Generic placeholder image

Current Cosmetic Science

Editor-in-Chief

ISSN (Print): 2666-7797
ISSN (Online): 2666-7800

Review Article

Use of Lipid Nanoparticles, Nanoemulsions, and Vesicles for Topical Delivery of Active Compounds Employed in the Cosmetic Field

Author(s): Giovanna C. Salata, Alexsandra C. Apolinário, Julia S. Passos and Luciana B. Lopes*

Volume 1, Issue 1, 2022

Published on: 12 May, 2022

Article ID: e080222200899 Pages: 19

DOI: 10.2174/2666779701666220208091859

Open Access Journals Promotions 2
Abstract

In the past decades, nanocarriers have attracted attention as topical delivery systems for many compounds employed in the cosmetic field. This interest is justified by their ability to provide protection against degradation of liable molecules, the possibility to originate a local depot and prolong drug release, and the ability to overcome the barrier function of the skin and coencapsulation of compounds of varying physicochemical characteristics. The properties of nanocarriers vary with their composition and structure, which, in turn, influence the outcomes of topical treatment. In this review, we focused on three types of nanocarriers (namely, lipid and surfactant-based vesicles, nanoemulsions, and lipid nanoparticles) and discussed their main characteristics, influence on cutaneous transport, stability, and pharmacological effects employed in the cosmetic field. We also provided examples of commercially available products that utilize the nanocarriers discussed as well as patents relevant to this field.

Keywords: Topical delivery, skin penetration, lipid nanoparticles, ethosomes, niosomes, nanoemulsion.

Graphical Abstract
[1]
Wilbur, R.L. The difference between topical and transdermal medications. Gensco Pharma, 2017.Available from: https://gensco-pharma.com/difference-topical-transdermal-medications/
[2]
Millikan, L.E. Cosmetology, cosmetics, cosmeceuticals: Definitions and regulations. Clin. Dermatol., 2001, 19(4), 371-374.
[http://dx.doi.org/10.1016/S0738-081X(01)00195-X] [PMID: 11535376]
[4]
Sotiropoulou, G.; Zingkou, E.; Pampalakis, G. Redirecting drug repositioning to discover innovative cosmeceuticals. Exp. Dermatol., 2021, 30(5), 628-644.
[http://dx.doi.org/10.1111/exd.14299] [PMID: 33544970]
[5]
Bissett, D.L. Common cosmeceuticals. Clin. Dermatol., 2009, 27(5), 435-445.
[http://dx.doi.org/10.1016/j.clindermatol.2009.05.006] [PMID: 19695474]
[6]
Zhang, P. Use of small RNA as antiaging cosmeceuticals. J. Cosmet. Sci., 2013, 64(6), 455-468.
[7]
Pardeike, J.; Hommoss, A.; Müller, R.H. Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int. J. Pharm., 2009, 366(1-2), 170-184.
[http://dx.doi.org/10.1016/j.ijpharm.2008.10.003] [PMID: 18992314]
[8]
Thomas, S.; Vieira, C.S.; Hass, M.A.; Lopes, L.B. Stability, cutaneous delivery, and antioxidant potential of a lipoic acid and α-tocopherol codrug incorporated in microemulsions. J. Pharm. Sci., 2014, 103(8), 2530-2538.
[http://dx.doi.org/10.1002/jps.24053] [PMID: 24961388]
[9]
Abla, M.J.; Banga, A.K. Formulation of tocopherol nanocarriers and in vitro delivery into human skin. Int. J. Cosmet. Sci., 2014, 36(3), 239-246.
[http://dx.doi.org/10.1111/ics.12119] [PMID: 24697812]
[10]
Teeranachaideekul, V.; Morakul, B.; Boonme, P.; Pornputtapitak, W.; Junyaprasert, V. Effect of lipid and oil compositions on physico-chemical properties and photoprotection of octyl methoxycinnamate-loaded Nanostructured Lipid Carriers (NLC). J. Oleo Sci., 2020, 69(12), 1627-1639.
[http://dx.doi.org/10.5650/jos.ess20093] [PMID: 33268665]
[11]
Okonogi, S.; Riangjanapatee, P. Physicochemical characterization of lycopene-loaded nanostructured lipid carrier formulations for topical administration. Int. J. Pharm., 2015, 478(2), 726-735.
[http://dx.doi.org/10.1016/j.ijpharm.2014.12.002] [PMID: 25479097]
[12]
Carbone, C.; Caddeo, C.; Grimaudo, M.A.; Manno, D.E.; Serra, A.; Musumeci, T. Ferulic acid-NLC with Lavandula essential oil: A possi-ble strategy for wound-healing? Nanomaterials (Basel), 2020, 10(5), E898.
[http://dx.doi.org/10.3390/nano10050898] [PMID: 32397093]
[13]
Chen, J.; Wei, N.; Lopez-Garcia, M.; Ambrose, D.; Lee, J.; Annelin, C.; Peterson, T. Development and evaluation of resveratrol, Vitamin E, and epigallocatechin gallate loaded lipid nanoparticles for skin care applications. Eur. J. Pharm. Biopharm., 2017, 117, 286-291.
[http://dx.doi.org/10.1016/j.ejpb.2017.04.008] [PMID: 28411056]
[14]
Müller, R.H.; Radtke, M.; Wissing, S.A. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermato-logical preparations. Adv. Drug Deliv. Rev., 2002, 54(Suppl. 1), S131-S155.
[http://dx.doi.org/10.1016/S0169-409X(02)00118-7] [PMID: 12460720]
[15]
Souto, E.B.; Müller, R.H. Cosmetic features and applications of lipid nanoparticles (SLN, NLC). Int. J. Cosmet. Sci., 2008, 30(3), 157-165.
[http://dx.doi.org/10.1111/j.1468-2494.2008.00433.x] [PMID: 18452432]
[16]
Garcês, A.; Amaral, M.H.; Sousa, Lobo J.M. Silva, A.C. Formulations based on solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for cutaneous use: A review. Eur. J. Pharm. Sci., 2018, 112, 159-167.
[http://dx.doi.org/10.1016/j.ejps.2017.11.023] [PMID: 29183800]
[17]
Müller, R.H.; Shegokar, R.; Keck, C.M. 20 years of lipid nanoparticles (SLN and NLC): present state of development and industrial appli-cations. Curr. Drug Discov. Technol., 2011, 8(3), 207-227.
[http://dx.doi.org/10.2174/157016311796799062] [PMID: 21291409]
[18]
Puglia, C.; Bonina, F. Lipid nanoparticles as novel delivery systems for cosmetics and dermal pharmaceuticals. Expert Opin. Drug Deliv., 2012, 9(4), 429-441.
[http://dx.doi.org/10.1517/17425247.2012.666967] [PMID: 22394125]
[19]
Tichota, D.M.; Silva, A.C.; Lobo, S. J.M.; Amaral, M.H. Design, characterization, and clinical evaluation of argan oil nanostructured lipid carriers to improve skin hydration. Int. J. Nanomedicine, 2014, 9, 3855-3864.
[PMID: 25143733]
[20]
Loo, Ch.; Basri, M.; Ismail, R.; Lau, H.; Tejo, B.; Kanthimathi, M.; Hassan, H.; Choo, Y. Effect of compositions in nanostructured lipid carriers (NLC) on skin hydration and occlusion. Int. J. Nanomedicine, 2013, 8, 13-22.
[PMID: 23293516]
[21]
Desai, P.; Patlolla, R.R.; Singh, M. Interaction of nanoparticles and cell-penetrating peptides with skin for transdermal drug delivery. Mol. Membr. Biol., 2010, 27(7), 247-259.
[http://dx.doi.org/10.3109/09687688.2010.522203] [PMID: 21028936]
[22]
Wissing, S.A.; Müller, R.H. A novel sunscreen system based on tocopherol acetate incorporated into solid lipid nanoparticles. Int. J. Cosmet. Sci., 2001, 23(4), 233-243.
[http://dx.doi.org/10.1046/j.1467-2494.2001.00087.x] [PMID: 18498463]
[23]
Ghate, V.M.; Kodoth, A.K.; Raja, S.; Vishalakshi, B.; Lewis, S.A. Development of MART for the rapid production of nanostructured lipid carriers loaded with all-trans retinoic acid for dermal delivery. AAPS PharmSciTech, 2019, 20(4), 162.
[http://dx.doi.org/10.1208/s12249-019-1307-1] [PMID: 30989451]
[24]
Souto, E.B.; Wissing, S.A.; Barbosa, C.M.; Müller, R.H. Development of a controlled release formulation based on SLN and NLC for topi-cal clotrimazole delivery. Int. J. Pharm., 2004, 278(1), 71-77.
[http://dx.doi.org/10.1016/j.ijpharm.2004.02.032] [PMID: 15158950]
[25]
Maretti, E.; Leo, E.; Rustichelli, C.; Truzzi, E.; Siligardi, C.; Iannuccelli, V. In vivo β-carotene skin permeation modulated by Nanostruc-tured Lipid Carriers. Int. J. Pharm., 2021, 597, 120322.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120322] [PMID: 33549810]
[26]
Espinosa-Olivares, M.A.; Delgado-Buenrostro, N.L.; Chirino, Y.I.; Trejo-Márquez, M.A.; Pascual-Bustamante, S.; Ganem-Rondero, A. Nanostructured lipid carriers loaded with curcuminoids: Physicochemical characterization, in vitro release, ex vivo skin penetration, stabil-ity and antioxidant activity. Eur. J. Pharm. Sci., 2020, 155, 105533.
[http://dx.doi.org/10.1016/j.ejps.2020.105533] [PMID: 32871214]
[27]
Passos, J.S.; Martino, L.C.; Dartora, V.F.C.; Araujo, G.L.B.; Ishida, K.; Lopes, L.B. Development, skin targeting and antifungal efficacy of topical lipid nanoparticles containing itraconazole. Eur. J. Pharm. Sci., 2020, 149, 105296.
[http://dx.doi.org/10.1016/j.ejps.2020.105296] [PMID: 32151706]
[28]
Fan, F.; Lium, G.; Huang, Y.; Li, Y.; Xia, Q. Development of a nanostructured lipid carrier formulation for increasing photo-stability and water solubility of Phenylethyl Resorcinol. Applied Surface Science, 2014, 288, 193-200.
[29]
Yang, C.; Yan, H.; Jiang, X.; Xu, H.; Tsao, R.; Zhang, L. Preparation of 9Z-β-Carotene and 9Z-β-Carotene high-loaded nanostructured lipid carriers: Characterization and storage stability. J. Agric. Food Chem., 2020, 68(47), 13844-13853.
[http://dx.doi.org/10.1021/acs.jafc.0c02342] [PMID: 33164495]
[30]
Durand, L.; Habran, N.; Henschel, V.; Amighi, K. Encapsulation of ethylhexyl methoxycinnamate, a light-sensitive UV filter, in lipid na-noparticles. J. Microencapsul., 2010, 27(8), 714-725.
[http://dx.doi.org/10.3109/02652048.2010.513455] [PMID: 21034364]
[31]
Kamel, R.; Mostafa, D.M. Rutin nanostructured lipid cosmeceutical preparation with sun protective potential. J. Photochem. Photobiol. B, 2015, 153, 59-66.
[http://dx.doi.org/10.1016/j.jphotobiol.2015.09.002] [PMID: 26398812]
[32]
Dobreva, M.; Stefanov, S.; Andonova, V. Natural lipids as structural components of solid lipid nanoparticles and nanostructured lipid carriers for topical delivery. Curr. Pharm. Des., 2020, 26(36), 4524-4535.
[http://dx.doi.org/10.2174/1381612826666200514221649] [PMID: 32410552]
[33]
Eiras, F.; Amaral, M.H.; Silva, R.; Martins, E.; Lobo, J.M.S.; Silva, A.C. Characterization and biocompatibility evaluation of cutaneous formulations containing lipid nanoparticles. Int. J. Pharm., 2017, 519(1-2), 373-380.
[http://dx.doi.org/10.1016/j.ijpharm.2017.01.045] [PMID: 28131849]
[34]
Krambeck, K.; Santos, D.; Otero-Espinar, F.; Sousa, Lobo J.M. Amaral, M.H. Lipid nanocarriers containing Passiflora edulis seeds oil intended for skin application. Colloids Surf. B Biointerfaces, 2020, 193, 111057.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111057] [PMID: 32388391]
[35]
Andreani, T.; Dias-Ferreira, J.; Fangueiro, J.F.; Souza, A.L.R.; Kiill, C.P.; Gremião, M.P.D.; García, M.L.; Silva, A.M.; Souto, E.B. Formu-lating octyl methoxycinnamate in hybrid lipid-silica nanoparticles: An innovative approach for UV skin protection. Heliyon, 2020, 6(5), e03831.
[http://dx.doi.org/10.1016/j.heliyon.2020.e03831] [PMID: 32395645]
[36]
Pardeike, J.; Schwabe, K.; Müller, R.H. Influence of nanostructured lipid carriers (NLC) on the physical properties of the Cutanova Nanorepair Q10 cream and the in vivo skin hydration effect. Int. J. Pharm., 2010, 396(1-2), 166-173.
[http://dx.doi.org/10.1016/j.ijpharm.2010.06.007] [PMID: 20541000]
[37]
do Prado, A.H.; Araújo, V.H.S.; Eloy, J.O.; Fonseca-Santos, B.; Pereira-da-Silva, M.A.; Peccinini, R.G.; Chorilli, M. Synthesis and charac-terization of nanostructured lipid nanocarriers for enhanced sun protection factor of octyl p-methoxycinnamate. AAPS PharmSciTech, 2020, 21(4), 125.
[http://dx.doi.org/10.1208/s12249-019-1547-0] [PMID: 32350635]
[38]
Nikolić S.; Keck, C.M.; Anselmi, C.; Müller, R.H. Skin photoprotection improvement: Synergistic interaction between lipid nanoparticles and organic UV filters. Int. J. Pharm., 2011, 414(1-2), 276-284.
[http://dx.doi.org/10.1016/j.ijpharm.2011.05.010] [PMID: 21600969]
[39]
Medeiros, T.S.; Moreira, L.M.C.C.; Oliveira, T.M.T.; Melo, D.F.; Azevedo, E.P.; Gadelha, A.E.G.; Fook, M.V.L.; Oshiro-Júnior, J.A.; Damasceno, B.P.G.L. Bemotrizinol-loaded carnauba wax-based nanostructured lipid carriers for sunscreen: Optimization, characterization, and in vitro evaluation. AAPS PharmSciTech, 2020, 21(8), 288.
[http://dx.doi.org/10.1208/s12249-020-01821-x] [PMID: 33073311]
[40]
Villalobos-Hernández, J.R.; Müller-Goymann, C.C. In vitro erythemal UV-A protection factors of inorganic sunscreens distributed in aqueous media using carnauba wax-decyl oleate nanoparticles. Eur. J. Pharm. Biopharm., 2007, 65(1), 122-125.
[http://dx.doi.org/10.1016/j.ejpb.2006.07.013] [PMID: 16971098]
[41]
Puglia, C.; Damiani, E.; Offerta, A.; Rizza, L.; Tirendi, G.G.; Tarico, M.S.; Curreri, S.; Bonina, F.; Perrotta, R.E. Evaluation of nanostruc-tured lipid carriers (NLC) and nanoemulsions as carriers for UV-filters: Characterization, in vitro penetration and photostability studies. Eur. J. Pharm. Sci., 2014, 51, 211-217.
[http://dx.doi.org/10.1016/j.ejps.2013.09.023] [PMID: 24157543]
[42]
Lucia, M. Lipid-based nanoparticles as carriers for dermal delivery of antioxidants. Curr. Drug Metab., 2017, 18(5), 469-480.
[http://dx.doi.org/10.2174/1389200218666170222152038] [PMID: 28228079]
[43]
Souza, I.D.L.; Saez, V.; Campos, V.E.B.; Nascimento, M.R.; Mansur, C.R.E. Multiple response optimization of beeswax-based nanostruc-tured lipid carriers for the controlled release of vitamin E. J. Nanosci. Nanotechnol., 2020, 20(1), 31-41.
[http://dx.doi.org/10.1166/jnn.2020.16875] [PMID: 31383137]
[44]
Vaz, S.; Silva, R.; Amaral, M.H.; Martins, E.; Sousa, Lobo J.M. Silva, A.C. Evaluation of the biocompatibility and skin hydration potential of vitamin E-loaded lipid nanosystems formulations: In vitro and human in vivo studies. Colloids Surf. B Biointerfaces, 2019, 179, 242-249.
[http://dx.doi.org/10.1016/j.colsurfb.2019.03.036] [PMID: 30974262]
[45]
Chen-yu, G.; Chun-fen, Y.; Qi-lu, L.; Qi, T.; Yan-wei, X.; Wei-na, L.; Guang-xi, Z. Development of a quercetin-loaded nanostructured lipid carrier formulation for topical delivery. Int. J. Pharm., 2012, 430(1-2), 292-298.
[http://dx.doi.org/10.1016/j.ijpharm.2012.03.042] [PMID: 22486962]
[46]
Bose, S.; Michniak-Kohn, B. Preparation and characterization of lipid based nanosystems for topical delivery of quercetin. Eur. J. Pharm. Sci., 2013, 48(3), 442-452.
[http://dx.doi.org/10.1016/j.ejps.2012.12.005] [PMID: 23246734]
[47]
Teeranachaideekul, V.; Souto, E.B.; Junyaprasert, V.B.; Müller, R.H. Cetyl palmitate-based NLC for topical delivery of Coenzyme Q(10) - development, physicochemical characterization and in vitro release studies. Eur. J. Pharm. Biopharm., 2007, 67(1), 141-148.
[http://dx.doi.org/10.1016/j.ejpb.2007.01.015] [PMID: 17346953]
[48]
Junyaprasert, V.B.; Teeranachaideekul, V.; Souto, E.B.; Boonme, P.; Müller, R.H. Q10-loaded NLC versus nanoemulsions: Stability, rhe-ology and in vitro skin permeation. Int. J. Pharm., 2009, 377(1-2), 207-214.
[http://dx.doi.org/10.1016/j.ijpharm.2009.05.020] [PMID: 19465098]
[49]
Martins, S.; Sarmento, B.; Ferreira, D.C.; Souto, E.B. Lipid-based colloidal carriers for peptide and protein delivery-liposomes versus lipid nanoparticles. Int. J. Nanomedicine, 2007, 2(4), 595-607.
[PMID: 18203427]
[50]
Carbone, C.; Leonardi, A.; Cupri, S.; Puglisi, G.; Pignatello, R. Pharmaceutical and biomedical applications of lipid-based nanocarriers. Pharm. Pat. Anal., 2014, 3(2), 199-215.
[http://dx.doi.org/10.4155/ppa.13.79] [PMID: 24588596]
[51]
Suter, F.; Schmid, D.; Wandrey, F.; Zülli, F. Heptapeptide-loaded solid lipid nanoparticles for cosmetic anti-aging applications. Eur. J. Pharm. Biopharm., 2016, 108, 304-309.
[http://dx.doi.org/10.1016/j.ejpb.2016.06.014] [PMID: 27343822]
[52]
Patlolla, R.R.; Desai, P.R.; Belay, K.; Singh, M.S. Translocation of cell penetrating peptide engrafted nanoparticles across skin layers. Biomaterials, 2010, 31(21), 5598-5607.
[http://dx.doi.org/10.1016/j.biomaterials.2010.03.010] [PMID: 20413152]
[53]
Kapoor, B.; Gupta, R.; Gulati, M.; Singh, S.K.; Khursheed, R.; Gupta, M. The why, where, who, how, and what of the vesicular delivery systems. Adv. Colloid Interface Sci., 2019, 271, 101985.
[http://dx.doi.org/10.1016/j.cis.2019.07.006] [PMID: 31351415]
[54]
Apolinário, A.C.; Hauschke, L.; Nunes, J.R.; Lopes, L.B. Lipid nanovesicles for biomedical applications: ‘What is in a name’? Prog. Lipid Res., 2021, 82, 101096.
[http://dx.doi.org/10.1016/j.plipres.2021.101096] [PMID: 33831455]
[55]
Mezei, M.; Gulasekharam, V. Liposomes--a selective drug delivery system for the topical route of administration. Lotion dosage form. Life Sci., 1980, 26(18), 1473-1477.
[http://dx.doi.org/10.1016/0024-3205(80)90268-4] [PMID: 6893068]
[56]
Choi, M.J.; Maibach, H.I. Elastic vesicles as topical/transdermal drug delivery systems. Int. J. Cosmet. Sci., 2005, 27(4), 211-221.
[http://dx.doi.org/10.1111/j.1467-2494.2005.00264.x] [PMID: 18492190]
[57]
Lohani, A.; Verma, A. Vesicles: Potential nano carriers for the delivery of skin cosmetics. J. Cosmet. Laser Ther., 2017, 19(8), 485-493.
[http://dx.doi.org/10.1080/14764172.2017.1358451] [PMID: 28753057]
[58]
Song, C.K.; Balakrishnan, P.; Shim, C.K.; Chung, S.J.; Chong, S.; Kim, D.D. A novel vesicular carrier, transethosome, for enhanced skin delivery of voriconazole: Characterization and in vitro/in vivo evaluation. Colloids Surf. B Biointerfaces, 2012, 92, 299-304.
[http://dx.doi.org/10.1016/j.colsurfb.2011.12.004] [PMID: 22205066]
[59]
Babaie, S.; Bakhshayesh, A.R.D.; Ha, J.W.; Hamishehkar, H.; Kim, K.H. Invasome: A novel nanocarrier for transdermal drug delivery. Nanomaterials (Basel), 2020, 10(2), 341.
[http://dx.doi.org/10.3390/nano10020341] [PMID: 32079276]
[60]
Handjani-Vila, R.M.; Ribier, A.; Rondot, B.; Vanlerberghie, G. Dispersions of lamellar phases of non-ionic lipids in cosmetic products. Int. J. Cosmet. Sci., 1979, 1(5), 303-314.
[http://dx.doi.org/10.1111/j.1467-2494.1979.tb00224.x] [PMID: 19467076]
[61]
Rehman, K.; Zulfakar, M.H. Recent advances in gel technologies for topical and transdermal drug delivery. Drug Dev. Ind. Pharm., 2014, 40(4), 433-440.
[http://dx.doi.org/10.3109/03639045.2013.828219] [PMID: 23937582]
[62]
Roberts, M.S.; Mohammed, Y.; Pastore, M.N.; Namjoshi, S.; Yousef, S.; Alinaghi, A.; Haridass, I.N.; Abd, E.; Leite-Silva, V.R.; Benson, H.; Grice, J.E. Topical and cutaneous delivery using nanosystems. J. Control. Release, 2017, 247, 86-105.
[http://dx.doi.org/10.1016/j.jconrel.2016.12.022] [PMID: 28024914]
[63]
Zeb, A. Potential of nanoparticulate carriers for improved drug delivery via skin. J. Pharm. Investig., 2019, 49(5), 485-517.
[http://dx.doi.org/10.1007/s40005-018-00418-8]
[64]
Lauer, A.C.; Lieb, L.M.; Ramachandran, C.; Flynn, G.L.; Weiner, N.D. Transfollicular drug delivery. Pharm. Res., 1995, 12(2), 179-186.
[http://dx.doi.org/10.1023/A:1016250422596] [PMID: 7784330]
[65]
Dragicevic-Curic, N.; Scheglmann, D.; Albrecht, V.; Fahr, A. Temoporfin-loaded invasomes: Development, characterization and in vitro skin penetration studies. J. Control. Release, 2008, 127(1), 59-69.
[http://dx.doi.org/10.1016/j.jconrel.2007.12.013] [PMID: 18281119]
[66]
Zellmer, S.; Pfeil, W.; Lasch, J. Interaction of phosphatidylcholine liposomes with the human stratum corneum. Biochim. Biophys. Acta, 1995, 1237(2), 176-182.
[http://dx.doi.org/10.1016/0005-2736(95)00100-H] [PMID: 7632711]
[67]
Cevc, G.; Blume, G. Lipid vesicles penetrate into intact skin owing to the transdermal osmotic gradients and hydration force. Biochim. Biophys. Acta, 1992, 1104(1), 226-232.
[http://dx.doi.org/10.1016/0005-2736(92)90154-E] [PMID: 1550849]
[68]
Touitou, E.; Dayan, N.; Bergelson, L.; Godin, B.; Eliaz, M. Ethosomes - novel vesicular carriers for enhanced delivery: Characterization and skin penetration properties. J. Control. Release, 2000, 65(3), 403-418.
[http://dx.doi.org/10.1016/S0168-3659(99)00222-9] [PMID: 10699298]
[69]
Elsayed, M.M.A.; Abdallah, O.Y.; Naggar, V.F.; Khalafallah, N.M. Lipid vesicles for skin delivery of drugs: Reviewing three decades of research. Int. J. Pharm., 2007, 332(1-2), 1-16.
[http://dx.doi.org/10.1016/j.ijpharm.2006.12.005] [PMID: 17222523]
[70]
Honeywell-Nguyen, P.L.; Bouwstra, J.A. Vesicles as a tool for transdermal and dermal delivery. Drug Discov. Today. Technol., 2005, 2(1), 67-74.
[http://dx.doi.org/10.1016/j.ddtec.2005.05.003] [PMID: 24981757]
[71]
El Maghraby, G.M.M.; Williams, A.C.; Barry, B.W. Interactions of surfactants (edge activators) and skin penetration enhancers with lipo-somes. Int. J. Pharm., 2004, 276(1-2), 143-161.
[http://dx.doi.org/10.1016/j.ijpharm.2004.02.024] [PMID: 15113622]
[72]
Franzè, S.; Musazzi, U.M.; Minghetti, P.; Cilurzo, F. Drug-in-micelles-in-liposomes (DiMiL) systems as a novel approach to prevent drug leakage from deformable liposomes. Eur. J. Pharm. Sci., 2019, 130, 27-35.
[http://dx.doi.org/10.1016/j.ejps.2019.01.013] [PMID: 30654112]
[73]
Apolinário, A.C. Towards nanoformulations for skin delivery of poorly soluble API: What does indeed matter? J. Drug Deliv. Sci. Technol., 2020, 60, 102045.
[http://dx.doi.org/10.1016/j.jddst.2020.102045]
[74]
Geusens, B. Flexible nanosomes (SECosomes) enable efficient siRNA delivery in cultured primary skin cells and in the viable epidermis of ex vivo human skin. Adv. Funct. Mater., 2010, 20(23), 4077-4090.
[http://dx.doi.org/10.1002/adfm.201000484]
[75]
Schreier, H.; Bouwstra, J. Liposomes and niosomes as topical drug carriers: Dermal and transdermal drug delivery. J. Control. Release, 1994, 30(1), 1-15.
[http://dx.doi.org/10.1016/0168-3659(94)90039-6]
[76]
Zapadka, K.L.; Becher, F.J.; Gomes Dos Santos, A.L.; Jackson, S.E. Factors affecting the physical stability (aggregation) of peptide thera-peutics. Interface Focus, 2017, 7(6), 20170030.
[http://dx.doi.org/10.1098/rsfs.2017.0030] [PMID: 29147559]
[77]
Yao, J-F.; Yang, H.; Zhao, Y.Z.; Xue, M. Metabolism of peptide drugs and strategies to improve their metabolic stability. Curr. Drug Metab., 2018, 19(11), 892-901.
[http://dx.doi.org/10.2174/1389200219666180628171531] [PMID: 29956618]
[78]
Bravo, V.; Rosero, S.; Ricordi, C.; Pastori, R.L. Instability of miRNA and cDNAs derivatives in RNA preparations. Biochem. Biophys. Res. Commun., 2007, 353(4), 1052-1055.
[http://dx.doi.org/10.1016/j.bbrc.2006.12.135] [PMID: 17204243]
[79]
Khan, J.A.; Kainthan, R.K.; Ganguli, M.; Kizhakkedathu, J.N.; Singh, Y.; Maiti, S. Water soluble nanoparticles from PEG-based cationic hyperbranched polymer and RNA that protect RNA from enzymatic degradation. Biomacromolecules, 2006, 7(5), 1386-1388.
[http://dx.doi.org/10.1021/bm050999o] [PMID: 16677017]
[80]
Van Tran, V.; Moon, J-Y.; Lee, Y-C. Liposomes for delivery of antioxidants in cosmeceuticals: Challenges and development strategies. J. Control. Release, 2019, 300, 114-140.
[http://dx.doi.org/10.1016/j.jconrel.2019.03.003] [PMID: 30853528]
[81]
Serrano, G.; Almudéver, P.; Serrano, J.M.; Milara, J.; Torrens, A.; Expósito, I.; Cortijo, J. Phosphatidylcholine liposomes as carriers to improve topical ascorbic acid treatment of skin disorders. Clin. Cosmet. Investig. Dermatol., 2015, 8, 591-599.
[PMID: 26719718]
[82]
Marsanasco, M. Liposomes as vehicles for vitamins E and C: An alternative to fortify orange juice and offer vitamin C protection after heat treatment. Food Res. Int., 2011, 44(9), 3039-3046.
[http://dx.doi.org/10.1016/j.foodres.2011.07.025]
[83]
Li, H.; Chen, F. Preparation and quality evaluation of coenzyme Q10 long-circulating liposomes. Saudi J. Biol. Sci., 2017, 24(4), 797-802.
[http://dx.doi.org/10.1016/j.sjbs.2015.10.025] [PMID: 28490948]
[84]
Wagner, M.E.; Spoth, K.A.; Kourkoutis, L.F.; Rizvi, S.S. Stability of niosomes with encapsulated vitamin D3 and ferrous sulfate generated using a novel supercritical carbon dioxide method. J. Liposome Res., 2016, 26(4), 261-268.
[http://dx.doi.org/10.3109/08982104.2015.1088868] [PMID: 26585564]
[85]
Akbari, J. Curcumin niosomes (curcusomes) as an alternative to conventional vehicles: A potential for efficient dermal delivery. J. Drug Deliv. Sci. Technol., 2020, 60, 102035.
[http://dx.doi.org/10.1016/j.jddst.2020.102035]
[86]
Ramezani, V. Formulation and optimization of transfersome containing minoxidil and caffeine. J. Drug Deliv. Sci. Technol., 2018, 44, 129-135.
[http://dx.doi.org/10.1016/j.jddst.2017.12.003]
[87]
Shen, L-N.; Zhang, Y.T.; Wang, Q.; Xu, L.; Feng, N.P. Enhanced in vitro and in vivo skin deposition of apigenin delivered using ethosomes. Int. J. Pharm., 2014, 460(1-2), 280-288.
[http://dx.doi.org/10.1016/j.ijpharm.2013.11.017] [PMID: 24269286]
[88]
Oresajo, C.; Pillai, S.; Manco, M.; Yatskayer, M.; McDaniel, D. Antioxidants and the skin: Understanding formulation and efficacy. Dermatol. Ther., 2012, 25(3), 252-259.
[http://dx.doi.org/10.1111/j.1529-8019.2012.01505.x] [PMID: 22913443]
[89]
Tavano, L.; Muzzalupo, R.; Picci, N.; de Cindio, B. Co-encapsulation of lipophilic antioxidants into niosomal carriers: Percutaneous per-meation studies for cosmeceutical applications. Colloids Surf. B Biointerfaces, 2014, 114, 144-149.
[http://dx.doi.org/10.1016/j.colsurfb.2013.09.055] [PMID: 24176892]
[90]
Sguizzato, M.; Mariani, P.; Spinozzi, F.; Benedusi, M.; Cervellati, F.; Cortesi, R.; Drechsler, M.; Prieux, R.; Valacchi, G.; Esposito, E. Ethosomes for Coenzyme Q10 cutaneous administration: From design to 3D skin tissue evaluation. Antioxidants, 2020, 9(6), 485.
[http://dx.doi.org/10.3390/antiox9060485] [PMID: 32503293]
[91]
Caddeo, C.; Manca, M.L.; Peris, J.E.; Usach, I.; Diez-Sales, O.; Matos, M.; Fernàndez-Busquets, X.; Fadda, A.M.; Manconi, M. Tocopher-ol-loaded transfersomes: In vitro antioxidant activity and efficacy in skin regeneration. Int. J. Pharm., 2018, 551(1-2), 34-41.
[http://dx.doi.org/10.1016/j.ijpharm.2018.09.009] [PMID: 30201294]
[92]
Zhou, W.; Liu, W.; Zou, L.; Liu, W.; Liu, C.; Liang, R.; Chen, J. Storage stability and skin permeation of vitamin C liposomes improved by pectin coating. Colloids Surf. B Biointerfaces, 2014, 117, 330-337.
[http://dx.doi.org/10.1016/j.colsurfb.2014.02.036] [PMID: 24681045]
[93]
Lupo, M.P.; Cole, A.L. Cosmeceutical peptides. Dermatol. Ther., 2007, 20(5), 343-349.
[http://dx.doi.org/10.1111/j.1529-8019.2007.00148.x] [PMID: 18045359]
[94]
Gazitaeva, Z.I.; Drobintseva, A.O.; Chung, Y.; Polyakova, V.O.; Kvetnoy, I.M. Cosmeceutical product consisting of biomimetic peptides: Antiaging effects in vivo and in vitro. Clin. Cosmet. Investig. Dermatol., 2017, 10, 11-16.
[http://dx.doi.org/10.2147/CCID.S97573] [PMID: 28123310]
[95]
Lima, T.N.; Pedriali Moraes, C.A. Bioactive peptides: Applications and relevance for cosmeceuticals. Cosmetics, 2018, 5(1), 21.
[http://dx.doi.org/10.3390/cosmetics5010021]
[96]
Han, F. Nanoliposomes codelivering bioactive peptides produce enhanced anti-aging effect in human skin. J. Drug Deliv. Sci. Technol., 2020, 57, 101693.
[http://dx.doi.org/10.1016/j.jddst.2020.101693]
[97]
Kim, J-E. Transformer-ethosomes with palmitoyl pentapeptide for improved transdermal delivery. J. Drug Deliv. Sci. Technol., 2019, 52, 460-467.
[http://dx.doi.org/10.1016/j.jddst.2019.04.039]
[98]
Lawrence, P.; Ceccoli, J. Advances in the application and impact of microRNAs as therapies for skin disease. BioDrugs, 2017, 31(5), 423-438.
[http://dx.doi.org/10.1007/s40259-017-0243-4] [PMID: 28875300]
[99]
Geusens, B.; Lambert, J.; De Smedt, S.C.; Buyens, K.; Sanders, N.N.; Van Gele, M. Ultradeformable cationic liposomes for delivery of small interfering RNA (siRNA) into human primary melanocytes. J. Control. Release, 2009, 133(3), 214-220.
[http://dx.doi.org/10.1016/j.jconrel.2008.10.003] [PMID: 18973779]
[100]
Gerloff, D.; Sunderkötter, C.; Wohlrab, J. Importance of microRNAs in skin oncogenesis and their suitability as agents and targets for topical therapy. Skin Pharmacol. Physiol., 2020, 33(5), 270-279.
[http://dx.doi.org/10.1159/000509879] [PMID: 33080592]
[101]
Jin, Y.; Wang, S.; Tong, L.; Du, L. Rational design of didodecyldimethylammonium bromide-based nanoassemblies for gene delivery. Colloids Surf. B Biointerfaces, 2015, 126, 257-264.
[http://dx.doi.org/10.1016/j.colsurfb.2014.12.032] [PMID: 25576809]
[102]
Sorg, O.; Antille, C.; Kaya, G.; Saurat, J.H. Retinoids in cosmeceuticals. Dermatol. Ther., 2006, 19(5), 289-296.
[http://dx.doi.org/10.1111/j.1529-8019.2006.00086.x] [PMID: 17014484]
[103]
Kim, J.; Kim, J.; Jongudomsombat, T.; Kim Bs, E.; Suk, J.; Lee, D.; Lee, J.H. The efficacy and safety of multilamellar vesicle containing retinaldehyde: A double-blinded, randomized, split-face controlled study. J. Cosmet. Dermatol., 2021, 20(9), 2874-2879.
[http://dx.doi.org/10.1111/jocd.13993] [PMID: 33569865]
[104]
Oh, Y.K.; Kim, M.Y.; Shin, J.Y.; Kim, T.W.; Yun, M.O.; Yang, S.J.; Choi, S.S.; Jung, W.W.; Kim, J.A.; Choi, H.G. Skin permeation of retinol in Tween 20-based deformable liposomes: In-vitro evaluation in human skin and keratinocyte models. J. Pharm. Pharmacol., 2006, 58(2), 161-166.
[http://dx.doi.org/10.1211/jpp.58.2.0002] [PMID: 16451743]
[105]
Pena-Rodríguez, E.; Moreno, M.C.; Blanco-Fernandez, B.; González, J.; Fernández-Campos, F. Epidermal delivery of retinyl palmitate loaded transfersomes: Penetration and biodistribution studies. Pharmaceutics, 2020, 12(2), 112.
[http://dx.doi.org/10.3390/pharmaceutics12020112] [PMID: 32019144]
[106]
Zhang, C.; Zhang, K.; Zhang, J.; Ou, H.; Duan, J.; Zhang, S.; Wang, D.; Mitragotri, S.; Chen, M. Skin delivery of hyaluronic acid by the combined use of sponge spicules and flexible liposomes. Biomater. Sci., 2019, 7(4), 1299-1310.
[http://dx.doi.org/10.1039/C8BM01555D] [PMID: 30821312]
[107]
Vázquez-González, M.L.; Calpena, A.C.; Domènech, Ò.; Montero, M.T.; Borrell, J.H. Enhanced topical delivery of hyaluronic acid encap-sulated in liposomes: A surface-dependent phenomenon. Colloids Surf. B Biointerfaces, 2015, 134, 31-39.
[http://dx.doi.org/10.1016/j.colsurfb.2015.06.029] [PMID: 26142626]
[108]
Lopes, L.B. Overcoming the cutaneous barrier with microemulsions. Pharmaceutics, 2014, 6(1), 52-77.
[http://dx.doi.org/10.3390/pharmaceutics6010052] [PMID: 24590260]
[109]
Carvalho, V.F.M.; Migotto, A.; Giacone, D.V.; de Lemos, D.P.; Zanoni, T.B.; Maria-Engler, S.S.; Costa-Lotufo, L.V.; Lopes, L.B. Co-encapsulation of paclitaxel and C6 ceramide in tributyrin-containing nanocarriers improve co-localization in the skin and potentiate cyto-toxic effects in 2D and 3D models. Eur. J. Pharm. Sci., 2017, 109, 131-143.
[http://dx.doi.org/10.1016/j.ejps.2017.07.023] [PMID: 28735040]
[110]
McClements, D.J.; Rao, J. Food-grade nanoemulsions: Formulation, fabrication, properties, performance, biological fate, and potential toxicity. Crit. Rev. Food Sci. Nutr., 2011, 51(4), 285-330.
[http://dx.doi.org/10.1080/10408398.2011.559558] [PMID: 21432697]
[111]
Musazzi, U.M.; Franzè, S.; Minghetti, P.; Casiraghi, A. Emulsion versus nanoemulsion: How much is the formulative shift critical for a cosmetic product? Drug Deliv. Transl. Res., 2018, 8(2), 414-421.
[http://dx.doi.org/10.1007/s13346-017-0390-7] [PMID: 28508377]
[112]
Mojeiko, G.; de Brito, M.; Salata, G.C.; Lopes, L.B. Combination of microneedles and microemulsions to increase celecoxib topical deliv-ery for potential application in chemoprevention of breast cancer. Int. J. Pharm., 2019, 560, 365-376.
[http://dx.doi.org/10.1016/j.ijpharm.2019.02.011] [PMID: 30772460]
[113]
Apolinário, A.C. Opening the pandora’s box of nanomedicine: There is indeed ‘plenty of room at the bottom’. Quim. Nova, 2020, 43(2), 212-225.
[114]
Rai, V.K.; Mishra, N.; Yadav, K.S.; Yadav, N.P. Nanoemulsion as pharmaceutical carrier for dermal and transdermal drug delivery: For-mulation development, stability issues, basic considerations and applications. J. Control. Release, 2018, 270, 203-225.
[http://dx.doi.org/10.1016/j.jconrel.2017.11.049] [PMID: 29199062]
[115]
McClements, D.J. Nanoemulsions versus microemulsions: terminology, differences, and similarities. Soft Matter, 2012, 8(6), 1719-1729.
[http://dx.doi.org/10.1039/C2SM06903B]
[116]
Migotto, A.; Carvalho, V.F.M.; Salata, G.C.; da Silva, F.W.M.; Yan, C.Y.I.; Ishida, K.; Costa-Lotufo, L.V.; Steiner, A.A.; Lopes, L.B. Mul-tifunctional nanoemulsions for intraductal delivery as a new platform for local treatment of breast cancer. Drug Deliv., 2018, 25(1), 654-667.
[http://dx.doi.org/10.1080/10717544.2018.1440665] [PMID: 29495885]
[117]
Carvalho, V.F.M.; Salata, G.C.; de Matos, J.K.R.; Costa-Fernandez, S.; Chorilli, M.; Steiner, A.A.; de Araujo, G.L.B.; Silveira, E.R.; Costa-Lotufo, L.V.; Lopes, L.B. Optimization of composition and obtainment parameters of biocompatible nanoemulsions intended for intra-ductal administration of piplartine (piperlongumine) and mammary tissue targeting. Int. J. Pharm., 2019, 567, 118460.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118460] [PMID: 31247278]
[118]
Azmi, N.A.N. Nanoemulsions: Factory for food, pharmaceutical and cosmetics. Processes (Basel), 2019, 7(9), 617.
[http://dx.doi.org/10.3390/pr7090617]
[119]
Gupta, P.K. An update on nanoemulsions using nanosized liquid in liquid colloidal systems. Intechopen, 2019.Available from: www. intehopen.com/chapters/66445
[120]
Sharma, S.; Sarangdevot, K. Nanoemulsions for cosmetics. IJARPB, 2012, 1(3), 408-415.
[121]
Negi, P.; Singh, B.; Sharma, G.; Beg, S.; Katare, O.P. Biocompatible lidocaine and prilocaine loaded-nanoemulsion system for enhanced percutaneous absorption: QbD-based optimisation, dermatokinetics and in vivo evaluation. J. Microencapsul., 2015, 32(5), 419-431.
[http://dx.doi.org/10.3109/02652048.2015.1046513] [PMID: 26066775]
[122]
Carvalho, V.F.; de Lemos, D.P.; Vieira, C.S.; Migotto, A.; Lopes, L.B. Potential of non-aqueous microemulsions to improve the delivery of lipophilic drugs to the skin. AAPS PharmSciTech, 2017, 18(5), 1739-1749.
[http://dx.doi.org/10.1208/s12249-016-0643-7] [PMID: 27757922]
[123]
Moniruzzaman, M.; Tamura, M.; Tahara, Y.; Kamiya, N.; Goto, M. Ionic liquid-in-oil microemulsion as a potential carrier of sparingly soluble drug: Characterization and cytotoxicity evaluation. Int. J. Pharm., 2010, 400(1-2), 243-250.
[http://dx.doi.org/10.1016/j.ijpharm.2010.08.034] [PMID: 20813174]
[124]
Lin, C.C.; Yang, C.H.; Chang, N.F.; Wu, P.S.; Chen, Y.S.; Lee, S.M.; Chen, C.W. Study on the stability of deoxyArbutin in an anhydrous emulsion system. Int. J. Mol. Sci., 2011, 12(9), 5946-5954.
[http://dx.doi.org/10.3390/ijms12095946] [PMID: 22016637]
[125]
Schwarz, J.S.; Weisspapir, M.R.; Friedman, D.I. Enhanced transdermal delivery of diazepam by submicron emulsion (SME) creams. Pharm. Res., 1995, 12(5), 687-692.
[http://dx.doi.org/10.1023/A:1016255408348] [PMID: 7479554]
[126]
Friedman, D.I.; Schwarz, J.S.; Weisspapir, M. Submicron emulsion vehicle for enhanced transdermal delivery of steroidal and nonsteroi-dal antiinflammatory drugs. J. Pharm. Sci., 1995, 84(3), 324-329.
[http://dx.doi.org/10.1002/jps.2600840312] [PMID: 7616372]
[127]
Williams, A.C.; Barry, B.W. Penetration enhancers. Adv. Drug Deliv. Rev., 2004, 56(5), 603-618.
[http://dx.doi.org/10.1016/j.addr.2003.10.025] [PMID: 15019749]
[128]
Zhang, J.; Michniak-Kohn, B. Investigation of microemulsion microstructures and their relationship to transdermal permeation of model drugs: Ketoprofen, lidocaine, and caffeine. Int. J. Pharm., 2011, 421(1), 34-44.
[http://dx.doi.org/10.1016/j.ijpharm.2011.09.014] [PMID: 21959104]
[129]
Pepe, D.; McCall, M.; Zheng, H.; Lopes, L.B. Protein transduction domain-containing microemulsions as cutaneous delivery systems for an anticancer agent. J. Pharm. Sci., 2013, 102(5), 1476-1487.
[http://dx.doi.org/10.1002/jps.23482] [PMID: 23436680]
[130]
Van Tran, V. Core-shell materials, lipid particles and nanoemulsions, for delivery of active anti-oxidants in cosmetics applications: Chal-lenges and development strategies. Chem. Eng. J., 2019, 368, 88-114.
[http://dx.doi.org/10.1016/j.cej.2019.02.168]
[131]
Mitri, K.; Shegokar, R.; Gohla, S.; Anselmi, C.; Müller, R.H. Lipid nanocarriers for dermal delivery of lutein: preparation, characterization, stability and performance. Int. J. Pharm., 2011, 414(1-2), 267-275.
[http://dx.doi.org/10.1016/j.ijpharm.2011.05.008] [PMID: 21596122]
[132]
Arianto, A.; Cella, G.; Bangun, H. Preparation and evaluation of sunscreen nanoemulsions with synergistic efficacy on SPF by combina-tion of soybean oil, avobenzone, and octyl methoxycinnamate. Open Access Maced. J. Med. Sci., 2019, 7(17), 2751-2756.
[http://dx.doi.org/10.3889/oamjms.2019.745] [PMID: 31844431]
[133]
Giacone, D.V. Effect of nanoemulsion modification with chitosan and sodium alginate on the topical delivery and efficacy of the cytotoxic agent piplartine in 2D and 3D skin cancer models Int J Biol Macromol, 2020, 165((Pt A)), 1055-1065.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.09.167]
[134]
Che Marzuki, N.H.; Wahab, R.A.; Abdul Hamid, M. An overview of nanoemulsion: concepts of development and cosmeceutical applica-tions. Biotechnol. Biotechnol. Equip., 2019, 33(1), 779-797.
[http://dx.doi.org/10.1080/13102818.2019.1620124]
[135]
Zhou, H.; Yue, Y.; Liu, G.; Li, Y.; Zhang, J.; Gong, Q.; Yan, Z.; Duan, M. Preparation and characterization of a lecithin nanoemulsion as a topical delivery system. Nanoscale Res. Lett., 2009, 5(1), 224-230.
[http://dx.doi.org/10.1007/s11671-009-9469-5] [PMID: 20652152]
[136]
Kong, M. Investigations on skin permeation of hyaluronic acid based nanoemulsion as transdermal carrier. Carbohydr. Polym., 2011, 86(2), 837-843.
[http://dx.doi.org/10.1016/j.carbpol.2011.05.027]
[137]
Sharma, B.; Iqbal, B.; Kumar, S.; Ali, J.; Baboota, S. Resveratrol-loaded nanoemulsion gel system to ameliorate UV-induced oxidative skin damage: from in vitro to in vivo investigation of antioxidant activity enhancement. Arch. Dermatol. Res., 2019, 311(10), 773-793.
[http://dx.doi.org/10.1007/s00403-019-01964-3] [PMID: 31432208]
[138]
Zorzi, G.K.; Caregnato, F.; Moreira, J.C.; Teixeira, H.F.; Carvalho, E.L. Antioxidant effect of nanoemulsions containing extract of Achyro-cline satureioides (Lam) DC-Asteraceae. AAPS PharmSciTech, 2016, 17(4), 844-850.
[http://dx.doi.org/10.1208/s12249-015-0408-8] [PMID: 26361953]
[139]
Lewińska, A.; Domżał-Kędzia, M.; Jaromin, A.; Łukaszewicz, M. Nanoemulsion stabilized by safe surfactin from Bacillus subtilis as a multifunctional, custom-designed smart delivery system. Pharmaceutics, 2020, 12(10), 953.
[http://dx.doi.org/10.3390/pharmaceutics12100953] [PMID: 33050380]
[140]
Chou, T-H.C. Encapsulation and characterization of nanoemulsions based on an anti-oxidative polymeric amphiphile for topical apigenin delivery. Polymers (Basel), 2021, 13(7), 1016.
[http://dx.doi.org/10.3390/polym13071016]
[141]
Gledovic, A.; Janosevic Lezaic, A.; Nikolic, I.; Tasic-Kostov, M.; Antic-Stankovic, J.; Krstonosic, V.; Randjelovic, D.; Bozic, D.; Ilic, D.; Tamburic, S.; Savic, S. Polyglycerol ester-based low energy nanoemulsions with red raspberry seed oil and fruit extracts: Formulation de-velopment toward effective in vitro/in vivo bioperformance. Nanomaterials (Basel), 2021, 11(1), 217.
[http://dx.doi.org/10.3390/nano11010217] [PMID: 33467701]
[142]
Samson, S. Design and development of a nanoemulsion system containing copper peptide by D-optimal mixture design and evaluation of its physicochemical properties. RSC Advances, 2016, 6(22), 17845-17856.
[http://dx.doi.org/10.1039/C5RA24379C]
[143]
Atrux-Tallau, N.; Delmas, T.; Han, S.H.; Kim, J.W.; Bibette, J. Skin cell targeting with self-assembled ligand addressed nanoemulsion droplets. Int. J. Cosmet. Sci., 2013, 35(3), 310-318.
[http://dx.doi.org/10.1111/ics.12044] [PMID: 23425085]
[144]
Algahtani, M.S.; Ahmad, M.Z.; Ahmad, J. Nanoemulgel for improved topical delivery of retinyl palmitate: Formulation design and stability evaluation. Nanomaterials (Basel), 2020, 10(5), E848.
[http://dx.doi.org/10.3390/nano10050848] [PMID: 32353979]
[145]
Sabouri, M.; Samadi, A.; Ahmad Nasrollahi, S.; Farboud, E.S.; Mirrahimi, B.; Hassanzadeh, H.; Nassiri Kashani, M.; Dinarvand, R.; Firooz, A. Tretinoin loaded nanoemulsion for acne vulgaris: Fabrication, physicochemical and clinical efficacy assessments. Skin Pharmacol. Physiol., 2018, 31(6), 316-323.
[http://dx.doi.org/10.1159/000488993] [PMID: 30199861]
[146]
Kaul, S.; Gulati, N.; Verma, D.; Mukherjee, S.; Nagaich, U. Role of nanotechnology in cosmeceuticals: A review of recent advances. J. Pharm. (Cairo), 2018, 2018, 3420204.
[http://dx.doi.org/10.1155/2018/3420204] [PMID: 29785318]
[147]
Puglia, C.; Santonocito, D. Cosmeceuticals: Nanotechnology-based strategies for the delivery of phytocompounds. Curr. Pharm. Des., 2019, 25(21), 2314-2322.
[http://dx.doi.org/10.2174/1381612825666190709211101] [PMID: 31584366]
[148]
Shah, P.; Bhalodia, D.; Shelat, P. Nanoemulsion: A pharmaceutical review. Syst. Rev. Pharm., 2010, 1(1), 24-32.
[http://dx.doi.org/10.4103/0975-8453.59509]
[149]
Jeong, S-H. Cosmetic composition containing retinol stabilized by porous polymer beads and nanoemulsion., Patent EP11798313.0A, 2015.
[150]
Alexiades-Armenakas, M. Multi-active microtargeted anti-aging skin cream polymer technology., Patent US13/663,908, 2011.
[151]
Hong, T. Preparation process of anti-aging cosmetic., Patent application CN112494356A, 2020.
[152]
Jae-Hong, S.; Hye-Jin, S. Liposomal cosmetic composition for moisturizing skin using organic farming materials., Patent application KR102250171B12020, 2020.
[153]
Jonathan, E.; Timothy, K.; Boke, Z. Entrega dérmica., Patent number ES2761664T3 (WO09158687), 2008.
[154]
Maitra, P. Gel technology suitable for use in cosmetic compositions., Patents number WO2012/101222A1, 2012.
[155]
Green, J. Semi-permanent mascara and method of applying., Patents US13/678,251, 2013.
[156]
Morigi, M.; Mogavero, F.; Ballarin, B.; Galli, S.; Gabbanini, S. Deodorant composition., Patent number WO2012/101222A1, 2012.
[157]
Ouali, L.; Latreche, D. Polymeric particles and fragrance delivery systems., Patents number US7279542B2, 2007.
[158]
Jagtap, S.B.; Shirke, J.R.; Wagdare, N.A. Lipid nanoparticles for delayed delivery of fragrance with enhanced water solubility, their preparation and use Patents number WO2021/156213A1, 2021.
[159]
Spadari, C.C.; de Bastiani, F.W.M.D.S.; Lopes, L.B.; Ishida, K. Alginate nanoparticles as non-toxic delivery system for miltefosine in the treatment of candidiasis and cryptococcosis. Int. J. Nanomedicine, 2019, 14, 5187-5199.
[http://dx.doi.org/10.2147/IJN.S205350] [PMID: 31371955]
[160]
Spadari, C.C.; Lopes, L.B.; Ishida, K. Potential use of alginate-based carriers as antifungal delivery system. Front. Microbiol., 2017, 8, 97.
[http://dx.doi.org/10.3389/fmicb.2017.00097] [PMID: 28194145]
[161]
de Jalón, E.G.; Blanco-Príeto, M.J.; Ygartua, P.; Santoyo, S. PLGA microparticles: possible vehicles for topical drug delivery. Int. J. Pharm., 2001, 226(1-2), 181-184.
[http://dx.doi.org/10.1016/S0378-5173(01)00811-0] [PMID: 11532580]
[162]
Choudhary, A.; Kant, V.; Jangir, B.L.; Joshi, V.G. Quercetin loaded chitosan tripolyphosphate nanoparticles accelerated cutaneous wound healing in Wistar rats. Eur. J. Pharmacol., 2020, 880, 173172.
[http://dx.doi.org/10.1016/j.ejphar.2020.173172] [PMID: 32407724]

© 2024 Bentham Science Publishers | Privacy Policy