Generic placeholder image

Current Proteomics

Editor-in-Chief

ISSN (Print): 1570-1646
ISSN (Online): 1875-6247

Research Article

iTRAQ-Based Quantitative Proteomics Analysis Reveals the Invasion Mechanism of Spiroplasma eriocheiris in 3T6 Cells

Author(s): Peng Liu, Youyuan Ye, Shasha Xiang, Yuxin Li, Chengbin Zhu, Zixu Chen, Jie Hu, Ye Gen, Li Lou, Xuqi Duan, Juan Zhang* and Wei Gu*

Volume 19, Issue 3, 2022

Published on: 13 January, 2022

Page: [243 - 255] Pages: 13

DOI: 10.2174/1570164619666220113154423

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Spiroplasma eriocheiris is a novel pathogen of freshwater crustaceans and is closely related to S. mirum. They have no cell wall and a helical morphology. They have the ability to infect mammals with an unclear mechanism.

Objective: In this study, our aim was to investigate the profile of protein expression in 3T6 cells infected with S. eriocheiris.

Methods: The proteome of 3T6 cells infected by S. eriocheiris was systematically investigated by iTRAQ.

Results: We identified and quantified 4915 proteins, 67 differentially proteins were found, including 30 up-regulated proteins and 37 down-regulated proteins. GO term analysis shows that dysregulation of adhesion protein , interferon and cytoskeletal regulation are associated with apoptosis. Adhesion protein Vcam1 and Interferon-induced protein GBP2, Ifit1, TAPBP, CD63 ,Arhgef2 were up-regulated. A key cytoskeletal regulatory protein, ARHGEF17 was down-regulated. KEGG pathway analysis showed the NF-kappa B signaling pathway, the MAPK signaling pathway , the Jak-STAT signaling pathway and NOD-like receptor signaling are closely related to apoptosis in vivo.

Conclusion: Analysis of the signaling pathways involved in invasion may provide new insights for understanding the infection mechanisms of S. eriocheiris.

Keywords: 3T6 cell, iTRAQ, Spiroplasma eriocheiris, pathogenic mechanism, GO term analysis, KEGG pathway analysis.

Graphical Abstract
[1]
Liu, P.; Zheng, H.; Meng, Q.; Terahara, N.; Gu, W.; Wang, S.; Zhao, G.; Nakane, D.; Wang, W.; Miyata, M. Chemotaxis without conventional two-component system, based on cell polarity and aerobic conditions in helicity-switching swimming of Spiroplasma eriocheiris. Front. Microbiol., 2017, 8, 58.
[http://dx.doi.org/10.3389/fmicb.2017.00058] [PMID: 28217108]
[2]
Liu, P.; Du, J.; Zhang, J.; Wang, J.; Gu, W.; Wang, W.; Meng, Q. The structural and proteomic analysis of Spiroplasma eriocheiris in response to colchicine. Sci. Rep., 2018, 8(1), 8577.
[http://dx.doi.org/10.1038/s41598-018-26614-y] [PMID: 29872058]
[3]
Trachtenberg, S. Mollicutes-wall-less bacteria with internal cytoskeletons. J. Struct. Biol., 1998, 124(2-3), 244-256.
[http://dx.doi.org/10.1006/jsbi.1998.4063] [PMID: 10049810]
[4]
Kürner, J.; Frangakis, A.S.; Baumeister, W. Cryo-electron tomography reveals the cytoskeletal structure of Spiroplasma melliferum. Science, 2005, 307(5708), 436-438.
[http://dx.doi.org/10.1126/science.1104031] [PMID: 15662018]
[5]
Wang, W.; Gu, W.; Gasparich, G.E.; Bi, K.; Ou, J.; Meng, Q.; Liang, T.; Feng, Q.; Zhang, J.; Zhang, Y. Spiroplasma eriocheiris sp. nov., associated with mortality in the Chinese mitten crab, Eriocheir sinensis. Int. J. Syst. Evol. Microbiol., 2011, 61(Pt 4), 703-708.
[http://dx.doi.org/10.1099/ijs.0.020529-0] [PMID: 20418415]
[6]
Regassa, L.B.; Gasparich, G.E. Spiroplasmas: evolutionary relationships and biodiversity. Front. Biosci., 2006, 11, 2983-3002.
[http://dx.doi.org/10.2741/2027] [PMID: 16720370]
[7]
Zhu, H.; Liu, P.; Du, J.; Wang, J.; Jing, Y.; Zhang, J.; Gu, W.; Wang, W.; Meng, Q. Identification of lysophospholipase protein from Spiroplasma eriocheiris and verification of its function. Microbiology, 2017, 163(2), 175-184.
[http://dx.doi.org/10.1099/mic.0.000407] [PMID: 27926815]
[8]
Wang, W.; Rong, L.; Gu, W.; Du, K.; Chen, J. Study on experimental infections of Spiroplasma from the Chinese mitten crab in crayfish, mice and embryonated chickens. Res Microbiol, 2003, 154(10), 680.
[9]
Liu, P.; Hou, L.; Liu, M.; Xu, X.; Gao, Q.; Deng, J.; Xiang, S.; Cao, Q.; Zhou, M.; Yang, Q.; Wang, W.; Gu, W.; Meng, Q. Phosphoproteomic analysis of Spiroplasma eriocheiris and crosstalk with acetylome reveals the role of post-translational modifications in metabolism. Curr. Proteomics, 2020, 17(5), 392-403.
[http://dx.doi.org/10.2174/1570164617666191017140456]
[10]
Gu, W.; Yao, W.; Zhao, Y.; Pei, S.; Jiang, C.; Meng, Q.; Wang, W. Establishment of spiroplasma-infected hemocytes as an in vitro laboratory culture model of Chinese mitten crab Eriocheir sinensis. Vet. Microbiol., 2014, 171(1-2), 215-220.
[http://dx.doi.org/10.1016/j.vetmic.2014.03.016] [PMID: 24731553]
[11]
Hou, L.; Liu, Y.; Gao, Q.; Xu, X.; Ning, M.; Bi, J.; Liu, H.; Liu, M.; Gu, W.; Wang, W.; Meng, Q. Spiroplasma eriocheiris Adhesin-Like Protein (ALP) Interacts with Epidermal Growth Factor (EGF) domain proteins to facilitate infection. Front. Cell. Infect. Microbiol., 2017, 7, 13.
[http://dx.doi.org/10.3389/fcimb.2017.00013] [PMID: 28184355]
[12]
Wang, W. Optical and transmission electron microscope study on nerve tissue infested by rickettsia-like organisms in crab, Eriocheir sinensis, suffering from tremor disease. Zool. Res., 2001, 22(6), 467-471.
[13]
Hou, L.; Gu, W.; Zhu, H.; Yao, W.; Wang, W.; Meng, Q. Spiroplasma eriocheiris induces mouse 3T6-Swiss albino cell apoptosis that associated with the infection mechanism. Mol. Immunol., 2017, 91, 75-85.
[http://dx.doi.org/10.1016/j.molimm.2017.08.002] [PMID: 28889064]
[14]
Leu, J.H.; Chang, C.C.; Wu, J.L.; Hsu, C.W.; Hirono, I.; Aoki, T.; Juan, H.F.; Lo, C.F.; Kou, G.H.; Huang, H.C. Comparative analysis of differentially expressed genes in normal and white spot syndrome virus infected Penaeus monodon. BMC Genomics, 2007, 8, 120.
[http://dx.doi.org/10.1186/1471-2164-8-120] [PMID: 17506900]
[15]
Robalino, J.; Carnegie, R.B.; O’Leary, N.; Ouvry-Patat, S.A.; de la Vega, E.; Prior, S.; Gross, P.S.; Browdy, C.L.; Chapman, R.W.; Schey, K.L.; Warr, G. Contributions of functional genomics and proteomics to the study of immune responses in the Pacific white leg shrimp Litopenaeus vannamei. Vet. Immunol. Immunopathol., 2009, 128(1-3), 110-118.
[http://dx.doi.org/10.1016/j.vetimm.2008.10.329] [PMID: 19070907]
[16]
Rojtinnakorn, J.; Hirono, I.; Itami, T.; Takahashi, Y.; Aoki, T. Gene expression in haemocytes of kuruma prawn, Penaeus japonicus, in response to infection with WSSV by EST approach. Fish Shellfish Immunol., 2002, 13(1), 69-83.
[http://dx.doi.org/10.1006/fsim.2001.0382] [PMID: 12201653]
[17]
Anderson, N.L.; Anderson, N.G. Proteome and proteomics: new technologies, new concepts, and new words. Electrophoresis, 1998, 19(11), 1853-1861.
[http://dx.doi.org/10.1002/elps.1150191103] [PMID: 9740045]
[18]
Gan, C.S.; Chong, P.K.; Pham, T.K.; Wright, P.C. Technical, experimental, and biological variations in isobaric tags for relative and absolute quantitation (iTRAQ). J. Proteome Res., 2007, 6(2), 821-827.
[http://dx.doi.org/10.1021/pr060474i] [PMID: 17269738]
[19]
Wang, W.; Wen, B.; Gasparich, G.E.; Zhu, N.; Rong, L.; Chen, J.; Xu, Z. A spiroplasma associated with tremor disease in the Chinese mitten crab (Eriocheir sinensis). Microbiology, 2004, 150(Pt 9), 3035-3040.
[http://dx.doi.org/10.1099/mic.0.26664-0] [PMID: 15347761]
[20]
Yu, S.; Cai, X.; Sun, L.; Zuo, Z.; Mipam, T.; Cao, S.; Shen, L.; Ren, Z.; Chen, X.; Yang, F.; Deng, J.; Ma, X.; Wang, Y. Comparative iTRAQ proteomics revealed proteins associated with spermatogenic arrest of cattleyak. J. Proteomics, 2016, 142, 102-113.
[http://dx.doi.org/10.1016/j.jprot.2016.04.049] [PMID: 27153760]
[21]
Tang, X.; Zhang, Y.; Zhou, Y.; Liu, R.; Shen, Z. Quantitative proteomic analysis of ovaries from Nosema bombycis-infected silkworm (Bombyx mori). J. Invertebr. Pathol., 2020, 172, 107355.
[http://dx.doi.org/10.1016/j.jip.2020.107355] [PMID: 32199834]
[22]
Zhang, L.L.; Zhang, Y.; Ren, J.N.; Liu, Y.L.; Li, J.J.; Tai, Y.N.; Yang, S.Z.; Pan, S.Y.; Fan, G. Proteins differentially expressed during limonene biotransformation by Penicillium digitatum DSM 62840 were examined using iTRAQ labeling coupled with 2D-LC-MS/MS. J. Ind. Microbiol. Biotechnol., 2016, 43(10), 1481-1495.
[http://dx.doi.org/10.1007/s10295-016-1826-7] [PMID: 27538968]
[23]
Meng, Q.; Liu, P.; Wang, J.; Wang, Y.; Hou, L.; Gu, W.; Wang, W. Systematic analysis of the lysine acetylome of the pathogenic bacterium Spiroplasma eriocheiris reveals acetylated proteins related to metabolism and helical structure. J. Proteomics, 2016, 148, 159-169.
[http://dx.doi.org/10.1016/j.jprot.2016.08.001] [PMID: 27498276]
[24]
Liu, X.; Pan, L.; Wang, X.; Gong, Q.; Zhu, Y.Z. Leonurine protects against tumor necrosis factor-α-mediated inflammation in human umbilical vein endothelial cells. Atherosclerosis, 2012, 222(1), 34-42.
[http://dx.doi.org/10.1016/j.atherosclerosis.2011.04.027] [PMID: 22326051]
[25]
Qin, P.; Tang, X.; Elloso, M.M.; Harnish, D.C. Bile acids induce adhesion molecule expression in endothelial cells through activation of reactive oxygen species, NF-kappaB, and p38. Am. J. Physiol. Heart Circ. Physiol., 2006, 291(2), H741-H747.
[http://dx.doi.org/10.1152/ajpheart.01182.2005] [PMID: 16582018]
[26]
Ueno, H.; Pradhan, S.; Schlessel, D.; Hirasawa, H.; Sumpio, B.E. Nicotine enhances human vascular endothelial cell expression of ICAM-1 and VCAM-1 via protein kinase C, p38 mitogen-activated protein kinase, NF-kappaB, and AP-1. Cardiovasc. Toxicol., 2006, 6(1), 39-50.
[http://dx.doi.org/10.1385/CT:6:1:39] [PMID: 16845181]
[27]
Francavilla, C.; Maddaluno, L.; Cavallaro, U. The functional role of cell adhesion molecules in tumor angiogenesis. Semin. Cancer Biol., 2009, 19(5), 298-309.
[http://dx.doi.org/10.1016/j.semcancer.2009.05.004] [PMID: 19482088]
[28]
Zapolska-Downar, D.; Naruszewicz, M. Propionate reduces the cytokine-induced VCAM-1 and ICAM-1 expression by inhibiting nuclear factor-kappa B (NF-kappaB) activation. J. Physiol. Pharmacol., 2009, 60(2), 123-131.
[PMID: 19617655]
[29]
Iansante, V.; Choy, P.M.; Fung, S.W.; Liu, Y.; Chai, J.G.; Dyson, J.; Del Rio, A.; D’Santos, C.; Williams, R.; Chokshi, S.; Anders, R.A.; Bubici, C.; Papa, S. PARP14 promotes the Warburg effect in hepatocellular carcinoma by inhibiting JNK1-dependent PKM2 phosphorylation and activation. Nat. Commun., 2015, 6, 7882.
[http://dx.doi.org/10.1038/ncomms8882] [PMID: 26258887]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy