2019.1639062]
[129]
Ding, Q.; Zhu, D.; Jin, H.; Chen, J.; Ding, J.; Wu, H. Eco-friendly one-pot synthesis of 2,4-disubstituted thiazoles by grinding under catalyst- and solvent-free conditions. Phosphorus Sulfur Silicon Relat. Elem., 2011, 186(2), 220-224.
[http://dx.doi.org/10.1080/10426507.2010.492366]
[130]
Gholami, S.; Mokhtary, M. An efficient method for the one-pot synthesis of 4-phenyl-hydrazinyl thiazole derivatives using Nano-SiO2; J; Heterocyclic Chem, 2018, pp. 2946-2950.
[131]
Tiwari, J.; Singh, S.; Tufail, F.; Jaiswal, D.; Singh, J.; Singh, J. Glycerol micellar catalysis: an efficient multicomponent-tandem green synthetic approach to biologically important 2, 4-disubstituted thiazole derivatives. ChemistrySelect, 2018, 3(41), 11634-11642.
[http://dx.doi.org/10.1002/slct.201802511]
[132]
Reddy, G.T.; Kumar, G.; Reddy, N.C.G. Water-mediated one-pot three-component synthesis of hydrazinyl-thiazoles catalyzed by copper oxide nanoparticles dispersed on titanium dioxide support: a green catalytic process. Adv. Synth. Catal., 2018, 360(5), 995-1006.
[http://dx.doi.org/10.1002/adsc.201701063]
[133]
Penta, S.; Vedula, R.R. New, convinient, one-pot method for the synthesis of thiazolyl-pyrazolones from dehydro acid derivatives via a multicomponent approach. Synth. Commun., 2012, 42(23), 3395-3402.
[http://dx.doi.org/10.1080/00397911.2011.558969]
[134]
Xiabing, M.; Ablajan, K.; Obul, M.; Seydimemet, M.; Ruzi, R.; Li, Ư. Facial one-pot, three-component synthesis of thiazole compounds by the reactions of aldehyde/ketone, thiosemicarbazide and chlorinated carboxylic ester derivatives. Tetrahedron, 2016, 72(18), 2349-2353.
[http://dx.doi.org/10.1016/j.tet.2016.03.053]
[135]
Venkata, C.S.R.; Ra, V.R. A facile one-pot expeditious synthesis of thiazolyl-pyrazolones. Phosphorus Sulfur Silicon Relat. Elem., 2011, 186(3), 489-495.
[http://dx.doi.org/10.1080/10426507.2010.505593]
[136]
Venkateswararao, E.; Jalani, H.B.; Manoj, M.; Jung, S-H. Exploration and optimization of an efficient one-pot sequential synthesis of di/tri-substituted thiazoles from α-bromoketones, thioacids salt, and ammonium acetate. J. Heterocycl. Chem., 2016, 53(5), 1449-1456.
[http://dx.doi.org/10.1002/jhet.2446]
[137]
Liu, Y.; Li, Z.; Xie, Y.; He, P.; Qioa, J.; Fan, X.; Du, Y. Efficient one-pot synthesis of 2,4-disubstituted thiazoles and dimeric thiazoles directly from acyl chlorides and β-azido disulfides. Synthesis, 2017, 49(21), 4876-4886.
[http://dx.doi.org/10.1055/s-0036-1590810]
[138]
Liu, Y.; He, P.; Zhang, Y.; Zhang, X.; Liu, J.; Du, Y. One-pot enantiomeric synthesis of thiazole-containing amino acids: total synthesis of venturamides A and B. J. Org. Chem., 2018, 83(7), 3897-3905.
[http://dx.doi.org/10.1021/acs.joc.8b00244] [PMID: 29533619]
[139]
Zhao, D.; Guo, S.; Guo, X.; Zhang, G.; Yu, Y. Facile, efficient synthesis of polysubstituted thiazoles via α nitroepoxides and thioureas. Tetrahedron, 2016, 72(35), 2585-2589.
[http://dx.doi.org/10.1016/j.tet.2016.05.010]
[140]
Ziyaei Halimehjani, A.; Lotfi Nosood, Y. Synthesis of N,S-heterocycles and dithiocarbamates by the reaction of dithiocarbamic acids and S-Alkyl dithiocarbamates with nitroepoxides. Org. Lett., 2017, 19(24), 6748-6751.
[http://dx.doi.org/10.1021/acs.orglett.7b03501] [PMID: 29210274]
[141]
Lingaraju, G.S.; Swaroop, T.R.; Vinayaka, A.C.; Kumar, K.S.S.; Sadashiva, M.P.; Rangappa, K.S. An easy access to 4,5-disubstituted thiazoles via base-induced click reaction of active methylene isocyanides with methyl dithiocarboxylates. Synthesis, 2012, 44(9), 1373-1379.
[http://dx.doi.org/10.1055/s-0031-1290762]
[142]
Rajeev, N.; Swaroop, T.R.; Anil, S.M.; Bommegowda, Y.M.; Rangappa, K.S.; Sadashiva, M.P. Base-induced cyclization of active methylene isocyanides with xanthate esters: an efficient method for the synthesis of 5-alkoxy-4-(tosyl/ethoxycarbonyl)-1,3-thiazoles. Synlett, 2017, 28(17), 2281-2284.
[http://dx.doi.org/10.1055/s-0036-1590811]
[143]
Rajeev, N.; Anil, S.M.; Rangappa, K.S.; Sadashiva, M.P. Cyclization of active methylene isocyanides with α-oxodithioesters induced by base: an expedient synthesis of 4-methylthio/ethoxycarbonyl-5-acylthiazoles. Synthesis, 2020, 52(9), 1444-1450.
[http://dx.doi.org/10.1055/s-0039-1690821]
[144]
Luo, L.; Meng, L.; Sun, Q.; Ge, Z.; Li, R. NBS-mediated sequential one-pot synthesis of multifunctionalized thiazoles and thiophenes from 1,3-dicarbonyl compounds and mercaptonitrile salts. Tetrahedron Lett., 2014, 55(1), 259-263.
[http://dx.doi.org/10.1016/j.tetlet.2013.11.014]
[145]
Huang, X.; Chen, H.; Huang, Z.; Xu, Y.; Li, F.; Ma, X.; Chen, Y. Visible-light-induced difunctionalization of alkynes: The synthesis of thiazoles and 1,1-dibromo-1-en-3-ynes. J. Org. Chem., 2019, 84(23), 15283-15293.
[http://dx.doi.org/10.1021/acs.joc.9b02300] [PMID: 31702140]
[146]
Miura, T.; Funakoshi, Y.; Fujimoto, Y.; Nakahashi, J.; Murakami, M. Facile synthesis of 2,5-disubstituted thiazoles from terminal alkynes, sulfonyl azides, and thionoesters. Org. Lett., 2015, 17(10), 2454-2457.
[http://dx.doi.org/10.1021/acs.orglett.5b00960] [PMID: 25927965]
[147]
Majnooni, S.; Duffield, J.; Price, J.; Khosropour, A.R.; Zali-Boeini, H.; Beyzavi, H. Aryliodoazide synthons: a different approach for diversified synthesis of 2-aminothiazole, 1,3-thiazole, and 1,3-selenazole scaffolds. ACS Comb. Sci., 2019, 21(7), 516-521.
[http://dx.doi.org/10.1021/acscombsci.9b00045] [PMID: 31243975]
[148]
Li, H.; Zhang, J.; Zhang, Y.; Wang, J.; Song, G. A novel metal-free synthesis of thiazole-substituted a-hydroxy carbonyl compounds and 2-alkenylthiazoles from thiazole N-oxides and olefins. Tetrahedron Lett., 2019, 60(51), 150825.
[http://dx.doi.org/10.1016/j.tetlet.2019.05.053]
[149]
Xie, H.; Liu, J-C.; Wu, L.; Ding, M-W. New efficient synthesis of trisubstituted imidazolidine-2-thiones and thiazoles via vinyliminophosphoranes. Tetrahedron, 2012, 68(38), 7984-7990.
[http://dx.doi.org/10.1016/j.tet.2012.07.002]
[150]
Scalacci, N.; Pelloja, C.; Radi, M.; Castagnolo, D. Microwave-assisted domino reactions of propargylamines with isothiocyanates: selective synthesis of 2-aminothiazoles and 2- amino-4-methylenethiazolines. Synlett, 2016, 27(12), 1883-1887.
[http://dx.doi.org/10.1055/s-0035-1561985]
[151]
Orr, D.; Tolfrey, A.; Percy, J.M.; Frieman, J.; Harrison, Z.A.; Campbell-Crawford, M.; Patel, V.K. Single-step microwave-mediated synthesis of oxazoles and thiazoles from 3-oxetanone: a synthetic and computational study. Chemistry, 2013, 19(29), 9655-9662.
[http://dx.doi.org/10.1002/chem.201301011] [PMID: 23765429]
[152]
Cheng, Y.; Xiang, J-C.; Wang, Z-X.; Ma, J-T.; Wang, M.; Tang, B-C.; Wu, Y-D.; Zhu, Y-P.; Wu, A-X. Dimerization of phenylalanine: an approach to thiazoles and oxazoles involved S/O-insertion. Adv. Synth. Catal., 2018, 360(3), 550-555.
[http://dx.doi.org/10.1002/adsc.201701130]
[153]
Kazmaier, U.; Persch, A. A straightforward approach towards 5-substituted thiazolylpeptides via the thio-Ugi-reaction. Org. Biomol. Chem., 2010, 8(23), 5442-5447.
[http://dx.doi.org/10.1039/c0ob00453g] [PMID: 20927467]
[154]
Wu, M.; Jiang, Y.; An, Z.; Qi, Z.; Yan, R. Iron-catalyzed synthesis of substituted thiazoles from the enamines and elemental sulfur through C–S bond formation. Adv. Synth. Catal., 2018, 360(21), 4236-4240.
[http://dx.doi.org/10.1002/adsc.201800693]
[155]
Dai, T.; Cui, C.; Qi, X.; Cheng, Y.; He, Q.; Zhang, X.; Luo, X.; Yang, C. Regioselective synthesis of substituted thiazoles via cascade reactions from 3-chlorochromones and thioamides. Org. Biomol. Chem., 2020, 18(31), 6162-6170.
[http://dx.doi.org/10.1039/D0OB01019G] [PMID: 32716017]
[156]
Roslan, I.I.; Ng, K-H.; Gondal, M.A.; Basheer, C.; Dastageer, M.A.; Jaenicke, S.; Chuah, G.K. Visible light-mediated coupling of thioureas and 1,3-dicarbonyls: towards a leaving group-free synthesis of aminothiazoles. Adv. Synth. Catal., 2018, 360(8), 1584-1589.
[http://dx.doi.org/10.1002/adsc.201701565]
[157]
Zhang, X.; Teo, W.T. Sally; Chan, P.W. Brønsted acid catalyzed cyclization of propargylic alcohols with thioamides. Facile synthesis of di- and trisubstituted thiazoles. J. Org. Chem., 2010, 75(18), 6290-6293.
[http://dx.doi.org/10.1021/jo101292r] [PMID: 20795628]
[158]
Hori, M.; Nogi, K.; Nagaki, A.; Yorimitsu, H. Annulative synthesis of thiazoles and oxazoles from alkenyl sulfoxides and nitriles via additive pummerer reaction. Asian J. Org. Chem., 2019, 8(7), 1084-1087.
[http://dx.doi.org/10.1002/ajoc.201900169]
[159]
Gao, X.; Pan, Y-M.; Lin, M.; Chen, L.; Zhan, Z-P. Facile one-pot synthesis of three different substituted thiazoles from propargylic alcohols. Org. Biomol. Chem., 2010, 8(14), 3259-3266.
[http://dx.doi.org/10.1039/c002093a] [PMID: 20502779]
[160]
Li, X.; Li, C.; Yin, B.; Li, C.; Liu, P.; Li, J.; Shi, Z. DDQ-induced dehydrogenation of heterocycles for C-C double bond formation: synthesis of 2-thiazoles and 2-oxazoles. Chem. Asian J., 2013, 8(7), 1408-1411.
[http://dx.doi.org/10.1002/asia.201300267] [PMID: 23625512]
[161]
Vishwanatha, T.M.; Kurpiewska, K.; Kalinowska-Tłuścik, J.; Dömling, A. Cysteine isocyanide in multicomponent reaction: synthesis of peptido-mimetic 1,3-azoles. J. Org. Chem., 2017, 82(18), 9585-9594.
[http://dx.doi.org/10.1021/acs.joc.7b01615] [PMID: 28817272]
[162]
Halimehjani, A.Z.; Khalesi, M.; Breit, B. Amino acid-based dithiocarbamates as efficient intermediates for diversity-oriented synthesis of thiazoles. Eur. J. Org. Chem., 2020, 2020(38), 6081-6084.
[http://dx.doi.org/10.1002/ejoc.202001050]
[163]
Mallia, C.J.; Englert, L.; Walter, G.C.; Baxendale, I.R. Thiazole formation through a modified gewald reaction. Beilstein J. Org. Chem., 2015, 11, 875-883.
[http://dx.doi.org/10.3762/bjoc.11.98] [PMID: 26124889]
[164]
Husain, A.A.; Bisht, K.S. Thiocyanation and 2-amino-1,3-thiazole formation in water using recoverable and reusable glycosylated resorcin[4]arene cavitands. J. Org. Chem., 2020, 85(15), 9928-9935.
[http://dx.doi.org/10.1021/acs.joc.0c01150] [PMID: 32674572]
[165]
Weiss, K.M.; Wei, S.; Tsogoeva, S.B. Novel one-pot process for the synthesis of 1,3-thiazoles via organocatalysed epoxidation of nitro-olefins. Org. Biomol. Chem., 2011, 9(9), 3457-3461.
[http://dx.doi.org/10.1039/c1ob05260h] [PMID: 21431165]
[166]
Dessì, A.; Calamante, M.; Mordini, A.; Zani, L.; Taddei, M.; Reginato, G. Microwave-activated synthesis of thiazolo[5,4-d]-thiazoles by a condensation/oxidation sequence. RSC Advances, 2014, 4(3), 1322-1328.
[http://dx.doi.org/10.1039/C3RA45015E]
[167]
Childers, K.K.; Haidle, A.M.; Machacek, M.R.; Rogers, J.P.; Romeo, E. A one-step, multi-component reaction for the synthesis of fully substituted 5-amino-4-carboxamidthiazoles. Tetrahedron Lett., 2013, 54(20), 2506-2510.
[http://dx.doi.org/10.1016/j.tetlet.2013.03.014]
[168]
Wang, X.; Qiu, X.; Wei, J.; Liu, J.; Song, S.; Wang, W.; Jiao, N. Cu-catalyzed aerobic oxidative sulfuration/annulation approach to thiazoles via multiple Csp3-H bond cleavage. Org. Lett., 2018, 20(9), 2632-2636.
[http://dx.doi.org/10.1021/acs.orglett.8b00840] [PMID: 29659292]
[169]
Ni, P.; Tan, J.; Li, R.; Huang, H.; Zhang, F.; Deng, G-J. Brønsted acid-promoted thiazole synthesis under metal-free conditions using sulfur powder as the sulfur source. RSC Advances, 2020, 10(7), 3931-3935.
[http://dx.doi.org/10.1039/C9RA09656F]
[170]
Liu, P.; Shen, H.; Shao, X.; Li, Z.; Xu, X. Multipathways for the Synthesis of Fused Bicyclic 2-Aminothiazolyl Compounds Tuned by Ring Size. Synlett, 2014, 25(19), 2797-2801.
[http://dx.doi.org/10.1055/s-0034-1379100]
[171]
Yavari, I.; Amirahmadi, A.; Halvagar, M.R. A Synthesis of Functionalized Thiazoles and Pyrimidine-4(3H)-thiones from 1,1,3,3-Tetramethylguanidine, Acetylenic Esters, and Aryl Isothiocyanates. Synlett, 2017, 28(19), 2629-2632.
[http://dx.doi.org/10.1055/s-0036-1590862]
[172]
Yavari, I.; Shahvelayati, A.S.; Malekafzali, A. Efficient synthesis of functionalized 2,4-diaminothiazoles from tetramethylguanidine, isothiocyanates, and α-bromoketones. J. Sulfur Chem., 2010, 31(6), 499-508.
[http://dx.doi.org/10.1080/17415993.2010.525709]
[173]
Joybari, M.R.S.; Hossaini, Z. Synthesis of thiazole derivatives via multicomponent reaction of tetramethyl thiourea using water as a safe solvent. Journal of Applied Chemical Research, 2, 7-12.2016,
[174]
Guo, W.; Zhao, M.; Tan, W.; Zheng, L.; Tao, K. Chen; Wang, M.; Chen, D.; Fan, X. Base-Promoted Metal-/Oxidant-Free Three-Component Tandem Annulation: A Strategy for the Construction of 2,4,5-Trisubstituted Thiazoles via C N Bond Cleavage of Amidines. Asian J. Org. Chem., 2018, 7, 1893-1897.
[http://dx.doi.org/10.1002/ajoc.201800417]
[175]
Colella, M.; Musci, P.; Carlucci, C.; Lillini, S.; Tomassetti, M.; Aramini, A.; Degennaro, L.; Luisi, R. 1,3-Dibromo-1,1-difluoro-2-propanone as a Useful Synthon for a Chemoselective Preparation of 4-Bromodifluoromethyl Thiazoles. ACS Omega, 2018, 3(11), 14841-14848.
[http://dx.doi.org/10.1021/acsomega.8b02273] [PMID: 31458153]
[176]
Tang, X.; Yang, J.; Zhu, Z.; Zheng, M.; Wu, W.; Jiang, H. Access to thiazole via copper-catalyzed [3+1+1]-type condensation reaction under redox-neutral conditions. J. Org. Chem., 2016, 81(22), 11461-11466.
[http://dx.doi.org/10.1021/acs.joc.6b02124] [PMID: 27768296]
[177]
Mahata, A.; Bhaumick, P.; Panday, A.K.; Yadav, R.; Parvin, T.; Choudhury, L.H. Multicomponent synthesis of diphenyl 1, 3-thiazolebarbituric acid hybrids and their fluorescence property studies. New J. Chem., 2020, 44(12), 4798-4811.
[http://dx.doi.org/10.1039/D0NJ00406E]
[178]
Richter, F.; Seifert, F.; Korb, M.; Lang, H.; Banert, K. Real Multicomponent Reactions: Synthesis of Highly Substituted 2-Aminothiazoles. Eur. J. Org. Chem., 2018, 2018(34), 4673-4682.
[http://dx.doi.org/10.1002/ejoc.201800701]
[179]
Alizadeh-Bami, F.; Mehrabi, H.; Ranjbar-Karimi, R. One-pot three-component reaction of arylglyoxals with acetylthiourea and Meldrum’s acid or barbituric acid for synthesis of new 2-acetamido-4-arylthiazol-5-yl derivatives. J. Sulfur Chem., 2019, 40(5), 469-478.
[http://dx.doi.org/10.1080/17415993.2019.1602127]
[180]
Wang, Y.; Liu, X.; Zhu, B.; Guo, P.; Pei, Y.; He, Q.; Cao, H. Cu(I)-Catalyzed Three-Component Cyclization for the Construction of Functionalized Thiazoles. J. Org. Chem., 2020, 85(15), 10118-10124.
[http://dx.doi.org/10.1021/acs.joc.0c01381] [PMID: 32610902]
[181]
Ma, X.; Yu, X.; Huang, H.; Zhou, Y.; Song, Q. Synthesis of Thiazoles and Isothiazoles via Three-Component Reaction of Enaminoesters, Sulfur, and Bromodifluoroacetamides/Esters. Org. Lett., 2020, 22(14), 5284-5288.
[http://dx.doi.org/10.1021/acs.orglett.0c01275] [PMID: 32603128]
[182]
Al-Bogami, A.S.; Saleh, T.S.; El-Shareef, A.H. Mechanochemical synthesis of 5-acetylthiazole: A step toward green and sustainable chemistry. J. Heterocycl. Chem., 2020, 57(10), 3605-3611.
[http://dx.doi.org/10.1002/jhet.4079]
[183]
Srivastava, A.; Shukla, G.; Yadav, D.; Singh, M.S. Access to Fully Substituted Thiazoles and 2,3-Dihydrothiazoles via Copper-Catalyzed [4 + 1] Heterocyclization of α-(N-Hydroxy/aryl)imino-β-oxodithioesters with α-. Diazocarbonyls. J. Org. Chem., 2017, 82(20), 10846-10854.
[http://dx.doi.org/10.1021/acs.joc.7b01601] [PMID: 28945080]
[184]
Khose, G.; Shinde, S.; Panmand, A.; Kulkarni, R.; Munot, Y.; Bandyopadhyay, A.; Barawkar, D.; Patil, S.N. Synthesis of substituted esters of imidazoles, oxazoles, thiazoles, and diethyl pyrazine-2,5-dicarboxylate from a common acyclic precursor employing C-formylation strategy. Tetrahedron Lett., 2014, 55(16), 2671-2674.
[http://dx.doi.org/10.1016/j.tetlet.2014.03.039]
[185]
Kumar, S.V.; Parameshwarappa, G.; Ila, H. Synthesis of 2,4,5-trisubstituted thiazoles via Lawesson’s reagent-mediated chemoselective thionation-cyclization of functionalized enamides. J. Org. Chem., 2013, 78(14), 7362-7369.
[http://dx.doi.org/10.1021/jo401208u] [PMID: 23815778]
[186]
Nedolya, N.A.; Tarasova, O.A.; Albanov, A.I.; Trofimov, B.A. tert-Butoxide-Assisted Structural Transformation of 2-Aza-1,3,5-trienes: Fast Track to 5-Ethynyl-2-vinyl- and 2,5-Divinyl-1,3-thiazoles. Synthesis, 2018, 50(21), 4313-4324.
[http://dx.doi.org/10.1055/s-0037-1609561]
[187]
Zhu, W.; Tu, X.; Feng, H.; Tu, M.; Jiang, B.; Wu, F.; Tu, S. Facile synthesis of thiazol-2-yl substituted e-Acrylonitriles. Chin. J. Chem., 2012, 30(7), 1617-1623.
[http://dx.doi.org/10.1002/cjoc.201100719]
[188]
Guan, Z-R.; Liu, Z-M.; Wan, Q.; Ding, M-W. One-pot four-component synthesis of polysubstituted thiazoles via cascade ugi/wittig cyclization starting from odorless isocyano (triphenylphosphoranylidene)-acetates. Tetrahedron, 2020, 76(15), 131101.
[http://dx.doi.org/10.1016/j.tet.2020.131101]
[189]
Kumbar, S.S.; Hosamani, K.M. Efficient synthesis of 2,4,5-substituted thiazoles via intramolecular knoevenagel condensation-cyclization reaction using TEA under microwave irradiation condition. ChemistrySelect, 2018, 3(20), 5678-5687.
[http://dx.doi.org/10.1002/slct.201800620]
[190]
Demydchuk, B.A.; Kondratyuk, K.M.; Korniyenko, A.N.; Brovarets, V.S.; Vasylyshyn, R.Y.; Tolmachev, A.; Luki, O. A facile synthesis of 1,3-thiazole-4-sulfonyl chlorides. Synth. Commun., 2012, 42(19), 2866-2875.
[http://dx.doi.org/10.1080/00397911.2011.571356]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy