Research Article

低氧诱导因子-1α和miR-210的循环水平与系统性红斑狼疮患者的光敏感性的关系

卷 23, 期 2, 2023

发表于: 18 February, 2022

页: [185 - 192] 页: 8

弟呕挨: 10.2174/1566524022666220114145220

价格: $65

摘要

背景:miR-210是一个关键的缺氧amiR,调节缺氧和与炎症相关的缺氧。系统性红斑狼疮(SLE)是一种慢性自身免疫性疾病,是许多病理性疾病的原因,包括光敏性。 目的:本研究旨在通过一项单中心病例对照研究,寻找系统性红斑狼疮患者的循环miR-210/HIF-1α水平与光敏性及其他系统性红斑狼疮相关病理并发症之间的相关性。 方法:研究人群包括104名有光敏性的埃及SLE患者,32名无光敏性的SLE患者,以及32名健康受试者。使用系统性红斑狼疮疾病活动指数(SLEDAI)对所有患者进行评估。记录了临床并发症/表现和血液学/血清学分析。通过ELISA调查HIF-α浓度,并通过qRT-PCR分析miR-210的表达。 结果:结果显示,SLE/光敏组与SLE和对照组相比,循环的miR-210明显增加。颧部皮疹、口腔溃疡、肾脏疾病或高血压的发生导致miR-210的表达升高。SLEDAI活性状态显示对miR-210没有影响。红细胞沉降率、白细胞、血红蛋白、血小板、患者年龄和病程与循环系统的miR-210呈正相关。与SLE和对照组相比,SLE/光敏组的HIF-α浓度被明显诱导。在SLE/光敏感性中,肾脏疾病和高血压的存在导致HIF-α浓度最高。在SLE/光敏症患者中,HIF-α浓度和循环中的miR-210之间有很强的正相关关系(r = 0.886)。 结论: SLE/光敏症患者的循环miR-210/HIF-1α水平失调受制于其他病理并发症,结果表明,缺氧途径可能与SLE的发病机制和疾病进展呈正相关。

关键词: 光敏性、系统性红斑狼疮、低氧amiR、循环miR-210、HIF-α、患者。

« Previous
[1]
Le X, Yu X, Shen N. Novel insights of microRNAs in the development of systemic lupus erythematosus. Curr Opin Rheumatol 2017; 29(5): 450-7.
[http://dx.doi.org/10.1097/BOR.0000000000000420] [PMID: 28570283]
[2]
Banchereau R, Hong S, Cantarel B, et al. Personalized immunomonitoring uncovers molecular networks that stratify lupus patients. Cell 2016; 165(3): 551-65.
[http://dx.doi.org/10.1016/j.cell.2016.03.008] [PMID: 27040498]
[3]
Pacheco-Lugo L, Sáenz-García J, Navarro Quiroz E, et al. Plasma cytokines as potential biomarkers of kidney damage in patients with systemic lupus erythematosus. Lupus 2019; 28(1): 34-43.
[http://dx.doi.org/10.1177/0961203318812679] [PMID: 30453818]
[4]
Ambros V. The functions of animal microRNAs. Nature 2004; 431(7006): 350-5.
[http://dx.doi.org/10.1038/nature02871] [PMID: 15372042]
[5]
Bartel DP. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 2004; 116(2): 281-97.
[http://dx.doi.org/10.1016/S0092-8674(04)00045-5] [PMID: 14744438]
[6]
Taganov KD, Boldin MP, Baltimore D. MicroRNAs and immunity: Tiny players in a big field. Immunity 2007; 26(2): 133-7.
[http://dx.doi.org/10.1016/j.immuni.2007.02.005] [PMID: 17307699]
[7]
Mehta A, Baltimore D. MicroRNAs as regulatory elements in immune system logic. Nat Rev Immunol 2016; 16(5): 279-94.
[http://dx.doi.org/10.1038/nri.2016.40] [PMID: 27121651]
[8]
Liu J, Qian C, Cao X. Post-translational modification control of innate immunity. Immunity 2016; 45(1): 15-30.
[http://dx.doi.org/10.1016/j.immuni.2016.06.020] [PMID: 27438764]
[9]
O’Connell RM, Rao DS, Baltimore D. microRNA regulation of inflammatory responses. Annu Rev Immunol 2012; 30: 295-312.
[http://dx.doi.org/10.1146/annurev-immunol-020711-075013] [PMID: 22224773]
[10]
Bracken CP, Scott HS, Goodall GJ. A network-biology perspective of microRNA function and dysfunction in cancer. Nat Rev Genet 2016; 17(12): 719-32.
[http://dx.doi.org/10.1038/nrg.2016.134] [PMID: 27795564]
[11]
Leung AK, Sharp PA. MicroRNA functions in stress responses. Mol Cell 2010; 40(2): 205-15.
[http://dx.doi.org/10.1016/j.molcel.2010.09.027] [PMID: 20965416]
[12]
Camps C, Buffa FM, Colella S, et al. hsa-miR-210 Is induced by hypoxia and is an independent prognostic factor in breast cancer. Clin Cancer Res 2008; 14(5): 1340-8.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-1755] [PMID: 18316553]
[13]
Giannakakis A, Sandaltzopoulos R, Greshock J, et al. miR-210 links hypoxia with cell cycle regulation and is deleted in human epithelial ovarian cancer. Cancer Biol Ther 2008; 7(2): 255-64.
[http://dx.doi.org/10.4161/cbt.7.2.5297] [PMID: 18059191]
[14]
Huang X, Le QT, Giaccia AJ. MiR-210-micromanager of the hypoxia pathway. Trends Mol Med 2010; 16(5): 230-7.
[http://dx.doi.org/10.1016/j.molmed.2010.03.004] [PMID: 20434954]
[15]
Chan YC, Banerjee J, Choi SY, Sen CK. miR-210: The master hypoxamir. Microcirculation 2012; 19(3): 215-23.
[http://dx.doi.org/10.1111/j.1549-8719.2011.00154.x] [PMID: 22171547]
[16]
Eltzschig HK, Carmeliet P. Hypoxia and inflammation. N Engl J Med 2011; 364(7): 656-65.
[http://dx.doi.org/10.1056/NEJMra0910283] [PMID: 21323543]
[17]
Dang EV, Barbi J, Yang HY, et al. Control of T(H)17/T(reg) balance by hypoxia-inducible factor 1. Cell 2011; 146(5): 772-84.
[http://dx.doi.org/10.1016/j.cell.2011.07.033] [PMID: 21871655]
[18]
Wang H, Flach H, Onizawa M, Wei L, McManus MT, Weiss A. Negative regulation of Hif1a expression and TH17 differentiation by the hypoxia-regulated microRNA miR-210. Nat Immunol 2014; 15(4): 393-401.
[http://dx.doi.org/10.1038/ni.2846] [PMID: 24608041]
[19]
Sen CK, Gordillo GM, Khanna S, Roy S. Micromanaging vascular biology: Tiny microRNAs play big band. J Vasc Res 2009; 46(6): 527-40.
[http://dx.doi.org/10.1159/000226221] [PMID: 19571573]
[20]
Ha TY. MicroRnas in human diseases: from autoimmune diseases to skin, psychiatric and neurodegenerative diseases. Immune Netw 2011; 11(5): 227-44.
[http://dx.doi.org/10.4110/in.2011.11.5.227] [PMID: 22194706]
[21]
Song L, Tuan RS. MicroRNAs and cell differentiation in mammalian development. Birth Defects Res C Embryo Today 2006; 78(2): 140-9.
[http://dx.doi.org/10.1002/bdrc.20070] [PMID: 16847891]
[22]
Liu J, Drescher KM, Chen XM. MicroRNAs and epithelial immunity. Int Rev Immunol 2009; 28(3-4): 139-54.
[http://dx.doi.org/10.1080/08830180902943058] [PMID: 19811319]
[23]
Sand M, Gambichler T, Sand D, Skrygan M, Altmeyer P, Bechara FG. MicroRNAs and the skin: Tiny players in the body’s largest organ. J Dermatol Sci 2009; 53(3): 169-75.
[http://dx.doi.org/10.1016/j.jdermsci.2008.10.004] [PMID: 19058951]
[24]
Sim JH, Ambler WG, Sollohub IF, et al. Immune cell-stromal circuitry in lupus photosensitivity. J Immunol 2021; 206(2): 302-9.
[http://dx.doi.org/10.4049/jimmunol.2000905] [PMID: 33397744]
[25]
Tan EM, Cohen AS, Fries JF, et al. The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 1982; 25(11): 1271-7.
[http://dx.doi.org/10.1002/art.1780251101] [PMID: 7138600]
[26]
Bombardier C, Gladman DD, Urowitz MB, Caron D, Chang CH. The committee on prognosis studies in SLE. Derivation of the SLEDAI. A disease activity index for lupus patients. Arthritis Rheum 1992; 35(6): 630-40.
[http://dx.doi.org/10.1002/art.1780350606] [PMID: 1599520]
[27]
Chun HY, Chung JW, Kim HA, et al. Cytokine IL-6 and IL-10 as biomarkers in systemic lupus erythematosus. J Clin Immunol 2007; 27(5): 461-6.
[http://dx.doi.org/10.1007/s10875-007-9104-0] [PMID: 17587156]
[28]
Mok MY, Wu HJ, Lo Y, Lau CS. The relation of interleukin 17 (IL-17) and IL-23 to Th1/Th2 cytokines and disease activity in systemic lupus erythematosus. J Rheumatol 2010; 37(10): 2046-52.
[http://dx.doi.org/10.3899/jrheum.100293] [PMID: 20682672]
[29]
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-delta delta C(T)) method. Methods 2001; 25(4): 402-8.
[http://dx.doi.org/10.1006/meth.2001.1262] [PMID: 11846609]
[30]
Wu Y-H, Chan Y-F, Hsieh H-L, Hwang T-L. Upregulation of mir‐210‐5p in systemic lupus erythematosus impairs silent clearance of dead cell remnants. FASEB J 2020; 34(S1): 09005.
[http://dx.doi.org/10.1096/fasebj.2020.34.s1.09005]
[31]
Nanduri J, Vaddi DR, Khan SA, et al. HIF-1α activation by intermittent hypoxia requires NADPH oxidase stimulation by xanthine oxidase. PLoS One 2015; 10(3): e0119762.
[http://dx.doi.org/10.1371/journal.pone.0119762] [PMID: 25751622]
[32]
Huang Q, Chen SS, Li J, et al. miR-210 expression in PBMCs from patients with systemic lupus erythematosus and rheumatoid arthritis. Ir J Med Sci 2018; 187(1): 243-9.
[http://dx.doi.org/10.1007/s11845-017-1634-8] [PMID: 28560518]
[33]
Rigó J, Molvarec A, Nagy B, Biró O, Alasztics B. Expression analysis of circulating exosomal hsa-miR-210 in hypertensive disorders of ‎pregnancy. Pregnancy Hypertens 2016; 6(3): 183.
[http://dx.doi.org/10.1016/j.preghy.2016.08.093]
[34]
Kimura K, Iwano M, Higgins DF, et al. Stable expression of HIF-1alpha in tubular epithelial cells promotes interstitial fibrosis. Am J Physiol Renal Physiol 2008; 295(4): F1023-9.
[http://dx.doi.org/10.1152/ajprenal.90209.2008] [PMID: 18667485]
[35]
Ma C, Wei J, Zhan F, et al. Urinary hypoxia-inducible factor-1alpha levels are associated with histologic chronicity changes and renal function in patients with lupus nephritis. Yonsei Med J 2012; 53(3): 587-92.
[http://dx.doi.org/10.3349/ymj.2012.53.3.587] [PMID: 22477004]
[36]
Deng W, Ren Y, Feng X, et al. Hypoxia inducible factor-1 alpha promotes mesangial cell proliferation in lupus nephritis. Am J Nephrol 2014; 40(6): 507-15.
[http://dx.doi.org/10.1159/000369564] [PMID: 25531641]
[37]
Yang ZC, Liu Y. Hypoxia-inducible factor-1α and autoimmune lupus, arthritis. Inflammation 2016; 39(3): 1268-73.
[http://dx.doi.org/10.1007/s10753-016-0337-z] [PMID: 27032396]
[38]
Higgins DF, Kimura K, Bernhardt WM, et al. Hypoxia promotes fibrogenesis in vivo via HIF-1 stimulation of epithelial-to-mesenchymal transition. J Clin Invest 2007; 117(12): 3810-20.
[http://dx.doi.org/10.1172/JCI30487] [PMID: 18037992]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy