Review Article

基于适体的新型病毒生物标志物检测工具:聚焦SARS-CoV-2

卷 30, 期 8, 2023

发表于: 25 March, 2022

页: [910 - 934] 页: 25

弟呕挨: 10.2174/1568009622666220214101059

价格: $65

摘要

病毒感染可以对人类和动物造成致命疾病。因此,早期发现病毒对于为患者提供有效治疗至关重要。最近,Covid-19大流行无疑敲响了开发快速敏感检测平台的警钟。病毒诊断工具需要快速、廉价、易于操作,并具有与目前使用的诊断方法相当或更好的高灵敏度和特异性。目前的检测方法包括直接检测病毒抗原或测量抗体对病毒感染的反应。然而,该病毒的敏感性和量化仍然是一个重大挑战。使用合成结合分子(如适体)的检测工具可能比在检测格式中使用抗体的传统方法具有几个优点。适配体是高度稳定和可定制的分子,因此是检测和化学传感应用的理想选择。这篇综述文章讨论了基于适体的病毒检测平台的各种进展,包括电化学、光学和比色法检测病毒,特别是SARS-Cov-2。考虑到这些优势,适体在未来设计用于病毒和其他生物医学应用的高通量生物传感器方面可能会改变游戏规则。

关键词: 适体,生物标记物,生物传感器,病毒,SARS-CoV-2, MERS-CoV。

[1]
Reperant, L.A.; Osterhaus, A.D.M.E. AIDS, Avian flu, SARS, MERS, Ebola, Zika… what next? Vaccine, 2017, 35(35 Pt A), 4470-4474.
[http://dx.doi.org/10.1016/j.vaccine.2017.04.082] [PMID: 28633891]
[2]
Wang, C.; Wang, D.; Abbas, J.; Duan, K.; Mubeen, R. Global financial crisis, smart lockdown strategies, and the COVID-19 spillover impacts: A global perspective implications from southeast asia. Front. Psychiatry, 2021, 12, 643783.
[http://dx.doi.org/10.3389/fpsyt.2021.643783] [PMID: 34539457]
[3]
Centers for Disease Control and Prevention (C)OD). SARS Basics Fact Sheet. 2017. Available from: https://www.cdc.gov/sars/about/fs-sars.html (Accessed on: November 11, 2021).
[4]
Nazimek, K.; Bociaga-Jasik, M.; Bryniarski, K.; Gałas, A.; Garlicki, A.; Gawda, A.; Gawlik, G.; Gil, K.; Kosz-Vnenchak, M.; Mrozek-Budzyn, D.; Olszanecki, R.; Piatek, A.; Zawilińska, B.; Marcinkiewicz, J. Ebola virus disease. Folia Med. Cracov., 2014, 54(3), 5-16.
[PMID: 25694090]
[5]
Kazmi, S.S.; Ali, W.; Bibi, N.; Nouroz, F. A review on Zika virus outbreak, epidemiology, transmission and infection dynamics. J. Biol. Res. (Thessalon.), 2020, 27, 5.
[http://dx.doi.org/10.1186/s40709-020-00115-4] [PMID: 32158705]
[6]
European Centre for Disease Prevention and Control (COD). MERS-CoV worldwide overview. 2021. Available from: https://www.ecdc.europa.eu/en/middle-east-respiratory-syndrome-coronavirus-mers-cov-situation-update (accessed November 11, 2021).
[7]
Kramer, L. Overview of viral infections. 2021. Available from: https://www.msdmanuals.com/home/infections/overview-of-viral-infections/overview-of-viral-infections (Accessed on: November 11, 2021).
[8]
Pradeu, T. Mutualistic viruses and the heteronomy of life. Hist. Philos. Biol. Biomed. Sci., 2016, 59, 80-88.
[http://dx.doi.org/10.1016/j.shpsc.2016.02.007] [PMID: 26972872]
[9]
Duffy, S. Why are RNA virus mutation rates so damn high? PLoS Biol., 2018, 16(8), e3000003.
[http://dx.doi.org/10.1371/journal.pbio.3000003] [PMID: 30102691]
[10]
Storch, G.A. Diagnostic virology. Clin. Infect. Dis., 2000, 31(3), 739-751.
[http://dx.doi.org/10.1086/314015] [PMID: 11017824]
[11]
Boonham, N.; Kreuze, J.; Winter, S.; van der Vlugt, R.; Bergervoet, J.; Tomlinson, J.; Mumford, R. Methods in virus diagnostics: From ELISA to next generation sequencing. Virus Res., 2014, 186, 20-31.
[http://dx.doi.org/10.1016/j.virusres.2013.12.007] [PMID: 24361981]
[12]
Zamora, J.L.R.; Aguilar, H.C. Flow virometry as a tool to study viruses. Methods, 2018, 134-135, 87-97.
[http://dx.doi.org/10.1016/j.ymeth.2017.12.011] [PMID: 29258922]
[13]
Palmer, E.L.; Martin, M.L. Electron Microscopy in Viral Diagnosis; CRC Press: Boca Raton, 2019.
[http://dx.doi.org/10.1201/9781351071642]
[14]
Bisht, A.; Mishra, A.; Bisht, H.; Tripathi, R.M. Nanomaterial based biosensors for detection of viruses including SARS-CoV-2: A review. J. Anal. Test., 2021. [Epub ahead of print].
[http://dx.doi.org/10.1007/s41664-021-00200-0] [PMID: 34777896]
[15]
Vaculovicova, M.; Michalek, P.; Krizkova, S.; Macka, M.; Adam, V. Nanotechnology-based analytical approaches for detection of viruses. Anal. Methods, 2017, 9, 2375-2391.
[http://dx.doi.org/10.1039/C7AY00048K]
[16]
Baker, M. Reproducibility crisis: Blame it on the antibodies. Nature, 2015, 521(7552), 274-276.
[http://dx.doi.org/10.1038/521274a] [PMID: 25993940]
[17]
Mitra, S.; Tomar, P.C. Hybridoma technology; advancements, clinical significance, and future aspects. J. Genet. Eng. Biotechnol., 2021, 19(1), 159.
[http://dx.doi.org/10.1186/s43141-021-00264-6] [PMID: 34661773]
[18]
Zhou, J.; Rossi, J. Aptamers as targeted therapeutics: Current potential and challenges. Nat. Rev. Drug Discov., 2017, 16(3), 181-202.
[http://dx.doi.org/10.1038/nrd.2016.199] [PMID: 27807347]
[19]
Tuerk, C.; Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science (80-.), 1990, 249, 505-510.
[http://dx.doi.org/10.1126/science.2200121]
[20]
Ellington, A.D.; Szostak, J.W. In vitro selection of RNA molecules that bind specific ligands. Nature, 1990, 346(6287), 818-822.
[http://dx.doi.org/10.1038/346818a0] [PMID: 1697402]
[21]
Kumar Kulabhusan, P.; Hussain, B.; Yüce, M. Current perspectives on aptamers as diagnostic tools and therapeutic agents. Pharmaceutics, 2020, 12(7), 1-23.
[http://dx.doi.org/10.3390/pharmaceutics12070646] [PMID: 32659966]
[22]
Shatunova, E.A.; Korolev, M.A.; Omelchenko, V.O.; Kurochkina, Y.D.; Davydova, A.S.; Venyaminova, A.G.; Vorobyeva, M.A. Aptamers for proteins associated with rheumatic diseases: Progress, challenges, and prospects of diagnostic and therapeutic applications. Biomedicines, 2020, 8(11), 1-44.
[http://dx.doi.org/10.3390/biomedicines8110527] [PMID: 33266394]
[23]
Mayer, G. The chemical biology of aptamers. Angew. Chem. Int. Ed. Engl., 2009, 48(15), 2672-2689.
[http://dx.doi.org/10.1002/anie.200804643] [PMID: 19319884]
[24]
Geiger, A.; Burgstaller, P.; von der Eltz, H.; Roeder, A.; Famulok, M. RNA aptamers that bind L-arginine with sub-micromolar dissociation constants and high enantioselectivity. Nucleic Acids Res., 1996, 24(6), 1029-1036.
[http://dx.doi.org/10.1093/nar/24.6.1029] [PMID: 8604334]
[25]
Mei, H.; Bing, T.; Yang, X.; Qi, C.; Chang, T.; Liu, X.; Cao, Z.; Shangguan, D. Functional-group specific aptamers indirectly recognizing compounds with alkyl amino group. Anal. Chem., 2012, 84(17), 7323-7329.
[http://dx.doi.org/10.1021/ac300281u] [PMID: 22881428]
[26]
Vanschoenbeek, K.; Vanbrabant, J.; Hosseinkhani, B.; Vermeeren, V.; Michiels, L. Aptamers targeting different functional groups of 17β-estradiol. J. Steroid Biochem. Mol. Biol., 2015, 147, 10-16.
[http://dx.doi.org/10.1016/j.jsbmb.2014.10.013] [PMID: 25465478]
[27]
Colas, P.; Cohen, B.; Jessen, T.; Grishina, I.; McCoy, J.; Brent, R. Genetic selection of peptide aptamers that recognize and inhibit cyclin-dependent kinase 2. Nature, 1996, 380(6574), 548-550.
[http://dx.doi.org/10.1038/380548a0] [PMID: 8606778]
[28]
Cohen, B.A.; Colas, P.; Brent, R. An artificial cell-cycle inhibitor isolated from a combinatorial library. Proc. Natl. Acad. Sci. USA, 1998, 95(24), 14272-14277.
[http://dx.doi.org/10.1073/pnas.95.24.14272] [PMID: 9826690]
[29]
Colas, P. The eleven-year switch of peptide aptamers. J. Biol., 2008, 7(1), 2.
[http://dx.doi.org/10.1186/jbiol64] [PMID: 18254928]
[30]
Liu, P.; Chen, Y.; Wang, D.; Tang, Y.; Tang, H.; Song, H.; Sun, Q.; Zhang, Y.; Liu, Z. Genetic selection of peptide aptamers that interact and inhibit both small protein B and alternative ribosome-rescue factor A of Aeromonas veronii C4. Front. Microbiol., 2016, 7, 1228.
[http://dx.doi.org/10.3389/fmicb.2016.01228] [PMID: 27588015]
[31]
Reverdatto, S.; Burz, D.S.; Shekhtman, A. Peptide aptamers: Development and applications. Curr. Top. Med. Chem., 2015, 15(12), 1082-1101.
[http://dx.doi.org/10.2174/1568026615666150413153143] [PMID: 25866267]
[32]
Zhang, Y.; Lai, B.S.; Juhas, M. Recent advances in aptamer discovery and applications. Molecules, 2019, 24(5), 338548.
[http://dx.doi.org/10.3390/molecules24050941] [PMID: 30866536]
[33]
Ellington, A.D.; Szostak, J.W. Selection in vitro of single-stranded DNA molecules that fold into specific ligand-binding structures. Nature, 1992, 355(6363), 850-852.
[http://dx.doi.org/10.1038/355850a0] [PMID: 1538766]
[34]
Hamedani, N.S.; Müller, J. Capillary electrophoresis for the selection of DNA aptamers recognizing activated protein C. Methods Mol. Biol., 2016, 1380, 61-75.
[http://dx.doi.org/10.1007/978-1-4939-3197-2_5]
[35]
Zhu, C.; Yang, G.; Ghulam, M.; Li, L.; Qu, F. Evolution of multi-functional capillary electrophoresis for high-efficiency selection of aptamers. Biotechnol. Adv., 2019, 37(8), 107432.
[http://dx.doi.org/10.1016/j.biotechadv.2019.107432] [PMID: 31437572]
[36]
Mayer, G.; Ahmed, M.S.L.; Dolf, A.; Endl, E.; Knolle, P.A.; Famulok, M. Fluorescence-activated cell sorting for aptamer SELEX with cell mixtures. Nat. Protoc., 2010, 5(12), 1993-2004.
[http://dx.doi.org/10.1038/nprot.2010.163] [PMID: 21127492]
[37]
Spiga, F.M.; Maietta, P.; Guiducci, C. More DNA-aptamers for small drugs: A capture-SELEX coupled with surface plasmon resonance and high-throughput sequencing. ACS Comb. Sci., 2015, 17(5), 326-333.
[http://dx.doi.org/10.1021/acscombsci.5b00023] [PMID: 25875077]
[38]
Nguyen, V-T.; Seo, H.B.; Kim, B.C.; Kim, S.K.; Song, C-S.; Gu, M.B. Highly sensitive sandwich-type SPR based detection of whole H5Nx viruses using a pair of aptamers. Biosens. Bioelectron., 2016, 86, 293-300.
[http://dx.doi.org/10.1016/j.bios.2016.06.064] [PMID: 27387259]
[39]
Kurt, H.; Eyüpoğlu, A.E.; Sütlü, T.; Budak, H.; Yüce, M. Plasmonic selection of ssDNA aptamers against fibroblast growth factor receptor. ACS Comb. Sci., 2019, 21(8), 578-587.
[http://dx.doi.org/10.1021/acscombsci.9b00059] [PMID: 31265241]
[40]
Takenaka, M.; Okumura, Y.; Amino, T.; Miyachi, Y.; Ogino, C.; Kondo, A. DNA-duplex linker for AFM-SELEX of DNA aptamer against human serum albumin. Bioorg. Med. Chem. Lett., 2017, 27(4), 954-957.
[http://dx.doi.org/10.1016/j.bmcl.2016.12.080] [PMID: 28094182]
[41]
Sinha, A.; Gopinathan, P.; Chung, Y.D.; Lin, H.Y.; Li, K.H.; Ma, H.P.; Huang, P.C.; Shiesh, S.C.; Lee, G.B. An integrated microfluidic platform to perform uninterrupted SELEX cycles to screen affinity reagents specific to cardiovascular biomarkers. Biosens. Bioelectron., 2018, 122, 104-112.
[http://dx.doi.org/10.1016/j.bios.2018.09.040] [PMID: 30245322]
[42]
Kim, J.; Olsen, T.R.; Zhu, J.; Hilton, J.P.; Yang, K.A.; Pei, R.; Stojanovic, M.N.; Lin, Q. Integrated microfluidic isolation of aptamers using electrophoretic oligonucleotide manipulation. Sci. Rep., 2016, 6, 26139.
[http://dx.doi.org/10.1038/srep26139] [PMID: 27217242]
[43]
Zhong, W.; Pu, Y.; Tan, W.; Liu, J.; Liao, J.; Liu, B.; Chen, K.; Yu, B.; Hu, Y.; Deng, Y.; Zhang, J.; Liu, H. Identification and application of an aptamer targeting papillary thyroid carcinoma using tissue-SELEX. Anal. Chem., 2019, 91(13), 8289-8297.
[http://dx.doi.org/10.1021/acs.analchem.9b01000] [PMID: 31141341]
[44]
Li, L.; Wan, J.; Wen, X.; Guo, Q.; Jiang, H.; Wang, J.; Ren, Y.; Wang, K. Identification of a new DNA aptamer by tissue-SELEX for cancer recognition and imaging. Anal. Chem., 2021, 93(19), 7369-7377.
[http://dx.doi.org/10.1021/acs.analchem.1c01445] [PMID: 33960774]
[45]
Chen, L.; He, W.; Jiang, H.; Wu, L.; Xiong, W.; Li, B.; Zhou, Z.; Qian, Y. In vivo SELEX of bone targeting aptamer in prostate cancer bone metastasis model. Int. J. Nanomedicine, 2018, 14, 149-159.
[http://dx.doi.org/10.2147/IJN.S188003] [PMID: 30613143]
[46]
Wang, H.; Zhang, Y.; Yang, H.; Qin, M.; Ding, X.; Liu, R.; Jiang, Y. In vivo selex of an inhibitory NSCLC-specific RNA aptamer from PEGylated RNA library. Mol. Ther. Nucleic Acids, 2018, 10, 187-198.
[http://dx.doi.org/10.1016/j.omtn.2017.12.003] [PMID: 29499932]
[47]
Souza, A.G.; Marangoni, K.; Fujimura, P.T.; Alves, P.T.; Silva, M.J.; Bastos, V.A.F.; Goulart, L.R.; Goulart, V.A. 3D Cell-SELEX: Development of RNA aptamers as molecular probes for PC-3 tumor cell line. Exp. Cell Res., 2016, 341(2), 147-156.
[http://dx.doi.org/10.1016/j.yexcr.2016.01.015] [PMID: 26821206]
[48]
Nelissen, F.H.T.; Peeters, W.J.M.; Roelofs, T.P.; Nagelkerke, A.; Span, P.N.; Heus, H.A. Improving breast cancer treatment specificity using aptamers obtained by 3D Cell-SELEX. Pharmaceuticals (Basel), 2021, 14(4), 349.
[http://dx.doi.org/10.3390/ph14040349] [PMID: 33918832]
[49]
Kim, S.H.; Lee, J.; Lee, B.H.; Song, C-S.; Gu, M.B. Specific detection of avia>n influenza H5N2 whole virus particles on lateral flow strips using a pair of sandwich-type aptamers. Biosens. Bioelectron., 2019, 134, 123-129.
[http://dx.doi.org/10.1016/j.bios.2019.03.061] [PMID: 30986614]
[50]
Bai, C.; Lu, Z.; Jiang, H.; Yang, Z.; Liu, X.; Ding, H.; Li, H.; Dong, J.; Huang, A.; Fang, T.; Jiang, Y.; Zhu, L.; Lou, X.; Li, S.; Shao, N. Aptamer selection and application in multivalent binding-based electrical impedance detection of inactivated H1N1 virus. Biosens. Bioelectron., 2018, 110, 162-167.
[http://dx.doi.org/10.1016/j.bios.2018.03.047] [PMID: 29609164]
[51]
Gogola, J.L.; Martins, G.; Gevaerd, A.; Blanes, L.; Cardoso, J.; Marchini, F.K.; Banks, C.E.; Bergamini, M.F.; Marcolino-Junior, L.H. Label-free aptasensor for p24-HIV protein detection based on graphene quantum dots as an electrochemical signal amplifier. Anal. Chim. Acta, 2021, 1166, 338548.
[http://dx.doi.org/10.1016/j.aca.2021.338548] [PMID: 34022998]
[52]
Elskens, J.P.; Elskens, J.M.; Madder, A. Chemical modification of aptamers for increased binding affinity in diagnostic applications: Current status and future prospects. Int. J. Mol. Sci., 2020, 21(12), 1-31.
[http://dx.doi.org/10.3390/ijms21124522] [PMID: 32630547]
[53]
Kalra, P.; Dhiman, A.; Cho, W.C.; Bruno, J.G.; Sharma, T.K. Simple methods and rational design for enhancing aptamer sensitivity and specificity. Front. Mol. Biosci., 2018, 5, 41.
[http://dx.doi.org/10.3389/fmolb.2018.00041] [PMID: 29868605]
[54]
Gawande, B.N.; Rohloff, J.C.; Carter, J.D.; von Carlowitz, I.; Zhang, C.; Schneider, D.J.; Janjic, N. Selection of DNA aptamers with two modified bases. Proc. Natl. Acad. Sci. USA, 2017, 114(11), 2898-2903.
[http://dx.doi.org/10.1073/pnas.1615475114] [PMID: 28265062]
[55]
Seelam Prabhakar, P.; A Manderville, R.; D Wetmore, S. Impact of the position of the chemically modified 5-Furyl-2′-deoxyuridine nucleoside on the thrombin DNA aptamer-protein complex: Structural insights into aptamer response from MD simulations. Molecules, 2019, 24(16), E2908.
[http://dx.doi.org/10.3390/molecules24162908] [PMID: 31405145]
[56]
Gold, L.; Ayers, D.; Bertino, J.; Bock, C.; Bock, A.; Brody, E.N.; Carter, J.; Dalby, A.B.; Eaton, B.E.; Fitzwater, T.; Flather, D.; Forbes, A.; Foreman, T.; Fowler, C.; Gawande, B.; Goss, M.; Gunn, M.; Gupta, S.; Halladay, D.; Heil, J.; Heilig, J.; Hicke, B.; Husar, G.; Janjic, N.; Jarvis, T.; Jennings, S.; Katilius, E.; Keeney, T.R.; Kim, N.; Koch, T.H.; Kraemer, S.; Kroiss, L.; Le, N.; Levine, D.; Lindsey, W.; Lollo, B.; Mayfield, W.; Mehan, M.; Mehler, R.; Nelson, S.K.; Nelson, M.; Nieuwlandt, D.; Nikrad, M.; Ochsner, U.; Ostroff, R.M.; Otis, M.; Parker, T.; Pietrasiewicz, S.; Resnicow, D.I.; Rohloff, J.; Sanders, G.; Sattin, S.; Schneider, D.; Singer, B.; Stanton, M.; Sterkel, A.; Stewart, A.; Stratford, S.; Vaught, J.D.; Vrkljan, M.; Walker, J.J.; Watrobka, M.; Waugh, S.; Weiss, A.; Wilcox, S.K.; Wolfson, A.; Wolk, S.K.; Zhang, C.; Zichi, D. Aptamer-based multiplexed proteomic technology for biomarker discovery. PLoS One, 2010, 5(12), e15004.
[http://dx.doi.org/10.1371/journal.pone.0015004] [PMID: 21165148]
[57]
Volk, D.E.; Lokesh, G.L.R. Development of phosphorothioate DNA and DNA thioaptamers. Biomedicines, 2017, 5(3), E41.
[http://dx.doi.org/10.3390/biomedicines5030041] [PMID: 28703779]
[58]
Wang, T.; Chen, C.; Larcher, L.M.; Barrero, R.A.; Veedu, R.N. Three decades of nucleic acid aptamer technologies: Lessons learned, progress and opportunities on aptamer development. Biotechnol. Adv., 2019, 37(1), 28-50.
[http://dx.doi.org/10.1016/j.biotechadv.2018.11.001] [PMID: 30408510]
[59]
Young, B.E.; Kundu, N.; Sczepanski, J.T. Mirror-image oligonucleotides: History and emerging applications. Chemistry, 2019, 25(34), 7981-7990.
[http://dx.doi.org/10.1002/chem.201900149] [PMID: 30913332]
[60]
Vater, A.; Klussmann, S. Turning mirror-image oligonucleotides into drugs: The evolution of Spiegelmer(®) therapeutics. Drug Discov. Today, 2015, 20(1), 147-155.
[http://dx.doi.org/10.1016/j.drudis.2014.09.004] [PMID: 25236655]
[61]
Dwidar, M.; Yokobayashi, Y. Development of a histamine aptasensor for food safety monitoring. Sci. Rep., 2019, 9(1), 16659.
[http://dx.doi.org/10.1038/s41598-019-52876-1] [PMID: 31723193]
[62]
Alawad, A.; Istamboulié, G.; Calas-Blanchard, C.; Noguer, T. A reagentless aptasensor based on intrinsic aptamer redox activity for the detection of tetracycline in water. Sens. Actuators B Chem., 2019, 288, 141-146.
[http://dx.doi.org/10.1016/j.snb.2019.02.103]
[63]
Lee, E.H.; Son, A. Fluorescence resonance energy transfer based quantum dot-Aptasensor for the selective detection of microcystin-LR in eutrophic water. Chem. Eng. J., 2019, 359, 1493-1501.
[http://dx.doi.org/10.1016/j.cej.2018.11.027]
[64]
Wang, X.; Zhu, Y.; Olsen, T.R.; Sun, N.; Zhang, W.; Pei, R.; Lin, Q. A graphene aptasensor for biomarker detection in human serum. Electrochim. Acta, 2018, 290, 356-363.
[http://dx.doi.org/10.1016/j.electacta.2018.08.062] [PMID: 33551454]
[65]
Figueroa-Miranda, G.; Wu, C.; Zhang, Y.; Nörbel, L.; Lo, Y.; Tanner, J.A.; Elling, L.; Offenhäusser, A.; Mayer, D. Polyethylene glycol-mediated blocking and monolayer morphology of an electrochemical aptasensor for malaria biomarker detection in human serum. Bioelectrochemistry, 2020, 136, 107589.
[http://dx.doi.org/10.1016/j.bioelechem.2020.107589] [PMID: 32679336]
[66]
Janik, M.; Brzozowska, E.; Czyszczoń, P.; Celebańska, A.; Koba, M.; Gamian, A.; Bock, W.J.; Śmietana, M. Optical fiber aptasensor for label-free bacteria detection in small volumes. Sens. Actuators B Chem., 2021, 330, 129316.
[http://dx.doi.org/10.1016/j.snb.2020.129316]
[67]
Bahari, D.; Babamiri, B.; Salimi, A.; Salimizand, H. Ratiometric fluorescence resonance energy transfer aptasensor for highly sensitive and selective detection of Acinetobacter baumannii bacteria in urine sample using carbon dots as optical nanoprobes. Talanta, 2021, 221, 121619.
[http://dx.doi.org/10.1016/j.talanta.2020.121619] [PMID: 33076147]
[68]
Li, P.; Zhou, L.; Wei, J.; Yu, Y.; Yang, M.; Wei, S.; Qin, Q. Development and characterization of aptamer-based enzyme-linked apta-sorbent assay for the detection of Singapore grouper iridovirus infection. J. Appl. Microbiol., 2016, 121(3), 634-643.
[http://dx.doi.org/10.1111/jam.13161] [PMID: 27124762]
[69]
Pan, W.; Craven, R.C.; Qiu, Q.; Wilson, C.B.; Wills, J.W.; Golovine, S.; Wang, J.F. Isolation of virus-neutralizing RNAs from a large pool of random sequences. Proc. Natl. Acad. Sci. USA, 1995, 92(25), 11509-11513.
[http://dx.doi.org/10.1073/pnas.92.25.11509] [PMID: 8524793]
[70]
Chen, C.; Zou, Z.; Chen, L.; Ji, X.; He, Z. Functionalized magnetic microparticle-based colorimetric platform for influenza A virus detection. Nanotechnology, 2016, 27(43), 435102.
[http://dx.doi.org/10.1088/0957-4484/27/43/435102] [PMID: 27655150]
[71]
Weerathunge, P.; Ramanathan, R.; Torok, V.A.; Hodgson, K.; Xu, Y.; Goodacre, R.; Behera, B.K.; Bansal, V. Ultrasensitive colorimetric detection of murine norovirus using nanozyme aptasensor. Anal. Chem., 2019, 91(5), 3270-3276.
[http://dx.doi.org/10.1021/acs.analchem.8b03300] [PMID: 30642158]
[72]
Shiratori, I.; Akitomi, J.; Boltz, D.A.; Horii, K.; Furuichi, M.; Waga, I. Selection of DNA aptamers that bind to influenza A viruses with high affinity and broad subtype specificity. Biochem. Biophys. Res. Commun., 2014, 443(1), 37-41.
[http://dx.doi.org/10.1016/j.bbrc.2013.11.041] [PMID: 24269231]
[73]
Lee, K.H.; Zeng, H. Aptamer-based ELISA assay for highly specific and sensitive detection of Zika NS1 protein. Anal. Chem., 2017, 89(23), 12743-12748.
[http://dx.doi.org/10.1021/acs.analchem.7b02862] [PMID: 29120623]
[74]
Escudero-Abarca, B.I.; Suh, S.H.; Moore, M.D.; Dwivedi, H.P.; Jaykus, L.A. Selection, characterization and application of nucleic acid aptamers for the capture and detection of human norovirus strains. PLoS One, 2014, 9(9), e106805.
[http://dx.doi.org/10.1371/journal.pone.0106805] [PMID: 25192421]
[75]
Duan, D.; Fan, K.; Zhang, D.; Tan, S.; Liang, M.; Liu, Y.; Zhang, J.; Zhang, P.; Liu, W.; Qiu, X.; Kobinger, G.P.; Gao, G.F.; Yan, X. Nanozyme-strip for rapid local diagnosis of Ebola. Biosens. Bioelectron., 2015, 74, 134-141.
[http://dx.doi.org/10.1016/j.bios.2015.05.025] [PMID: 26134291]
[76]
Le, T.T.; Chang, P.; Benton, D.J.; McCauley, J.W.; Iqbal, M.; Cass, A.E.G. Dual recognition element lateral flow assay toward multiplex strain specific influenza virus detection. Anal. Chem., 2017, 89(12), 6781-6786.
[http://dx.doi.org/10.1021/acs.analchem.7b01149] [PMID: 28558471]
[77]
Xi, Z.; Huang, R.; Li, Z.; He, N.; Wang, T.; Su, E.; Deng, Y. Selection of HBsAg-specific DNA aptamers based on carboxylated magnetic nanoparticles and their application in the rapid and simple detection of hepatitis b virus infection. ACS Appl. Mater. Interfaces, 2015, 7(21), 11215-11223.
[http://dx.doi.org/10.1021/acsami.5b01180] [PMID: 25970703]
[78]
Hmila, I.; Wongphatcharachai, M.; Laamiri, N.; Aouini, R.; Marnissi, B.; Arbi, M.; Sreevatsan, S.; Ghram, A. A novel method for detection of H9N2 influenza viruses by an aptamer-real time-PCR. J. Virol. Methods, 2017, 243, 83-91.
[http://dx.doi.org/10.1016/j.jviromet.2017.01.024] [PMID: 28159667]
[79]
Mok, J.; Jeon, J.; Jo, J.; Kim, E.; Ban, C. Novel one-shot fluorescent aptasensor for dengue fever diagnosis using NS1-induced structural change of G-quadruplex aptamer. Sens. Actuators B Chem., 2021, 343, 130077.
[http://dx.doi.org/10.1016/j.snb.2021.130077]
[80]
Huang, R.; Xi, Z.; Deng, Y.; He, N. Fluorescence based Aptasensors for the determination of hepatitis B virus e antigen. Sci. Rep., 2016, 6, 31103.
[http://dx.doi.org/10.1038/srep31103] [PMID: 27499342]
[81]
Szakács, Z.; Mészáros, T.; de Jonge, M.I.; Gyurcsányi, R.E. Selective counting and sizing of single virus particles using fluorescent aptamer-based nanoparticle tracking analysis. Nanoscale, 2018, 10(29), 13942-13948.
[http://dx.doi.org/10.1039/C8NR01310A] [PMID: 29845157]
[82]
Kukushkin, V.I.; Ivanov, N.M.; Novoseltseva, A.A.; Gambaryan, A.S.; Yaminsky, I.V.; Kopylov, A.M.; Zavyalova, E.G. Highly sensitive detection of influenza virus with SERS aptasensor. PLoS One, 2019, 14(4), e0216247.
[http://dx.doi.org/10.1371/journal.pone.0216247] [PMID: 31022287]
[83]
Sun, Y.; Xu, L.; Zhang, F.; Song, Z.; Hu, Y.; Ji, Y.; Shen, J.; Li, B.; Lu, H.; Yang, H. A promising magnetic SERS immunosensor for sensitive detection of avian influenza virus. Biosens. Bioelectron., 2017, 89(Pt 2), 906-912.
[http://dx.doi.org/10.1016/j.bios.2016.09.100] [PMID: 27818055]
[84]
Ghanbari, K.; Roushani, M.; Azadbakht, A. Ultra-sensitive aptasensor based on a GQD nanocomposite for detection of hepatitis C virus core antigen. Anal. Biochem., 2017, 534, 64-69.
[http://dx.doi.org/10.1016/j.ab.2017.07.016] [PMID: 28728900]
[85]
Bachour Junior, B.; Batistuti, M.R.; Pereira, A.S.; de Sousa Russo, E.M.; Mulato, M. Electrochemical aptasensor for NS1 detection: Towards a fast dengue biosensor. Talanta, 2021, 233, 122527.
[http://dx.doi.org/10.1016/j.talanta.2021.122527] [PMID: 34215030]
[86]
Fu, Y.; Callaway, Z.; Lum, J.; Wang, R.; Lin, J.; Li, Y. Exploiting enzyme catalysis in ultra-low ion strength media for impedance biosensing of avian influenza virus using a bare interdigitated electrode. Anal. Chem., 2014, 86(4), 1965-1971.
[http://dx.doi.org/10.1021/ac402550f] [PMID: 24180352]
[87]
Wang, R.; Xu, L.; Li, Y. Bio-nanogate controlled enzymatic reaction for virus sensing. Biosens. Bioelectron., 2015, 67, 400-407.
[http://dx.doi.org/10.1016/j.bios.2014.08.071] [PMID: 25212377]
[88]
Rahim Ruslinda, A.; Tanabe, K.; Ibori, S.; Wang, X.; Kawarada, H. Effects of diamond-FET-based RNA aptamer sensing for detection of real sample of HIV-1 Tat protein. Biosens. Bioelectron., 2013, 40(1), 277-282.
[http://dx.doi.org/10.1016/j.bios.2012.07.048] [PMID: 22975093]
[89]
Kwon, J.; Lee, Y.; Lee, T.; Ahn, J.H. Aptamer-based field-effect transistor for detection of avian influenza virus in chicken serum. Anal. Chem., 2020, 92(7), 5524-5531.
[http://dx.doi.org/10.1021/acs.analchem.0c00348] [PMID: 32148026]
[90]
Wang, C.; Zhang, L.; Shen, X. Development of a nucleic acid lateral flow strip for detection of hepatitis C virus (HCV) core antigen. Nucleosides Nucleotides Nucleic Acids, 2013, 32(2), 59-68.
[http://dx.doi.org/10.1080/15257770.2013.763976] [PMID: 23448141]
[91]
Pleshakova, T.O.; Kaysheva, A.L.; Bayzyanova, J.М.; Anashkina, А.S.; Uchaikin, V.F.; Ziborov, V.S.; Konev, V.A.; Archakov, A.I.; Ivanov, Y.D. The detection of hepatitis c virus core antigen using afm chips with immobolized aptamers. J. Virol. Methods, 2018, 251, 99-105.
[http://dx.doi.org/10.1016/j.jviromet.2017.10.015] [PMID: 29042217]
[92]
Rahmati, Z.; Roushani, M.; Hosseini, H. Three-dimensional NiCo2O4 nanowires encapsulated in nitrogen-doped carbon networks as a high-performance aptamer stabilizer for impedimetric ultrasensitive detection of hepatitis C virus core antigen. Surf. Interfaces, 2021, 22, 100813.
[http://dx.doi.org/10.1016/j.surfin.2020.100813]
[93]
Malsagova, K.A.; Pleshakova, T.O.; Galiullin, R.A.; Shumov, I.D.; Kozlo, A.F.; Romanova, T.S.; Popov, V.P.; Glukhov, A.V.; Konev, V.A.; Archakov, A.I.; Ivanov, Y.D. Nanowire aptamer-sensitized biosensor chips with gas plasma-treated surface for the detection of hepatitis C virus core antigen. Coatings, 2020, 10, 753.
[http://dx.doi.org/10.3390/coatings10080753]
[94]
Mohsin, D.H.; Mashkour, M.S.; Fatemi, F. Design of aptamer-based sensing platform using gold nanoparticles functionalized reduced graphene oxide for ultrasensitive detection of Hepatitis B virus. Chem. Pap., 2021, 75, 279-295.
[http://dx.doi.org/10.1007/s11696-020-01292-1]
[95]
Basso, C.R.; Crulhas, B.P.; Magro, M.; via nello, F.; Pedrosa, V.A. A new immunoassay of hybrid nanomater conjugated to aptamers for the detection of dengue virus. Talanta, 2019, 197, 482-490.
[http://dx.doi.org/10.1016/j.talanta.2019.01.058] [PMID: 30771965]
[96]
Kim, B.; Chung, K.W.; Lee, J.H. Non-stop aptasensor capable of rapidly monitoring norovirus in a sample. J. Pharm. Biomed. Anal., 2018, 152, 315-321.
[http://dx.doi.org/10.1016/j.jpba.2018.02.022] [PMID: 29471255]
[97]
Liu, D.; Zhang, Z.; Yin, Y.; Jia, F.; Wu, Q.; Tian, P.; Wang, D. Development and evaluation of a novel in situ target-capture approach for aptamer selection of human noroviruses. Talanta, 2019, 193, 199-205.
[http://dx.doi.org/10.1016/j.talanta.2018.09.084] [PMID: 30368291]
[98]
Chand, R.; Neethirajan, S. Microfluidic platform integrated with graphene-gold nano-composite aptasensor for one-step detection of norovirus. Biosens. Bioelectron., 2017, 98, 47-53.
[http://dx.doi.org/10.1016/j.bios.2017.06.026] [PMID: 28649024]
[99]
Zhang, J.; Tian, J.; He, Y.; Chen, S.; Jiang, Y.; Zhao, Y.; Zhao, S. Protein-binding aptamer assisted signal amplification for the detection of influenza A (H1N1) DNA sequences based on quantum dot fluorescence polarization analysis. Analyst (Lond.), 2013, 138(17), 4722-4727.
[http://dx.doi.org/10.1039/c3an00830d] [PMID: 23826611]
[100]
Bhardwaj, J.; Chaudhary, N.; Kim, H.; Jang, J. Subtyping of influenza A H1N1 virus using a label-free electrochemical biosensor based on the DNA aptamer targeting the stem region of HA protein. Anal. Chim. Acta, 2019, 1064, 94-103.
[http://dx.doi.org/10.1016/j.aca.2019.03.005] [PMID: 30982523]
[101]
Le, T.T.; Adamiak, B.; Benton, D.J.; Johnson, C.J.; Sharma, S.; Fenton, R.; McCauley, J.W.; Iqbal, M.; Cass, A.E.G. Aptamer-based biosensors for the rapid visual detection of flu viruses. Chem. Commun. (Camb.), 2014, 50(98), 15533-15536.
[http://dx.doi.org/10.1039/C4CC07888H] [PMID: 25354585]
[102]
Karash, S.; Wang, R.; Kelso, L.; Lu, H.; Huang, T.J.; Li, Y. Rapid detection of avian influenza virus H5N1 in chicken tracheal samples using an impedance aptasensor with gold nanoparticles for signal amplification. J. Virol. Methods, 2016, 236, 147-156.
[http://dx.doi.org/10.1016/j.jviromet.2016.07.018] [PMID: 27452670]
[103]
Pang, Y.; Rong, Z.; Wang, J.; Xiao, R.; Wang, S. A fluorescent aptasensor for H5N1 influenza virus detection based-on the core-shell nanoparticles metal-enhanced fluorescence (MEF). Biosens. Bioelectron., 2015, 66, 527-532.
[http://dx.doi.org/10.1016/j.bios.2014.10.052] [PMID: 25506900]
[104]
Shubham, S.; Hoinka, J.; Banerjee, S.; Swanson, E.; Dillard, J.A.; Lennemann, N.J.; Przytycka, T.M.; Maury, W.; Nilsen-Hamilton, M. A 2'FY-RNA Motif Defines an Aptamer for Ebolavirus Secreted Protein. Sci. Rep., 2018, 8(1), 12373.
[http://dx.doi.org/10.1038/s41598-018-30590-8] [PMID: 30120364]
[105]
Hong, S.L.; Xiang, M.Q.; Tang, M.; Pang, D.W.; Zhang, Z.L. Ebola virus Aptamers: From highly efficient selection to application on magnetism-controlled chips. Anal. Chem., 2019, 91(5), 3367-3373.
[http://dx.doi.org/10.1021/acs.analchem.8b04623] [PMID: 30740973]
[106]
Caglayan, M.O.; Üstündağ, Z. Spectrophotometric ellipsometry based Tat-protein RNA-aptasensor for HIV-1 diagnosis. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 227, 117748.
[http://dx.doi.org/10.1016/j.saa.2019.117748] [PMID: 31707021]
[107]
Suh, S.K.; Song, S.; Oh, H.B.; Hwang, S.H.; Hah, S.S. Aptamer-based competitive binding assay for one-step quantitation of hepatitis B surface antigen. Analyst (Lond.), 2014, 139(17), 4310-4314.
[http://dx.doi.org/10.1039/C4AN00619D] [PMID: 24987752]
[108]
Kang, J.; Yeom, G.; Jang, H.; Park, C.J.; Kim, M.G. Highly sensitive and universal detection strategy based on a colorimetric assay using target-specific heterogeneous sandwich DNA aptamer. Anal. Chim. Acta, 2020, 1123, 73-80.
[http://dx.doi.org/10.1016/j.aca.2020.05.012] [PMID: 32507242]
[109]
Zhao, Z.; Wang, Y.; Qiu, L.; Fu, T.; Yang, Y.; Peng, R.; Guo, M.; Mao, L.; Chen, C.; Zhao, Y.; Tan, W. New insights from chemical biology: Molecular basis of transmission, diagnosis, and therapy of SARS-CoV-2. CCS Chem., 2021, 3, 1501-1528.
[http://dx.doi.org/10.31635/ccschem.020.202000322]
[110]
Walls, A.C.; Park, Y.J.; Tortorici, M.A.; Wall, A.; McGuire, A.T.; Veesler, D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell, 2020, 181(2), 281-292.e6.
[http://dx.doi.org/10.1016/j.cell.2020.02.058] [PMID: 32155444]
[111]
Hillen, H.S.; Kokic, G.; Farnung, L.; Dienemann, C.; Tegunov, D.; Cramer, P. Structure of replicating SARS-CoV-2 polymerase. Nature, 2020, 584(7819), 154-156.
[http://dx.doi.org/10.1038/s41586-020-2368-8] [PMID: 32438371]
[112]
Feng, W.; Newbigging, A.M.; Le, C.; Pang, B.; Peng, H.; Cao, Y.; Wu, J.; Abbas, G.; Song, J.; Wang, D.B.; Cui, M.; Tao, J.; Tyrrell, D.L.; Zhang, X.E.; Zhang, H.; Le, X.C. Molecular diagnosis of COVID-19: Challenges and research needs. Anal. Chem., 2020, 92(15), 10196-10209.
[http://dx.doi.org/10.1021/acs.analchem.0c02060] [PMID: 32573207]
[113]
Mariano, G.; Farthing, R.J.; Lale-Farjat, S.L.M.; Bergeron, J.R.C. Structural characterization of SARS-CoV-2: Where we are, and where we need to be. Front. Mol. Biosci., 2020, 7, 605236.
[http://dx.doi.org/10.3389/fmolb.2020.605236] [PMID: 33392262]
[114]
Yadav, R.; Chaudhary, J.K.; Jain, N.; Chaudhary, P.K.; Khanra, S.; Dhamija, P.; Sharma, A.; Kumar, A.; Handu, S. Role of structural and non-structural proteins and therapeutic targets of SARS-CoV-2 for COVID-19. Cells, 2021, 10(4), 1-16.
[http://dx.doi.org/10.3390/cells10040821] [PMID: 33917481]
[115]
Bestle, D.; Heindl, M.R.; Limburg, H.; Van Lam van, T.; Pilgram, O.; Moulton, H.; Stein, D.A.; Hardes, K.; Eickmann, M.; Dolnik, O.; Rohde, C.; Klenk, H.D.; Garten, W.; Steinmetzer, T.; Böttcher-Friebertshäuser, E. TMPRSS2 and furin are both essential for proteolytic activation of SARS-CoV-2 in human airway cells. Life Sci. Alliance, 2020, 3(9), 1-14.
[http://dx.doi.org/10.26508/lsa.202000786] [PMID: 32703818]
[116]
Liu, Y.; Qu, H.Q.; Qu, J.; Tian, L.; Hakonarson, H. Expression pattern of the SARS-CoV-2 entry genes ACE2 and TMPRSS2 in the respiratory tract. Viruses, 2020, 12(10), 4-8.
[http://dx.doi.org/10.3390/v12101174] [PMID: 33081421]
[117]
Lukassen, S.; Chua, R.L.; Trefzer, T.; Kahn, N.C.; Schneider, M.A.; Muley, T.; Winter, H.; Meister, M.; Veith, C.; Boots, A.W.; Hennig, B.P.; Kreuter, M.; Conrad, C.; Eils, R. SARS-CoV-2 receptor ACE2 and TMPRSS2 are primarily expressed in bronchial transient secretory cells. EMBO J., 2020, 39(10), e105114.
[http://dx.doi.org/10.15252/embj.2020105114] [PMID: 32246845]
[118]
Satarker, S.; Nampoothiri, M. Structural proteins in severe acute respiratory syndrome coronavirus-2. Arch. Med. Res., 2020, 51(6), 482-491.
[http://dx.doi.org/10.1016/j.arcmed.2020.05.012] [PMID: 32493627]
[119]
Ye, Y.; Hogue, B.G. Role of the coronavirus E viroporin protein transmembrane domain in virus assembly. J. Virol., 2007, 81(7), 3597-3607.
[http://dx.doi.org/10.1128/JVI.01472-06] [PMID: 17229680]
[120]
Byun, J. Recent progress and opportunities for nucleic acid aptamers. Life (Basel), 2021, 11(3), 193.
[http://dx.doi.org/10.3390/life11030193] [PMID: 33671039]
[121]
Song, Y.; Song, J.; Wei, X.; Huang, M.; Sun, M.; Zhu, L.; Lin, B.; Shen, H.; Zhu, Z.; Yang, C. Discovery of aptamers targeting the receptor-binding domain of the SARS-CoV-2 spike glycoprotein. Anal. Chem., 2020, 92(14), 9895-9900.
[http://dx.doi.org/10.1021/acs.analchem.0c01394] [PMID: 32551560]
[122]
Cleri, F.; Lensink, M.F.; Blossey, R. DNA aptamers block the receptor binding domain at the spike protein of SARS-CoV-2. Front. Mol. Biosci., 2021, 8, 713003.
[http://dx.doi.org/10.3389/fmolb.2021.713003] [PMID: 34458322]
[123]
Liu, X.; Wang, Y.L.; Wu, J.; Qi, J.; Zeng, Z.; Wan, Q.; Chen, Z.; Manandhar, P.; Cavener, V.S.; Boyle, N.R.; Fu, X.; Salazar, E.; Kuchipudi, S.V.; Kapur, V.; Zhang, X.; Umetani, M.; Sen, M.; Willson, R.C.; Chen, S.H.; Zu, Y. Neutralizing aptamers block S/RBD-ACE2 interactions and prevent host cell infection. Angew. Chem. Int. Ed. Engl., 2021, 60(18), 10273-10278.
[http://dx.doi.org/10.1002/anie.202100345] [PMID: 33684258]
[124]
Sun, M.; Liu, S.; Wei, X.; Wan, S.; Huang, M.; Song, T.; Lu, Y.; Weng, X.; Lin, Z.; Chen, H.; Song, Y.; Yang, C. Aptamer blocking strategy inhibits SARS-CoV-2 virus infection. Angew. Chem. Int. Ed. Engl., 2021, 60(18), 10266-10272.
[http://dx.doi.org/10.1002/anie.202100225] [PMID: 33561300]
[125]
Sun, Miao; Liu, Siwen; Song, Ting; Chen, Fude; Zhang, Jialu; Huang, Jia-ao; Wan, Shuang; Lu, Yao; Chen, Honglin; Tan, Weihong; Song, Yanling; Yang, Chaoyong Spherical neutralizing aptamer inhibits SARS-CoV-2 infection ChemRxiv, 2021, 2021, 1.
[126]
Devi, A.; Chaitanya, N.S.N. Designing of peptide aptamer targeting the receptor-binding domain of spike protein of SARS-CoV-2: An in silico study. Mol. Divers., 2021, 1, 3.
[http://dx.doi.org/10.1007/s11030-020-10171-6] [PMID: 33389440]
[127]
Schmitz, A.; Weber, A.; Bayin, M.; Breuers, S.; Fieberg, V.; Famulok, M.; Mayer, G. A SARS-CoV-2 spike binding DNA aptamer that inhibits pseudovirus infection by an RBD-independent mechanism. Angew. Chem. Int. Ed. Engl., 2021, 60(18), 10279-10285.
[http://dx.doi.org/10.1002/anie.202100316] [PMID: 33683787]
[128]
Cong, Y.; Ulasli, M.; Schepers, H.; Mauthe, M.; V’kovski, P.; Kriegenburg, F.; Thiel, V.; de Haan, C.A.M.; Reggiori, F. Nucleocapsid protein recruitment to replication-transcription complexes plays a crucial role in coronaviral life cycle. J. Virol., 2020, 94(4), 1-21.
[http://dx.doi.org/10.1128/JVI.01925-19] [PMID: 31776274]
[129]
Lu, X.; Pan, J.; Tao, J.; Guo, D. SARS-CoV nucleocapsid protein antagonizes IFN-β response by targeting initial step of IFN-β induction pathway, and its C-terminal region is critical for the antagonism. Virus Genes, 2011, 42(1), 37-45.
[http://dx.doi.org/10.1007/s11262-010-0544-x] [PMID: 20976535]
[130]
Zhang, L.; Guo, H. Biomarkers of COVID-19 and technologies to combat SARS-CoV-2. Adv. Biomark. Sci. Technol., 2020, 2, 1-23.
[http://dx.doi.org/10.1016/j.abst.2020.08.001] [PMID: 33511330]
[131]
Chen, Z.; Wu, Q.; Chen, J.; Ni, X.; Dai, J. A DNA aptamer based method for detection of SARS-CoV-2 nucleocapsid protein. Virol. Sin., 2020, 35(3), 351-354.
[http://dx.doi.org/10.1007/s12250-020-00236-z] [PMID: 32451881]
[132]
Cho, S-J.; Woo, H-M.; Kim, K-S.; Oh, J-W.; Jeong, Y-J. Novel system for detecting SARS coronavirus nucleocapsid protein using an ssDNA aptamer. J. Biosci. Bioeng., 2011, 112(6), 535-540.
[http://dx.doi.org/10.1016/j.jbiosc.2011.08.014] [PMID: 21920814]
[133]
Zhang, L.; Fang, X.; Liu, X.; Ou, H.; Zhang, H.; Wang, J.; Li, Q.; Cheng, H.; Zhang, W.; Luo, Z. Discovery of sandwich type COVID-19 nucleocapsid protein DNA aptamers. Chem. Commun. (Camb.), 2020, 56(70), 10235-10238.
[http://dx.doi.org/10.1039/D0CC03993D] [PMID: 32756614]
[134]
Weisshoff, H.; Krylova, O.; Nikolenko, H.; Düngen, H-D.; Dallmann, A.; Becker, S.; Göttel, P.; Müller, J.; Haberland, A. Aptamer BC 007 - Efficient binder of spreading-crucial SARS-CoV-2 proteins. Heliyon, 2020, 6(11), e05421.
[http://dx.doi.org/10.1016/j.heliyon.2020.e05421] [PMID: 33163683]
[135]
Bock, L.; Griffin, L. Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature, 1991, 355, 564-566.
[http://dx.doi.org/10.1038/355564a0]
[136]
Haberland, A.; Holtzhauer, M.; Schlichtiger, A.; Bartel, S.; Schimke, I.; Müller, J.; Dandel, M.; Luppa, P.B.; Wallukat, G. Aptamer BC 007 - A broad spectrum neutralizer of pathogenic autoantibodies against G-protein-coupled receptors. Eur. J. Pharmacol., 2016, 789, 37-45.
[http://dx.doi.org/10.1016/j.ejphar.2016.06.061] [PMID: 27375076]
[137]
Parashar, N.C.; Poddar, J.; Chakrabarti, S.; Parashar, G. Repurposing of SARS-CoV nucleocapsid protein specific nuclease resistant RNA aptamer for therapeutics against SARS-CoV-2. Infect. Genet. Evol., 2020, 85, 104497.
[http://dx.doi.org/10.1016/j.meegid.2020.104497] [PMID: 32791240]
[138]
Pedersen, S.F.; Ho, Y-C. SARS-CoV-2: a storm is raging. J. Clin. Invest., 2020, 130(5), 2202-2205.
[http://dx.doi.org/10.1172/JCI137647] [PMID: 32217834]
[139]
Sinha, P.; Matthay, M.A.; Calfee, C.S. Is a “Cytokine Storm” Relevant to COVID-19? JAMA Intern. Med., 2020, 180(9), 1152-1154.
[http://dx.doi.org/10.1001/jamainternmed.2020.3313] [PMID: 32602883]
[140]
Ando, T.; Yamamoto, M.; Takamori, Y.; Tsukamoto, K.; Fuji, D.; Kawakami, T. in vitro selection of an RNA aptamer yields an interleukin-6/interleukin-6 receptor interaction inhibitor. Biosci. Biotechnol. Biochem., 2021, 85(5), 1170-1174.
[http://dx.doi.org/10.1093/bbb/zbaa124] [PMID: 33590853]
[141]
Acquah, C.; Jeevanandam, J.; Tan, K.X.; Danquah, M.K. Engineered aptamers for enhanced COVID-19 theranostics. Cell. Mol. Bioeng., 2021, 14, 1-13.
[http://dx.doi.org/10.1007/s12195-020-00664-7] [PMID: 33488836]
[142]
MacMullan, M.A.; Ibrayeva, A.; Trettner, K.; Deming, L.; Das, S.; Tran, F.; Moreno, J.R.; Casian, J.G.; Chellamuthu, P.; Kraft, J.; Kozak, K.; Turner, F.E.; Slepnev, V.I.; Le Page, L.M. ELISA detection of SARS-CoV-2 antibodies in saliva. Sci. Rep., 2020, 10(1), 20818.
[http://dx.doi.org/10.1038/s41598-020-77555-4] [PMID: 33257702]
[143]
Wang, C.; Li, W.; Drabek, D.; Okba, N.M.A.; van Haperen, R.; Osterhaus, A.D.M.E.; van Kuppeveld, F.J.M.; Haagmans, B.L.; Grosveld, F.; Bosch, B.J. A human monoclonal antibody blocking SARS-CoV-2 infection. Nat. Commun., 2020, 11(1), 2251.
[http://dx.doi.org/10.1038/s41467-020-16256-y] [PMID: 32366817]
[144]
Lipman, N.S.; Jackson, L.R.; Trudel, L.J.; Weis-Garcia, F. Monoclonal versus polyclonal antibodies: distinguishing characteristics, applications, and information resources. ILAR J., 2005, 46(3), 258-268.
[http://dx.doi.org/10.1093/ilar.46.3.258] [PMID: 15953833]
[145]
Roh, C.; Jo, S.K. Quantitative and sensitive detection of SARS coronavirus nucleocapsid protein using quantum dots-conjugated RNA aptamer on chip. J. Chem. Technol. Biotechnol., 2011, 86(12), 1475-1479.
[http://dx.doi.org/10.1002/jctb.2721] [PMID: 32336860]
[146]
Ahn, D.G.; Jeon, I.J.; Kim, J.D.; Song, M.S.; Han, S.R.; Lee, S.W.; Jung, H.; Oh, J.W. RNA aptamer-based sensitive detection of SARS coronavirus nucleocapsid protein. Analyst (Lond.), 2009, 134(9), 1896-1901.
[http://dx.doi.org/10.1039/b906788d] [PMID: 19684916]
[147]
Zhu, H.; Fohlerová, Z.; Pekárek, J.; Basova, E.; Neužil, P. Recent advances in lab-on-a-chip technologies for viral diagnosis. Biosens. Bioelectron., 2020, 153, 112041.
[http://dx.doi.org/10.1016/j.bios.2020.112041] [PMID: 31999560]
[148]
Pramanik, A.; Gao, Y.; Patibandla, S.; Mitra, D.; McCandless, M.G.; Fassero, L.A.; Gates, K.; Tandon, R.; Ray, P.C. Aptamer conjugated gold nanostar-based distance-dependent nanoparticle surface energy transfer spectroscopy for ultrasensitive detection and inactivation of corona virus. J. Phys. Chem. Lett., 2021, 12(8), 2166-2171.
[http://dx.doi.org/10.1021/acs.jpclett.0c03570] [PMID: 33629859]
[149]
Singh, N.K.; Ray, P.; Carlin, A.F.; Magallanes, C.; Morgan, S.C.; Laurent, L.C.; Aronoff-Spencer, E.S.; Hall, D.A. Hitting the diagnostic sweet spot: Point-of-care SARS-CoV-2 salivary antigen testing with an off-the-shelf glucometer. Biosens. Bioelectron., 2021, 180, 113111.
[http://dx.doi.org/10.1016/j.bios.2021.113111] [PMID: 33743492]
[150]
Liu, R.; He, L.; Hu, Y.; Luo, Z.; Zhang, J. A serological aptamer-assisted proximity ligation assay for COVID-19 diagnosis and seeking neutralizing aptamers. Chem. Sci. (Camb.), 2020, 11(44), 12157-12164.
[http://dx.doi.org/10.1039/D0SC03920A] [PMID: 34123223]
[151]
Woo, C.H.; Jang, S.; Shin, G.; Jung, G.Y.; Lee, J.W. Sensitive fluorescence detection of SARS-CoV-2 RNA in clinical samples via one-pot isothermal ligation and transcription. Nat. Biomed. Eng, 2020, 4, 1168-1179.
[http://dx.doi.org/10.1038/s41551-020-00617-5]
[152]
Chen, H.; Park, S.-G.; Choi, N.; Kwon, H.-J.; Kang, T.; Lee, M.-K.; Choo, J. Sensitive detection of SARS-CoV-2 using a SERS-based aptasensor. ACS Sensors, 2021, 2021, 1c00596.
[http://dx.doi.org/10.1021/acssensors.1c00596]
[153]
Cennamo, N.; Pasquardini, L.; Arcadio, F.; Lunelli, L.; Vanzetti, L.; Carafa, V.; Altucci, L.; Zeni, L. SARS-CoV-2 spike protein detection through a plasmonic D-shaped plastic optical fiber aptasensor. Talanta, 2021, 233, 122532.
[http://dx.doi.org/10.1016/j.talanta.2021.122532] [PMID: 34215035]
[154]
Yoo, H.; Jo, H.; Oh, S.S. Detection and beyond: challenges and advances in aptamer-based biosensors. Mater. Adv., 2020, 1, 2663-2687.
[http://dx.doi.org/10.1039/D0MA00639D]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy