Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

SARS-CoV-2 Infections, Impaired Tissue, and Metabolic Health: Pathophysiology and Potential Therapeutics

Author(s): Shailendra Pratap Singh*, Aayushi Bhatnagar, Sujeet Kumar Singh, Sanjib K. Patra, Navjot Kanwar, Abhinav Kanwal*, Salomon Amar* and Ranata Manna

Volume 22, Issue 16, 2022

Published on: 11 April, 2022

Page: [2102 - 2123] Pages: 22

DOI: 10.2174/1389557522666220201154845

Price: $65

Abstract

The SARS-CoV-2 enters the human airways and comes into contact with the mucous membranes lining the mouth, nose, and eyes. The virus enters the healthy cells and uses cell machinery to make several copies itself. Critically ill patients infected with SARS-CoV-2 may have damaged lungs, air sacs, lining, and walls. Since COVID-19 causes cytokine storm, it damages the alveolar cells of the lungs and fills them with fluid, making it harder to exchange oxygen and carbon dioxide. The SARS-CoV-2 infection causes a range of complications, including mild to critical breathing difficulties. It has been observed that older people suffering from health conditions like cardiomyopathies, nephropathies, metabolic syndrome, and diabetes instigate severe symptoms.

Many people who died due to COVID-19 had impaired metabolic health [IMH], characterized by hypertension, dyslipidemia, and hyperglycemia, i.e., diabetes, cardiovascular system, and renal diseases, making their retrieval challenging. Jeopardy stresses for increased mortality from COVID-19 include older age, COPD, ischemic heart disease, diabetes mellitus, and immunosuppression. However, no targeted therapies are available as of now. Almost two-thirds of diagnosed coronavirus patients had cardiovascular diseases and diabetes, out of which 37% were under 60. The NHS audit revealed that with a higher expression of ACE-2 receptors, viral particles could easily bind their protein spikes and get inside the cells, finally causing COVID-19 infection. Hence, people with IMH are more prone to COVID-19 and, ultimately, comorbidities. This review provides enormous information about tissue [lungs, heart, and kidneys] damage, pathophysiological changes, and impaired metabolic health of SARS-CoV-2 infected patients. Moreover, it also designates the possible therapeutic targets of COVID-19 and drugs which can be used against these targets.

Keywords: COVID-19, SARS-CoV-2, ACE2, IMH (Impaired Metabolic Health), potential therapeutics, T2D (Type 2 Diabetes), RAAS (Renin-Angiotensin-Aldosterone System).

Graphical Abstract
[1]
Weis, N.; Thorsteinsson, K.; Martinussen, C.; Madsbad, S. The endocrine and metabolic link between COVID-19, diabetes and obesity Ugeskr. Laeger, 2020, 182(29), 1-8.
[PMID: 32734864]
[2]
Chang, W.T.; Toh, H.S.; Liao, C.T.; Yu, W.L. Cardiac involvement of COVID-19: A comprehensive review. Am. J. Med. Sci., 2021, 361(1), 14-22.
[http://dx.doi.org/10.1016/j.amjms.2020.10.002] [PMID: 33187633]
[3]
Madjid, M.; Safavi-Naeini, P.; Solomon, S.D.; Vardeny, O. Potential effects of coronaviruses on the cardiovascular system: A review. JAMA Cardiol., 2020, 5(7), 831-840.
[http://dx.doi.org/10.1001/jamacardio.2020.1286] [PMID: 32219363]
[4]
Clerkin, K.J.; Fried, J.A.; Raikhelkar, J.; Sayer, G.; Griffin, J.M.; Masoumi, A.; Jain, S.S.; Burkhoff, D.; Kumaraiah, D.; Rabbani, L.; Schwartz, A.; Uriel, N. COVID-19 and cardiovascular disease. Circulation, 2020, 141(20), 1648-1655.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.120.046941] [PMID: 32200663]
[5]
Adil, M.T.; Rahman, R.; Whitelaw, D.; Jain, V.; Al-Taan, O.; Rashid, F.; Munasinghe, A.; Jambulingam, P. SARS-CoV-2 and the pandemic of COVID-19. Postgrad. Med. J., 2021, 97(1144), 110-116.
[http://dx.doi.org/10.1136/postgradmedj-2020-138386] [PMID: 32788312]
[6]
Salian, V.S.; Wright, J.A.; Vedell, P.T.; Nair, S.; Li, C.; Kandimalla, M.; Tang, X.; Carmona Porquera, E.M.; Kalari, K.R.; Kandimalla, K.K. COVID-19 transmission, current treatment, and future therapeutic strategies. Mol. Pharm., 2021, 18(3), 754-771.
[http://dx.doi.org/10.1021/acs.molpharmaceut.0c00608] [PMID: 33464914]
[7]
Yang, X.; Yu, Y.; Xu, J.; Shu, H.; Xia, J.; Liu, H.; Wu, Y.; Zhang, L.; Yu, Z.; Fang, M.; Yu, T.; Wang, Y.; Pan, S.; Zou, X.; Yuan, S.; Shang, Y. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: A single-centered, retrospective, observational study. Lancet Respir. Med., 2020, 8(5), 475-481.
[http://dx.doi.org/10.1016/S2213-2600(20)30079-5] [PMID: 32105632]
[8]
Guan, W.J.; Ni, Z.Y.; Hu, Y.; Liang, W.H.; Ou, C.Q.; He, J.X.; Liu, L.; Shan, H.; Lei, C.L.; Hui, D.S.C.; Du, B.; Li, L.J.; Zeng, G.; Yuen, K.Y.; Chen, R.C.; Tang, C.L.; Wang, T.; Chen, P.Y.; Xiang, J.; Li, S.Y.; Wang, J.L.; Liang, Z.J.; Peng, Y.X.; Wei, L.; Liu, Y.; Hu, Y.H.; Peng, P.; Wang, J.M.; Liu, J.Y.; Chen, Z.; Li, G.; Zheng, Z.J.; Qiu, S.Q.; Luo, J.; Ye, C.J.; Zhu, S.Y.; Zhong, N.S. China Medical Treatment Expert Group for Covid-19. Clinical characteristics of coronavirus disease 2019 in China. N. Engl. J. Med., 2020, 382(18), 1708-1720.
[http://dx.doi.org/10.1056/NEJMoa2002032] [PMID: 32109013]
[9]
Zhang, J-J.; Dong, X.; Cao, Y-Y.; Yuan, Y.D.; Yang, Y.B.; Yan, Y.Q.; Akdis, C.A.; Gao, Y.D. Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. Allergy, 2020, 75(7), 1730-1741.
[http://dx.doi.org/10.1111/all.14238] [PMID: 32077115]
[10]
Wan, Y.; Shang, J.; Graham, R.; Baric, R.S.; Li, F. Receptor recognition by the novel coronavirus from Wuhan: An analysis based on decade-long structural studies of SARS coronavirus. J. Virol., 2020, 94(7), e00127-e20.
[http://dx.doi.org/10.1128/JVI.00127-20] [PMID: 31996437]
[11]
Li, X.C.; Zhang, J.; Zhuo, J.L. The vasoprotective axes of the renin-angiotensin system: Physiological relevance and therapeutic implications in cardiovascular, hypertensive and kidney diseases. Pharmacol Res, 2017, 125(Pt A), 21-38.
[http://dx.doi.org/10.1016/j.phrs.2017.06.005]
[12]
Fang, L.; Karakiulakis, G.; Roth, M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Lancet Respir. Med., 2020, 8(4), e21.
[http://dx.doi.org/10.1016/S2213-2600(20)30116-8] [PMID: 32171062]
[13]
Astuti, I. Ysrafil., Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): An overview of viral structure and host response. Diabetes Metab. Syndr., 2020, 14(4), 407-412.
[http://dx.doi.org/10.1016/j.dsx.2020.04.020] [PMID: 32335367]
[14]
Tian, S.; Xiong, Y.; Liu, H.; Niu, L.; Guo, J.; Liao, M.; Xiao, S.Y. Pathological study of the 2019 novel coronavirus disease (COVID-19) through postmortem core biopsies. Mod. Pathol., 2020, 33(6), 1007-1014.
[http://dx.doi.org/10.1038/s41379-020-0536-x] [PMID: 32291399]
[15]
Lithander, F.E.; Neumann, S.; Tenison, E.; Lloyd, K.; Welsh, T.J.; Rodrigues, J.C.L.; Higgins, J.P.T.; Scourfield, L.; Christensen, H.; Haunton, V.J.; Henderson, E.J. COVID-19 in older people: A rapid clinical review. Age Ageing, 2020, 49(4), 501-515.
[http://dx.doi.org/10.1093/ageing/afaa093] [PMID: 32377677]
[16]
Mueller, A.L.; McNamara, M.S.; Sinclair, D.A. Why does COVID-19 disproportionately affect older people? Aging (Albany NY), 2020, 12(10), 9959-9981.
[http://dx.doi.org/10.18632/aging.103344] [PMID: 32470948]
[17]
Mason, R.J. Pathogenesis of COVID-19 from a cell biology perspective. Eur. Respir. J., 2020, 55(4), 2000607.
[http://dx.doi.org/10.1183/13993003.00607-2020] [PMID: 32269085]
[18]
Ackermann, M.; Werlein, C.; Länger, F.; Kühnel, M.P.; Jonigk, D.D. COVID-19: Effects on the lungs and heart. Pathologe, 2021, 42(2), 164-171.
[http://dx.doi.org/10.1007/s00292-021-00918-9] [PMID: 33560456]
[19]
Ciaccio, M.; Agnello, L. Biochemical biomarkers alterations in Coronavirus disease 2019 (COVID-19). Diagnosis (Berl.), 2020, 7(4), 365-372.
[http://dx.doi.org/10.1515/dx-2020-0057] [PMID: 32589600]
[20]
Tian, S.; Hu, W.; Niu, L.; Liu, H.; Xu, H.; Xiao, S-Y. Pulmonary pathology of early-phase 2019 novel coronavirus (COVID-19) pneumonia in two patients with lung cancer. J. Thorac. Oncol., 2020, 15(5), 700-704.
[http://dx.doi.org/10.1016/j.jtho.2020.02.010] [PMID: 32114094]
[21]
Xu, Z.; Shi, L.; Wang, Y.; Zhang, J.; Huang, L.; Zhang, C.; Liu, S.; Zhao, P.; Liu, H.; Zhu, L.; Tai, Y.; Bai, C.; Gao, T.; Song, J.; Xia, P.; Dong, J.; Zhao, J.; Wang, F.S. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med., 2020, 8(4), 420-422.
[http://dx.doi.org/10.1016/S2213-2600(20)30076-X] [PMID: 32085846]
[22]
Luo, W.; Yu, H.; Gou, J. Clinical pathology of critical patient with novel coronavirus pneumonia (COVID-19): pulmonary fibrosis and vascular changes including microthrombosis formation Preprints, 2020.
[23]
Truffaut, L.; Demey, L.; Bruyneel, A.V.; Roman, A.; Alard, S.; De Vos, N.; Bruyneel, M. Post-discharge critical COVID-19 lung function related to severity of radiologic lung involvement at admission. Respir. Res., 2021, 22(1), 29.
[http://dx.doi.org/10.1186/s12931-021-01625-y] [PMID: 33478527]
[24]
Dorward, D.A.; Russell, C.D.; Um, I.H.; Elshani, M.; Armstrong, S.D.; Penrice-Randal, R.; Millar, T.; Lerpiniere, C.E.B.; Tagliavini, G.; Hartley, C.S.; Randle, N.P.; Gachanja, N.N.; Potey, P.M.D.; Dong, X.; Anderson, A.M.; Campbell, V.L.; Duguid, A.J.; Al Qsous, W.; BouHaidar, R.; Baillie, J.K.; Dhaliwal, K.; Wallace, W.A.; Bellamy, C.O.C.; Prost, S.; Smith, C.; Hiscox, J.A.; Harrison, D.J.; Lucas, C.D. Tissue-specific immunopathology in fatal COVID-19. Am. J. Respir. Crit. Care Med., 2021, 203(2), 192-201.
[http://dx.doi.org/10.1164/rccm.202008-3265OC] [PMID: 33217246]
[25]
Barton, L.M.; Duval, E.J.; Stroberg, E.; Ghosh, S.; Mukhopadhyay, S. COVID-19 autopsies, oklahoma, USA. Am. J. Clin. Pathol., 2020, 153(6), 725-733.
[http://dx.doi.org/10.1093/ajcp/aqaa062] [PMID: 32275742]
[26]
Guan, C.S.; Lv, Z.B.; Yan, S.; Du, Y.N.; Chen, H.; Wei, L.G.; Xie, R.M.; Chen, B.D. Imaging features of coronavirus disease 2019 (COVID-19): evaluation on thin-section CT. Acad. Radiol., 2020, 27(5), 609-613.
[http://dx.doi.org/10.1016/j.acra.2020.03.002] [PMID: 32204990]
[27]
Barajas, R.F., Jr; Rufener, G.; Starkey, J.; Duncan, T.; Fuss, C. Asymptomatic COVID-19: what the neuroradiologist needs to know about pulmonary manifestations. AJNR Am. J. Neuroradiol., 2020, 41(6), 966-968.
[http://dx.doi.org/10.3174/ajnr.A6561] [PMID: 32409313]
[28]
Ye, Z.; Zhang, Y.; Wang, Y.; Huang, Z.; Song, B. Chest CT manifestations of new coronavirus disease 2019 (COVID-19): A pictorial review. Eur. Radiol., 2020, 30(8), 4381-4389.
[http://dx.doi.org/10.1007/s00330-020-06801-0] [PMID: 32193638]
[29]
Geng, Y-J.; Wei, Z-Y.; Qian, H-Y.; Huang, J.; Lodato, R.; Castriotta, R.J. Pathophysiological characteristics and therapeutic approaches for pulmonary injury and cardiovascular complications of coronavirus disease 2019. Cardiovasc Pathol Off J Soc Cardiovasc Pathol., 2020, 47, 107228.
[http://dx.doi.org/10.1016/j.carpath.2020.107228] [PMID: 32375085]
[30]
de Moraes, D.; Paiva, B.V.B.; Cury, S.S.; Ludwig, R.G.; Junior, J.P.A.; Mori, M.A.D.S.; Carvalho, R.F. Prediction of SARS-CoV interaction with host proteins during lung aging reveals a potential role for TRIB3 in COVID-19. Aging Dis., 2021, 12(1), 42-49.
[http://dx.doi.org/10.14336/AD.2020.1112] [PMID: 33532126]
[31]
Santesmasses, D.; Castro, J.P.; Zenin, A.A.; Shindyapina, A.V.; Gerashchenko, M.V.; Zhang, B.; Kerepesi, C.; Yim, S.H.; Fedichev, P.O.; Gladyshev, V.N. COVID-19 is an emergent disease of aging. Aging Cell, 2020, 19(10), e13230.
[http://dx.doi.org/10.1111/acel.13230] [PMID: 33006233]
[32]
Borghesi, A.; Zigliani, A.; Masciullo, R.; Golemi, S.; Maculotti, P.; Farina, D.; Maroldi, R. Radiographic severity index in COVID-19 pneumonia: Relationship to age and sex in 783 Italian patients. Radiol. Med. (Torino), 2020, 125(5), 461-464.
[http://dx.doi.org/10.1007/s11547-020-01202-1] [PMID: 32358691]
[33]
Holt, N.R.; Neumann, J.T.; McNeil, J.J.; Cheng, A.C. Implications of COVID-19 for an ageing population. Med. J. Aust., 2020, 213(8), 342-344.e1.
[http://dx.doi.org/10.5694/mja2.50785] [PMID: 32946607]
[34]
Abouhashem, A.S.; Singh, K.; Azzazy, H.M.E.; Sen, C.K. Is low alveolar type II cell SOD3 in the lungs of elderly linked to the observed severity of COVID-19? Antioxid. Redox Signal., 2020, 33(2), 59-65.
[http://dx.doi.org/10.1089/ars.2020.8111] [PMID: 32323565]
[35]
Booeshaghi, A.S.; Pachter, L. Decrease in ACE2 & mRNA expression in aged mouse lung bioRxiv, 2020.
[36]
Steinman, J.B.; Lum, F.M.; Ho, P.P-K.; Kaminski, N.; Steinman, L. Reduced development of COVID-19 in children reveals molecular checkpoints gating pathogenesis illuminating potential therapeutics. Proc. Natl. Acad. Sci. USA, 2020, 117(40), 24620-24626.
[http://dx.doi.org/10.1073/pnas.2012358117] [PMID: 32883878]
[37]
Marshall, M. The lasting misery of coronavirus long-haulers. Nature, 2020, 585(7825), 339-341.
[http://dx.doi.org/10.1038/d41586-020-02598-6] [PMID: 32929257]
[38]
Mo, X.; Jian, W.; Su, Z.; Chen, M.; Peng, H.; Peng, P.; Lei, C.; Chen, R.; Zhong, N.; Li, S. Abnormal pulmonary function in COVID-19 patients at time of hospital discharge. Eur. Respir. J., 2020, 55(6), 2-5.
[http://dx.doi.org/10.1183/13993003.01217-2020] [PMID: 32381497]
[39]
Raghu, G.; Wilson, K.C. COVID-19 interstitial pneumonia: Monitoring the clinical course in survivors. Lancet Respir. Med., 2020, 8(9), 839-842.
[http://dx.doi.org/10.1016/S2213-2600(20)30349-0] [PMID: 32758440]
[40]
Zhao, Y-M.; Shang, Y-M.; Song, W-B.; Li, Q.Q.; Xie, H.; Xu, Q.F.; Jia, J.L.; Li, L.M.; Mao, H.L.; Zhou, X.M.; Luo, H.; Gao, Y.F.; Xu, A.G. Follow-up study of the pulmonary function and related physiological characteristics of COVID-19 survivors three months after recovery. EClinicalMedicine, 2020, 25, 100463.
[http://dx.doi.org/10.1016/j.eclinm.2020.100463] [PMID: 32838236]
[41]
Carfì, A.; Bernabei, R.; Landi, F. Gemelli Against COVID-19 Post-Acute Care Study Group Persistent symptoms in patients after acute COVID-19. JAMA, 2020, 324(6), 603-605.
[http://dx.doi.org/10.1001/jama.2020.12603] [PMID: 32644129]
[42]
Tale, S.; Ghosh, S.; Meitei, S.P.; Kolli, M.; Garbhapu, A.K.; Pudi, S. Post-COVID-19 pneumonia pulmonary fibrosis. QJM, 2020, 113(11), 837-838.
[http://dx.doi.org/10.1093/qjmed/hcaa255] [PMID: 32814978]
[43]
Gaurav, R.; Anderson, D.R.; Radio, S.J.; Bailey, K.L.; England, B.R.; Mikuls, T.R.; Thiele, G.M.; Strah, H.M.; Romberger, D.J.; Wyatt, T.A.; Dickinson, J.D.; Duryee, M.J.; Katafiasz, D.M.; Nelson, A.J.; Poole, J.A. IL-33 depletion in COVID-19 lungs. Chest, 2021, 160(5), 1656-1659.
[http://dx.doi.org/10.1016/j.chest.2021.06.058] [PMID: 34245743]
[44]
Gil, C.; Ginex, T.; Maestro, I.; Nozal, V.; Barrado-Gil, L.; Cuesta-Geijo, M.Á.; Urquiza, J.; Ramírez, D.; Alonso, C.; Campillo, N.E.; Martinez, A. COVID-19: Drug targets and potential treatments. J. Med. Chem., 2020, 63(21), 12359-12386.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00606] [PMID: 32511912]
[45]
Chang, C.K.; Lo, S-C.; Wang, Y-S.; Hou, M-H. Recent insights into the development of therapeutics against coronavirus diseases by targeting N protein. Drug Discov. Today, 2016, 21(4), 562-572.
[http://dx.doi.org/10.1016/j.drudis.2015.11.015] [PMID: 26691874]
[46]
Barton, C.; Kouokam, J.C.; Lasnik, A.B.; Foreman, O.; Cambon, A.; Brock, G.; Montefiori, D.C.; Vojdani, F.; McCormick, A.A.; O’Keefe, B.R.; Palmer, K.E. Activity of and effect of subcutaneous treatment with the broad-spectrum antiviral lectin Griffithsin in two laboratory rodent models. Antimicrob. Agents Chemother., 2014, 58(1), 120-127.
[http://dx.doi.org/10.1128/AAC.01407-13] [PMID: 24145548]
[47]
Nadeem, M.S.; Zamzami, M.A.; Choudhry, H.; Murtaza, B.N.; Kazmi, I.; Ahmad, H.; Shakoori, A.R. Origin, potential therapeutic targets and treatment for coronavirus disease (COVID-19). Pathogens, 2020, 9(4), 1-13.
[http://dx.doi.org/10.3390/pathogens9040307] [PMID: 32331255]
[48]
Adedeji, A.O.; Severson, W.; Jonsson, C.; Singh, K.; Weiss, S.R.; Sarafianos, S.G. Novel inhibitors of severe acute respiratory syndrome coronavirus entry that act by three distinct mechanisms. J. Virol., 2013, 87(14), 8017-8028.
[http://dx.doi.org/10.1128/JVI.00998-13] [PMID: 23678171]
[49]
Liu, S.; Xiao, G.; Chen, Y.; He, Y.; Niu, J.; Escalante, C.R.; Xiong, H.; Farmar, J.; Debnath, A.K.; Tien, P.; Jiang, S. Interaction between heptad repeat 1 and 2 regions in spike protein of SARS-associated coronavirus: Implications for virus fusogenic mechanism and identification of fusion inhibitors. Lancet, 2004, 363(9413), 938-947.
[http://dx.doi.org/10.1016/S0140-6736(04)15788-7] [PMID: 15043961]
[50]
Xia, S.; Liu, M.; Wang, C.; Xu, W.; Lan, Q.; Feng, S.; Qi, F.; Bao, L.; Du, L.; Liu, S.; Qin, C.; Sun, F.; Shi, Z.; Zhu, Y.; Jiang, S.; Lu, L. Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion. Cell Res., 2020, 30(4), 343-355.
[http://dx.doi.org/10.1038/s41422-020-0305-x] [PMID: 32231345]
[51]
Lin, M-H.; Moses, D.C.; Hsieh, C-H.; Cheng, S.C.; Chen, Y.H.; Sun, C.Y.; Chou, C.Y. Disulfiram can inhibit MERS and SARS coronavirus papain-like proteases via different modes. Antiviral Res., 2018, 150, 155-163.
[http://dx.doi.org/10.1016/j.antiviral.2017.12.015] [PMID: 29289665]
[52]
Elfiky, A.A. Ribavirin, Remdesivir, Sofosbuvir, Galidesivir, and Tenofovir against SARS-CoV-2 RNA dependent RNA polymerase (RdRp): A molecular docking study. Life Sci., 2020, 253, 117592.
[http://dx.doi.org/10.1016/j.lfs.2020.117592] [PMID: 32222463]
[53]
Tanner, J.A.; Zheng, B.J.; Zhou, J.; Watt, R.M.; Jiang, J.Q.; Wong, K.L.; Lin, Y.P.; Lu, L.Y.; He, M.L.; Kung, H.F.; Kesel, A.J.; Huang, J.D. The adamantane-derived bananins are potent inhibitors of the helicase activities and replication of SARS coronavirus. Chem. Biol., 2005, 12(3), 303-311.
[http://dx.doi.org/10.1016/j.chembiol.2005.01.006] [PMID: 15797214]
[54]
Kim, M.K.; Yu, M-S.; Park, H.R.; Kim, K.B.; Lee, C.; Cho, S.Y.; Kang, J.; Yoon, H.; Kim, D.E.; Choo, H.; Jeong, Y.J.; Chong, Y. 2,6-Bis-arylmethyloxy-5-hydroxychromones with antiviral activity against both Hepatitis C Virus (HCV) and SARS-associated coronavirus (SCV). Eur. J. Med. Chem., 2011, 46(11), 5698-5704.
[http://dx.doi.org/10.1016/j.ejmech.2011.09.005] [PMID: 21925774]
[55]
Adedeji, A.O.; Singh, K.; Calcaterra, N.E.; DeDiego, M.L.; Enjuanes, L.; Weiss, S.; Sarafianos, S.G. Severe acute respiratory syndrome coronavirus replication inhibitor that interferes with the nucleic acid unwinding of the viral helicase. Antimicrob. Agents Chemother., 2012, 56(9), 4718-4728.
[http://dx.doi.org/10.1128/AAC.00957-12] [PMID: 22733076]
[56]
Rothlin, R.P.; Vetulli, H.M.; Duarte, M.; Pelorosso, F.G. Telmisartan as tentative angiotensin receptor blocker therapeutic for COVID-19. Drug Dev. Res., 2020, 81(7), 768-770.
[http://dx.doi.org/10.1002/ddr.21679] [PMID: 32356926]
[57]
Smith, M.D.; Smith, J.C. Repurposing therapeutics for COVID-19: Supercomputer-based docking to the SARS-CoV-2 viral spike protein and viral spike protein-human ACE2 interface ChemRxiv, 2020.
[58]
Batra, R.; Chan, H.; Kamath, G.; Ramprasad, R.; Cherukara, M.J.; Sankaranarayanan, S.K.R.S. Screening of therapeutic agents for COVID-19 using machine learning and ensemble docking studies. J. Phys. Chem. Lett., 2020, 11(17), 7058-7065.
[http://dx.doi.org/10.1021/acs.jpclett.0c02278] [PMID: 32787328]
[59]
Zhang, H.; Penninger, J.M.; Li, Y.; Zhong, N.; Slutsky, A.S. Angiotensin-Converting Enzyme 2 (ACE2) as a SARS-CoV-2 receptor: Molecular mechanisms and potential therapeutic target. Intensive Care Med., 2020, 46(4), 586-590.
[http://dx.doi.org/10.1007/s00134-020-05985-9] [PMID: 32125455]
[60]
Wösten-van Asperen, R.M.; Lutter, R.; Specht, P.A.; Moll, G.N.; van Woensel, J.B.; van der Loos, C.M.; van Goor, H.; Kamilic, J.; Florquin, S.; Bos, A.P. Acute respiratory distress syndrome leads to reduced ratio of ACE/ACE2 activities and is prevented by angiotensin-(1-7) or an angiotensin II receptor antagonist. J. Pathol., 2011, 225(4), 618-627.
[http://dx.doi.org/10.1002/path.2987] [PMID: 22009550]
[61]
Haschke, M.; Schuster, M.; Poglitsch, M.; Loibner, H.; Salzberg, M.; Bruggisser, M.; Penninger, J.; Krähenbühl, S. Pharmacokinetics and pharmacodynamics of recombinant human angiotensin-converting enzyme 2 in healthy human subjects. Clin. Pharmacokinet., 2013, 52(9), 783-792.
[http://dx.doi.org/10.1007/s40262-013-0072-7] [PMID: 23681967]
[62]
Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.H.; Nitsche, A.; Müller, M.A.; Drosten, C.; Pöhlmann, S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 2020, 181(2), 271-280.e8.
[http://dx.doi.org/10.1016/j.cell.2020.02.052] [PMID: 32142651]
[63]
Shen, L.W.; Mao, H.J.; Wu, Y.L.; Tanaka, Y.; Zhang, W. TMPRSS2: A potential target for treatment of influenza virus and coronavirus infections. Biochimie, 2017, 142, 1-10.
[http://dx.doi.org/10.1016/j.biochi.2017.07.016] [PMID: 28778717]
[64]
Maggio, R.; Corsini, G.U. Repurposing the mucolytic cough suppressant and TMPRSS2 protease inhibitor bromhexine for the prevention and management of SARS-CoV-2 infection. Pharmacol. Res., 2020, 157, 104837.
[http://dx.doi.org/10.1016/j.phrs.2020.104837] [PMID: 32334052]
[65]
Wang, X.; Dhindsa, R.; Povysil, G. TMPRSS2 transcriptional inhibition as a therapeutic strategy for COVID-19 Preprints, 2020. Available from: https://www.preprints.org/manuscript/202003.0360/v2
[66]
Stopsack, K.H.; Mucci, L.A.; Antonarakis, E.S.; Nelson, P.S.; Kantoff, P.W. TMPRSS2 and COVID-19: Serendipity or opportunity for intervention? Cancer Discov., 2020, 10(6), 779-782.
[http://dx.doi.org/10.1158/2159-8290.CD-20-0451] [PMID: 32276929]
[67]
Couture, F.; Kwiatkowska, A.; Dory, Y.L.; Day, R. Therapeutic uses of furin and its inhibitors: A patent review. Expert Opin. Ther. Pat., 2015, 25(4), 379-396.
[http://dx.doi.org/10.1517/13543776.2014.1000303]
[68]
Zhou, Y.; Vedantham, P.; Lu, K.; Agudelo, J.; Carrion, R., Jr; Nunneley, J.W.; Barnard, D.; Pöhlmann, S.; McKerrow, J.H.; Renslo, A.R.; Simmons, G. Protease inhibitors targeting coronavirus and filovirus entry. Antiviral Res., 2015, 116, 76-84.
[http://dx.doi.org/10.1016/j.antiviral.2015.01.011] [PMID: 25666761]
[69]
Verdonck, S.; Pu, S-Y.; Sorrell, F.J.; Elkins, J.M.; Froeyen, M.; Gao, L.J.; Prugar, L.I.; Dorosky, D.E.; Brannan, J.M.; Barouch-Bentov, R.; Knapp, S.; Dye, J.M.; Herdewijn, P.; Einav, S.; De Jonghe, S. Synthesis and structure-activity relationships of 3,5-Disubstituted-pyrrolo[2,3- b]pyridines as inhibitors of adaptor-associated kinase 1 with antiviral Activity. J. Med. Chem., 2019, 62(12), 5810-5831.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00136] [PMID: 31136173]
[70]
Pu, S-Y.; Xiao, F.; Schor, S.; Bekerman, E.; Zanini, F.; Barouch-Bentov, R.; Nagamine, C.M.; Einav, S. Feasibility and biological rationale of repurposing sunitinib and erlotinib for dengue treatment. Antiviral Res., 2018, 155, 67-75.
[http://dx.doi.org/10.1016/j.antiviral.2018.05.001] [PMID: 29753658]
[71]
Richardson, P.; Griffin, I.; Tucker, C.; Smith, D.; Oechsle, O.; Phelan, A.; Rawling, M.; Savory, E.; Stebbing, J. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. Lancet, 2020, 395(10223), e30-e31.
[http://dx.doi.org/10.1016/S0140-6736(20)30304-4] [PMID: 32032529]
[72]
Ou, X.; Liu, Y.; Lei, X.; Li, P.; Mi, D.; Ren, L.; Guo, L.; Guo, R.; Chen, T.; Hu, J.; Xiang, Z.; Mu, Z.; Chen, X.; Chen, J.; Hu, K.; Jin, Q.; Wang, J.; Qian, Z. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat. Commun., 2020, 11(1), 1620.
[http://dx.doi.org/10.1038/s41467-020-15562-9] [PMID: 32221306]
[73]
Wada, Y.; Cardinale, I.; Khatcherian, A.; Chu, J.; Kantor, A.B.; Gottlieb, A.B.; Tatsuta, N.; Jacobson, E.; Barsoum, J.; Krueger, J.G. Apilimod inhibits the production of IL-12 and IL-23 and reduces dendritic cell infiltration in psoriasis. PLoS One, 2012, 7(4), e35069.
[http://dx.doi.org/10.1371/journal.pone.0035069] [PMID: 22493730]
[74]
Ikonomov, O.C.; Sbrissa, D.; Shisheva, A. YM201636, an inhibitor of retroviral budding and PIKfyve-catalyzed PtdIns(3,5)P2 synthesis, halts glucose entry by insulin in adipocytes. Biochem. Biophys. Res. Commun., 2009, 382(3), 566-570.
[http://dx.doi.org/10.1016/j.bbrc.2009.03.063] [PMID: 19289105]
[75]
Penny, C.J.; Vassileva, K.; Jha, A.; Yuan, Y.; Chee, X.; Yates, E.; Mazzon, M.; Kilpatrick, B.S.; Muallem, S.; Marsh, M.; Rahman, T.; Patel, S. Mining of Ebola virus entry inhibitors identifies approved drugs as two-pore channel pore blockers. Biochim. Biophys. Acta Mol. Cell Res., 2019, 1866(7), 1151-1161.
[http://dx.doi.org/10.1016/j.bbamcr.2018.10.022] [PMID: 30408544]
[76]
Homolak, J.; Kodvanj, I. Widely available lysosome targeting agents should be considered as potential therapy for COVID-19. Int. J. Antimicrob. Agents, 2020, 56(2), 106044.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.106044] [PMID: 32522674]
[77]
Seif, F.; Aazami, H.; Khoshmirsafa, M.; Kamali, M.; Mohsenzadegan, M.; Pornour, M.; Mansouri, D. JAK inhibition as a new treatment strategy for patients with COVID-19. Int. Arch. Allergy Immunol., 2020, 181(6), 467-475.
[http://dx.doi.org/10.1159/000508247] [PMID: 32392562]
[78]
Ulrich, H.; Pillat, M.M. CD147 as a Target for COVID-19 treatment: Suggested effects of azithromycin and stem cell engagement. Stem Cell Rev. Rep., 2020, 16(3), 434-440.
[http://dx.doi.org/10.1007/s12015-020-09976-7] [PMID: 32307653]
[79]
Zhou, W.; Liu, Y.; Tian, D.; Wang, C.; Wang, S.; Cheng, J.; Hu, M.; Fang, M.; Gao, Y. Potential benefits of precise corticosteroids therapy for severe 2019-nCoV pneumonia. Signal Transduct. Target. Ther., 2020, 5(1), 18.
[http://dx.doi.org/10.1038/s41392-020-0127-9] [PMID: 32296012]
[80]
Shang, L.; Zhao, J.; Hu, Y.; Du, R.; Cao, B. On the use of corticosteroids for 2019-nCoV pneumonia. Lancet, 2020, 395(10225), 683-684.
[http://dx.doi.org/10.1016/S0140-6736(20)30361-5] [PMID: 32122468]
[81]
Guo, C.; Li, B.; Ma, H.; Wang, X.; Cai, P.; Yu, Q.; Zhu, L.; Jin, L.; Jiang, C.; Fang, J.; Liu, Q.; Zong, D.; Zhang, W.; Lu, Y.; Li, K.; Gao, X.; Fu, B.; Liu, L.; Ma, X.; Weng, J.; Wei, H.; Jin, T.; Lin, J.; Qu, K. Single-cell analysis of two severe COVID-19 patients reveals a monocyte-associated and tocilizumab-responding cytokine storm. Nat. Commun., 2020, 11(1), 3924.
[http://dx.doi.org/10.1038/s41467-020-17834-w] [PMID: 32764665]
[82]
Hart, B.J.; Dyall, J.; Postnikova, E.; Zhou, H.; Kindrachuk, J.; Johnson, R.F.; Olinger, G.G.; Frieman, M.B.; Holbrook, M.R.; Jahrling, P.B.; Hensley, L. Interferon-β and mycophenolic acid are potent inhibitors of Middle East respiratory syndrome coronavirus in cell-based assays. J. Gen. Virol., 2014, 95(Pt 3), 571-577.
[http://dx.doi.org/10.1099/vir.0.061911-0] [PMID: 24323636]
[83]
Rossignol, J-F. Nitazoxanide: A first-in-class broad-spectrum antiviral agent. Antiviral Res., 2014, 110, 94-103.
[http://dx.doi.org/10.1016/j.antiviral.2014.07.014] [PMID: 25108173]
[84]
Deng, X.; Yu, X.; Pei, J. Regulation of interferon production as a potential strategy for COVID-19 treatment. arXiv , 2020. Available from: http://arxiv.org/abs/2003.00751
[85]
Risitano, A.M.; Mastellos, D.C.; Huber-Lang, M.; Yancopoulou, D.; Garlanda, C.; Ciceri, F.; Lambris, J.D. Complement as a target in COVID-19? Nat. Rev. Immunol., 2020, 20(6), 343-344.
[http://dx.doi.org/10.1038/s41577-020-0320-7] [PMID: 32327719]
[86]
El-Din Abuo-Rahma, G.A.; Mohamed, M.F.A.; Ibrahim, T.S.; Shoman, M.E.; Samir, E.; Abd El-Baky, R.M. Potential repurposed SARS-CoV-2 (COVID-19) infection drugs. RSC Advances, 2020, 10(45), 26895-26916.
[http://dx.doi.org/10.1039/D0RA05821A]
[87]
Lin, S-C.; Ho, C-T.; Chuo, W-H.; Li, S.; Wang, T.T.; Lin, C-C. Effective inhibition of MERS-CoV infection by resveratrol. BMC Infect. Dis., 2017, 17(1), 144.
[http://dx.doi.org/10.1186/s12879-017-2253-8] [PMID: 28193191]
[88]
de Wilde, A.H.; Jochmans, D.; Posthuma, C.C.; Zevenhoven-Dobbe, J.C.; van Nieuwkoop, S.; Bestebroer, T.M.; van den Hoogen, B.G.; Neyts, J.; Snijder, E.J. Screening of an FDA-approved compound library identifies four small-molecule inhibitors of Middle East respiratory syndrome coronavirus replication in cell culture. Antimicrob. Agents Chemother., 2014, 58(8), 4875-4884.
[http://dx.doi.org/10.1128/AAC.03011-14] [PMID: 24841269]
[89]
Alam, S.; Sarker, M.M.R.; Afrin, S.; Richi, F.T.; Zhao, C.; Zhou, J.R.; Mohamed, I.N. Traditional herbal medicines, bioactive metabolites, and plant products against COVID-19: Update on clinical trials and mechanism of actions. Front. Pharmacol., 2021, 12, 671498.
[http://dx.doi.org/10.3389/fphar.2021.671498] [PMID: 34122096]
[90]
Hussain, M.; Awan, F.R. Hypertension regulating angiotensin peptides in the pathobiology of cardiovascular disease. Clin. Exp. Hypertens., 2018, 40(4), 344-352.
[http://dx.doi.org/10.1080/10641963.2017.1377218] [PMID: 29190205]
[91]
Kanda, T.; Takahashi, T. Interleukin-6 and cardiovascular diseases. Jpn. Heart J., 2004, 45(2), 183-193.
[http://dx.doi.org/10.1536/jhj.45.183] [PMID: 15090695]
[92]
Chen, D.; Li, Z.; Bao, P.; Chen, M.; Zhang, M.; Yan, F.; Xu, Y.; Ji, C.; Hu, X.; Sanchis, D.; Zhang, Y.; Ye, J. Nrf2 deficiency aggravates Angiotensin II-induced cardiac injury by increasing hypertrophy and enhancing IL-6/STAT3-dependent inflammation. Biochim. Biophys. Acta Mol. Basis Dis., 2019, 1865(6), 1253-1264.
[http://dx.doi.org/10.1016/j.bbadis.2019.01.020] [PMID: 30668979]
[93]
Guo, F.; Chen, X-L.; Wang, F.; Liang, X.; Sun, Y-X.; Wang, Y-J. Role of angiotensin II type 1 receptor in angiotensin II-induced cytokine production in macrophages J. Interferon Cytokine Res., 2011, 31(4), 351-361.
[94]
Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; Cheng, Z.; Yu, T.; Xia, J.; Wei, Y.; Wu, W.; Xie, X.; Yin, W.; Li, H.; Liu, M.; Xiao, Y.; Gao, H.; Guo, L.; Xie, J.; Wang, G.; Jiang, R.; Gao, Z.; Jin, Q.; Wang, J.; Cao, B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020, 395(10223), 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[95]
Han, H.; Ma, Q.; Li, C.; Liu, R.; Zhao, L.; Wang, W.; Zhang, P.; Liu, X.; Gao, G.; Liu, F.; Jiang, Y.; Cheng, X.; Zhu, C.; Xia, Y. Profiling serum cytokines in COVID-19 patients reveals IL-6 and IL-10 are disease severity predictors. Emerg. Microbes Infect., 2020, 9(1), 1123-1130.
[http://dx.doi.org/10.1080/22221751.2020.1770129] [PMID: 32475230]
[96]
Li, S.S.; Cheng, C.W.; Fu, C.L.; Chan, Y.H.; Lee, M.P.; Chan, J.W.; Yiu, S.F. Left ventricular performance in patients with severe acute respiratory syndrome: A 30-day echocardiographic follow-up study. Circulation, 2003, 108(15), 1798-1803.
[http://dx.doi.org/10.1161/01.CIR.0000094737.21775.32] [PMID: 14504188]
[97]
Yu, C-M.; Wong, R.S-M.; Wu, E.B.; Kong, S.L.; Wong, J.; Yip, G.W.; Soo, Y.O.; Chiu, M.L.; Chan, Y.S.; Hui, D.; Lee, N.; Wu, A.; Leung, C.B.; Sung, J.J. Cardiovascular complications of severe acute respiratory syndrome. Postgrad. Med. J., 2006, 82(964), 140-144.
[http://dx.doi.org/10.1136/pgmj.2005.037515] [PMID: 16461478]
[98]
He, Y.; Chipman, P.R.; Howitt, J.; Bator, C.M.; Whitt, M.A.; Baker, T.S.; Kuhn, R.J.; Anderson, C.W.; Freimuth, P.; Rossmann, M.G. Interaction of coxsackievirus B3 with the full length coxsackievirus-adenovirus receptor. Nat. Struct. Biol., 2001, 8(10), 874-878.
[http://dx.doi.org/10.1038/nsb1001-874] [PMID: 11573093]
[99]
Zanatta, A.; Carturan, E.; Rizzo, S.; Basso, C.; Thiene, G. Story telling of myocarditis. Int. J. Cardiol., 2019, 294, 61-64.
[http://dx.doi.org/10.1016/j.ijcard.2019.07.046] [PMID: 31378380]
[100]
Razzano, D.; Fallon, J.T. Myocarditis: Somethings old and something new. Cardiovasc, 2020, 44, 107155.
[http://dx.doi.org/10.1016/j.carpath.2019.107155] [PMID: 31760237]
[101]
Hirano, T.; Murakami, M. COVID-19: A new virus, but a familiar receptor and cytokine release syndrome. Immunity, 2020, 52(5), 731-733.
[http://dx.doi.org/10.1016/j.immuni.2020.04.003] [PMID: 32325025]
[102]
Li, F.; Li, W.; Farzan, M.; Harrison, S.C. Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science, 2005, 309(5742), 1864-1868.
[http://dx.doi.org/10.1126/science.1116480] [PMID: 16166518]
[103]
Kuba, K.; Imai, Y.; Rao, S.; Gao, H.; Guo, F.; Guan, B.; Huan, Y.; Yang, P.; Zhang, Y.; Deng, W.; Bao, L.; Zhang, B.; Liu, G.; Wang, Z.; Chappell, M.; Liu, Y.; Zheng, D.; Leibbrandt, A.; Wada, T.; Slutsky, A.S.; Liu, D.; Qin, C.; Jiang, C.; Penninger, J.M. A crucial role of Angiotensin Converting Enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat. Med., 2005, 11(8), 875-879.
[http://dx.doi.org/10.1038/nm1267] [PMID: 16007097]
[104]
Vaarala, M.H.; Porvari, K.S.; Kellokumpu, S.; Kyllönen, A.P.; Vihko, P.T. Expression of transmembrane serine protease TMPRSS2 in mouse and human tissues. J. Pathol., 2001, 193(1), 134-140.
[http://dx.doi.org/10.1002/1096-9896(2000)9999:9999<:AID-PATH743>3.0.CO;2-T] [PMID: 11169526]
[105]
Liu, Y.; Yan, L-M.; Wan, L.; Xiang, T.X.; Le, A.; Liu, J.M.; Peiris, M.; Poon, L.L.M.; Zhang, W. Viral dynamics in mild and severe cases of COVID-19. Lancet Infect. Dis., 2020, 20(6), 656-657.
[http://dx.doi.org/10.1016/S1473-3099(20)30232-2] [PMID: 32199493]
[106]
Hu, H.; Ma, F.; Wei, X.; Fang, Y. Coronavirus fulminant myocarditis treated with glucocorticoid and human immunoglobulin. Eur. Heart J., 2021, 42(2), 206.
[http://dx.doi.org/10.1093/eurheartj/ehaa190] [PMID: 32176300]
[107]
Ruan, Q.; Yang, K.; Wang, W.; Jiang, L.; Song, J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med., 2020, 46(5), 846-848.
[http://dx.doi.org/10.1007/s00134-020-05991-x] [PMID: 32125452]
[108]
Chen, C.; Zhou, Y.; Wang, D.W. SARS-CoV-2: a potential novel etiology of fulminant myocarditis. Herz, 2020, 45(3), 230-232.
[http://dx.doi.org/10.1007/s00059-020-04909-z] [PMID: 32140732]
[109]
Zeng, J-H.; Liu, Y-X.; Yuan, J.; Wang, F.X.; Wu, W.B.; Li, J.X.; Wang, L.F.; Gao, H.; Wang, Y.; Dong, C.F.; Li, Y.J.; Xie, X.J.; Feng, C.; Liu, L. First case of COVID-19 complicated with fulminant myocarditis: a case report and insights. Infection, 2020, 48(5), 773-777.
[http://dx.doi.org/10.1007/s15010-020-01424-5] [PMID: 32277408]
[110]
Kwong, J.C.; Schwartz, K.L.; Campitelli, M.A.; Chung, H.; Crowcroft, N.S.; Karnauchow, T.; Katz, K.; Ko, D.T.; McGeer, A.J.; McNally, D.; Richardson, D.C.; Rosella, L.C.; Simor, A.; Smieja, M.; Zahariadis, G.; Gubbay, J.B. Acute myocardial infarction after laboratory-confirmed influenza infection. N. Engl. J. Med., 2018, 378(4), 345-353.
[http://dx.doi.org/10.1056/NEJMoa1702090] [PMID: 29365305]
[111]
Driggin, E.; Madhavan, M.V.; Bikdeli, B.; Chuich, T.; Laracy, J.; Biondi-Zoccai, G.; Brown, T.S.; Der Nigoghossian, C.; Zidar, D.A.; Haythe, J.; Brodie, D.; Beckman, J.A.; Kirtane, A.J.; Stone, G.W.; Krumholz, H.M.; Parikh, S.A. Cardiovascular considerations for patients, health care workers, and health systems during the COVID-19 pandemic. J. Am. Coll. Cardiol., 2020, 75(18), 2352-2371.
[http://dx.doi.org/10.1016/j.jacc.2020.03.031] [PMID: 32201335]
[112]
Tang, N.; Li, D.; Wang, X.; Sun, Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J. Thromb. Haemost., 2020, 18(4), 844-847.
[http://dx.doi.org/10.1111/jth.14768] [PMID: 32073213]
[113]
Warner, F.J.; Lew, R.A.; Smith, A.I.; Lambert, D.W.; Hooper, N.M.; Turner, A.J. Angiotensin-Converting Enzyme 2 (ACE2), but not ACE, is preferentially localized to the apical surface of polarized kidney cells. J. Biol. Chem., 2005, 280(47), 39353-39362.
[http://dx.doi.org/10.1074/jbc.M508914200] [PMID: 16166094]
[114]
Tikellis, C.; Thomas, M.C. Angiotensin-Converting Enzyme 2 (ACE2) is a key modulator of the renin angiotensin system in health and disease. Int. J. Pept., 2012, 2012, 256294.
[http://dx.doi.org/10.1155/2012/256294] [PMID: 22536270]
[115]
Campbell, D.J. Angiotensin Converting Enzyme (ACE) inhibitors and kinin metabolism: Evidence that ACE inhibitors may inhibit a kininase other than ACE. Clin. Exp. Pharmacol. Physiol., 1995, 22(12), 903-911.
[http://dx.doi.org/10.1111/j.1440-1681.1995.tb02325.x] [PMID: 8846511]
[116]
Tom, B.; de Vries, R.; Saxena, P.R.; Danser, A.H. Bradykinin potentiation by angiotensin-(1-7) and ACE inhibitors correlates with ACE C- and N-domain blockade Hypertens, 2001, 38(1), 95-99.
[117]
Taddei, S.; Bortolotto, L. Unraveling the pivotal role of bradykinin in ACE inhibitor activity. Am. J. Cardiovasc. Drugs, 2016, 16(5), 309-321.
[http://dx.doi.org/10.1007/s40256-016-0173-4] [PMID: 27260014]
[118]
Craig, T.J.; Bernstein, J.A.; Farkas, H.; Bouillet, L.; Boccon-Gibod, I. Diagnosis and treatment of bradykinin-mediated angioedema: Outcomes from an angioedema expert consensus meeting. Int. Arch. Allergy Immunol., 2014, 165(2), 119-127.
[http://dx.doi.org/10.1159/000368404] [PMID: 25401373]
[119]
Parratt, J.R.; Vegh, A.; Papp, J.G. Bradykinin as an endogenous myocardial protective substance with particular reference to ischemic preconditioning-a brief review of the evidence. Can. J. Physiol. Pharmacol., 1995, 73(7), 837-842.
[http://dx.doi.org/10.1139/y95-114] [PMID: 8846418]
[120]
Maurer, M.; Bader, M.; Bas, M.; Bossi, F.; Cicardi, M.; Cugno, M.; Howarth, P.; Kaplan, A.; Kojda, G.; Leeb-Lundberg, F.; Lötvall, J.; Magerl, M. New topics in bradykinin research. Allergy, 2011, 66(11), 1397-1406.
[http://dx.doi.org/10.1111/j.1398-9995.2011.02686.x] [PMID: 21859431]
[121]
Critz, S.D.; Cohen, M.V.; Downey, J.M. Mechanisms of acetylcholine- and bradykinin-induced preconditioning. Vascul. Pharmacol., 2005, 42(5-6), 201-209.
[http://dx.doi.org/10.1016/j.vph.2005.02.007] [PMID: 15922253]
[122]
Linz, W.; Wiemer, G.; Schölkens, B.A. Beneficial effects of bradykinin on myocardial energy metabolism and infarct size. Am. J. Cardiol., 1997, 80(3A), 118A-123A.
[http://dx.doi.org/10.1016/S0002-9149(97)00466-9] [PMID: 9293964]
[123]
Yan, J.T.; Wang, T.; Wang, D.W. Recombinant adeno-associated virus-mediated human kallikrein gene therapy protects against hypertensive target organ injuries through inhibiting cell apoptosis. Acta Pharmacol. Sin., 2009, 30(9), 1253-1261.
[http://dx.doi.org/10.1038/aps.2009.114] [PMID: 19684610]
[124]
Yao, Y-Y.; Yin, H.; Shen, B.; Chao, L.; Chao, J. Tissue kallikrein infusion prevents cardiomyocyte apoptosis, inflammation and ventricular remodeling after myocardial infarction. Regul. Pept., 2007, 140(1-2), 12-20.
[http://dx.doi.org/10.1016/j.regpep.2006.11.020] [PMID: 17196272]
[125]
Yang, J.K.; Feng, Y.; Yuan, M.Y.; Yuan, S.Y.; Fu, H.J.; Wu, B.Y.; Sun, G.Z.; Yang, G.R.; Zhang, X.L.; Wang, L.; Xu, X.; Xu, X.P.; Chan, J.C. Plasma glucose levels and diabetes are independent predictors for mortality and morbidity in patients with SARS. Diabet. Med., 2006, 23(6), 623-628.
[http://dx.doi.org/10.1111/j.1464-5491.2006.01861.x] [PMID: 16759303]
[126]
Kassir, R. Risk of COVID-19 for patients with obesity. Obes. Rev., 2020, 21(6), e13034.
[http://dx.doi.org/10.1111/obr.13034] [PMID: 32281287]
[127]
Wan, J.; Sun, W.; Li, X.; Ying, W.; Dai, J.; Kuai, X.; Wei, H.; Gao, X.; Zhu, Y.; Jiang, Y.; Qian, X.; He, F. Inflammation inhibitors were remarkably up-regulated in plasma of severe acute respiratory syndrome patients at progressive phase. Proteomics, 2006, 6(9), 2886-2894.
[http://dx.doi.org/10.1002/pmic.200500638] [PMID: 16649161]
[128]
Lima-Martínez, M.M.; Carrera Boada, C.; Madera-Silva, M.D.; Marín, W.; Contreras, M. COVID-19 and diabetes: A bidirectional relationship Clin. Investig. Arterioscler., 2021, 33(3), 151-157.
[PMID: 33303218]
[129]
Zhou, Y.; Chi, J.; Lv, W.; Wang, Y. Obesity and diabetes as high-risk factors for severe coronavirus disease 2019 (Covid-19). Diabetes Metab. Res. Rev., 2021, 37(2), e3377.
[http://dx.doi.org/10.1002/dmrr.3377] [PMID: 32588943]
[130]
Cuschieri, S.; Grech, S. COVID-19 and diabetes: The why, the what and the how. J. Diabetes Complications, 2020, 34(9), 107637.
[http://dx.doi.org/10.1016/j.jdiacomp.2020.107637] [PMID: 32456846]
[131]
Lim, S.; Bae, J.H.; Kwon, H.S.; Nauck, M.A. COVID-19 and diabetes mellitus: From pathophysiology to clinical management. Nat. Rev. Endocrinol., 2021, 17(1), 11-30.
[http://dx.doi.org/10.1038/s41574-020-00435-4] [PMID: 33188364]
[132]
Kornum, J.B.; Thomsen, R.W.; Riis, A.; Lervang, H-H.; Schønheyder, H.C.; Sørensen, H.T. Diabetes, glycemic control, and risk of hospitalization with pneumonia: A population-based case-control study. Diabetes Care, 2008, 31(8), 1541-1545.
[http://dx.doi.org/10.2337/dc08-0138] [PMID: 18487479]
[133]
Martins, M.; Boavida, J.M.; Raposo, J.F.; Froes, F.; Nunes, B.; Ribeiro, R.T.; Macedo, M.P.; Penha-Gonçalves, C. Diabetes hinders community-acquired pneumonia outcomes in hospitalized patients. BMJ Open Diabetes Res. Care, 2016, 4(1), e000181.
[http://dx.doi.org/10.1136/bmjdrc-2015-000181] [PMID: 27252873]
[134]
Gupta, R.; Hussain, A.; Misra, A. Diabetes and COVID-19: Evidence, current status and unanswered research questions. Eur. J. Clin. Nutr., 2020, 74(6), 864-870.
[http://dx.doi.org/10.1038/s41430-020-0652-1] [PMID: 32404898]
[136]
Sanyaolu, A.; Okorie, C.; Marinkovic, A.; Patidar, R.; Younis, K.; Desai, P.; Hosein, Z.; Padda, I.; Mangat, J.; Altaf, M. Comorbidity and its impact on patients with COVID-19. SN Compr. Clin. Med., 2020, 1-8.
[http://dx.doi.org/10.1007/s42399-020-00363-4] [PMID: 32838147]
[138]
McLaughlin, T.; Ackerman, S.E.; Shen, L.; Engleman, E. Role of innate and adaptive immunity in obesity-associated metabolic disease. J. Clin. Invest., 2017, 127(1), 5-13.
[http://dx.doi.org/10.1172/JCI88876] [PMID: 28045397]
[139]
Chee, Y.J.; Ng, S.J.H.; Yeoh, E. Diabetic ketoacidosis precipitated by Covid-19 in a patient with newly diagnosed diabetes mellitus. Diabetes Res. Clin. Pract., 2020, 164, 108166.
[http://dx.doi.org/10.1016/j.diabres.2020.108166] [PMID: 32339533]
[140]
Kim, N.Y.; Ha, E.; Moon, J.S.; Lee, Y.H.; Choi, E.Y. Acute hyperglycemic crises with coronavirus disease-19: Case reports. Diabetes Metab. J., 2020, 44(2), 349-353.
[http://dx.doi.org/10.4093/dmj.2020.0091] [PMID: 32347027]
[141]
Stratigou, T.; Vallianou, N.; Vlassopoulou, B.; Tzanela, M.; Vassiliadi, D.; Ioannidis, G.; Tsagarakis, S. DKA cases over the last three years: has anything changed? Diabetes Metab. Syndr., 2019, 13(2), 1639-1641.
[http://dx.doi.org/10.1016/j.dsx.2019.03.022] [PMID: 31336534]
[142]
Palermo, N.E.; Sadhu, A.R.; McDonnell, M.E. Diabetic ketoacidosis in COVID-19: unique concerns and considerations. J. Clin. Endocrinol. Metab., 2020, 105(8), 1-11.
[http://dx.doi.org/10.1210/clinem/dgaa360] [PMID: 32556147]
[143]
Stentz, F.B.; Umpierrez, G.E.; Cuervo, R.; Kitabchi, A.E. Proinflammatory cytokines, markers of cardiovascular risks, oxidative stress, and lipid peroxidation in patients with hyperglycemic crises. Diabetes, 2004, 53(8), 2079-2086.
[http://dx.doi.org/10.2337/diabetes.53.8.2079] [PMID: 15277389]
[144]
Li, J.; Wang, X.; Chen, J.; Zuo, X.; Zhang, H.; Deng, A. COVID-19 infection may cause ketosis and ketoacidosis. Diabetes Obes. Metab., 2020, 22(10), 1935-1941.
[http://dx.doi.org/10.1111/dom.14057] [PMID: 32314455]
[145]
Azzam, O.; Prentice, D. Lactation ketoacidosis: An easily missed diagnosis. Intern. Med. J., 2019, 49(2), 256-259.
[http://dx.doi.org/10.1111/imj.14207] [PMID: 30754085]
[146]
Kovács, Z.; D’Agostino, D.P.; Diamond, D.; Kindy, M.S.; Rogers, C.; Ari, C. Therapeutic potential of exogenous ketone supplement induced ketosis in the treatment of psychiatric disorders: Review of current Literature. Front. Psychiatry, 2019, 10, 363.
[http://dx.doi.org/10.3389/fpsyt.2019.00363] [PMID: 31178772]
[147]
Nyenwe, E.A.; Kitabchi, A.E. The evolution of diabetic ketoacidosis: An update of its etiology, pathogenesis and management. Metabolism, 2016, 65(4), 507-521.
[http://dx.doi.org/10.1016/j.metabol.2015.12.007] [PMID: 26975543]
[148]
Metformin, an oral anti-diabetic drug, may reduce mortality in women infected by COVID-19. Available from: https://www.firstpost.com/health/metformin-an-oral-anti-diabetic-drug-may-reduce-mortality-in-women-infected-by-covid-19-claims-study-8519791.html
[149]
Tripathi, K.D. Essentials of Medical Pharmacology 7th Ed; Jaypee Brothers Medical Publishers (P): New Delhi; , 2013.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy