Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Recent Developments in the Synthesis of Bicyclic Condensed Pyrimidinones

Author(s): Rayees Ahmad Naikoo, Rupesh Kumar, Vipan Kumar and Gaurav Bhargava*

Volume 26, Issue 2, 2022

Published on: 31 January, 2022

Page: [122 - 161] Pages: 40

DOI: 10.2174/1385272826666220112152330

Price: $65

Open Access Journals Promotions 2
Abstract

Functionalized bicyclic pyrimidinones and their derivatives are significant heterocyclic scaffolds being their all-around prevalence in biologically potent compounds. In several attempts to explore the different synthetic methodologies for the construction of bicyclic condensed pyrimidinones, different researchers from all across the globe have reported numerous substantial methods. In the present review, considerable work has been critically compiled on the synthesis of substituted and functionalized bicyclic pyrimidinones from 2000 onwards.

Keywords: Bicyclic pyrimidinones, fused heterocycles, condensed pyrimidinones, heterocycles, Nitrogen heterocycles, biologically active heterocycles.

Next »
Graphical Abstract
[1]
Yagai, S.; Iwashima, T.; Karatsu, T.; Kitamura, A. Synthesis and noncovalent polymerization of self-complementary hydrogen-bonding supramolecular synthons: N, N′-disubstituted 4, 6-diamino-pyrimidin-2 (1 H)-ones. Chem. Commun., 2004, 9, 1114-1115.
[http://dx.doi.org/10.1039/B401132E]
[2]
Nieuwenhuizen, M.M.; de Greef, T.F.; van der Bruggen, R.L.; Paulusse, J.M.; Appel, W.P.; Smulders, M.M.; Sijbesma, R.P.; Meijer, E.W. Self-assembly of ureido-pyrimidinone dimers into one-dimensional stacks by lateral hydrogen bonding. Chemistry, 2010, 16(5), 1601-1612.
[http://dx.doi.org/10.1002/chem.200902107] [PMID: 20039341]
[3]
Rovnyak, G.C.; Atwal, K.S.; Hedberg, A.; Kimball, S.D.; Moreland, S.; Gougoutas, J.Z.; O’Reilly, B.C.; Schwartz, J.; Malley, M.F. Dihydropyrimidine calcium channel blockers. 4. basic 3-substituted-4-aryl-1,4-dihydropyrimidine-5-carboxylic acid esters. potent antihypertensive agents. J. Med. Chem., 1992, 35(17), 3254-3263.
[http://dx.doi.org/10.1021/jm00095a023] [PMID: 1387168]
[4]
Nishiwaki, N.; Wang, H.P.; Matsuo, K.; Tohda, Y.; Ariga, M. Novel ring transformation of nitropyrimidinone; synthetic equivalent of α-nitroformy-lacetic acid. J. Chem. Soc., Perkin Trans. 1, 1997, (16), 2261-2262.
[http://dx.doi.org/10.1039/a704354f]
[5]
Patt, W.C.; Hamilton, H.W.; Taylor, M.D.; Ryan, M.J.; Taylor, D.G., Jr; Connolly, C.J.C.; Doherty, A.M.; Klutchko, S.R.; Sircar, I.; Steinbaugh, B.A. Structure-activity relationships of a series of 2-amino-4-thiazole-containing renin inhibitors. J. Med. Chem., 1992, 35(14), 2562-2572.
[http://dx.doi.org/10.1021/jm00092a006] [PMID: 1635057]
[6]
Sharma, R.N.; Xavier, F.P.; Vasu, K.K.; Chaturvedi, S.C.; Pancholi, S.S. Synthesis of 4-benzyl-1,3-thiazole derivatives as potential anti-inflammatory agents: an analogue-based drug design approach. J. Enzyme Inhib. Med. Chem., 2009, 24(3), 890-897.
[http://dx.doi.org/10.1080/14756360802519558] [PMID: 19469712]
[7]
Jaen, J.C.; Wise, L.D.; Caprathe, B.W.; Tecle, H.; Bergmeier, S.; Humblet, C.C.; Heffner, T.G.; Meltzer, L.T.; Pugsley, T.A. 4-(1,2,5,6-Tetrahydro-1-alkyl-3-pyridinyl)-2-thiazolamines: a novel class of compounds with central dopamine agonist properties. J. Med. Chem., 1990, 33(1), 311-317.
[http://dx.doi.org/10.1021/jm00163a051] [PMID: 1967314]
[8]
Tsuji, K.; Ishikawa, H. Synthesis and anti-pseudomonal activity of new 2-isocephems with a dihydroxypyridone moiety at C-7. Bioorg. Med. Chem. Lett., 1994, 4(13), 1601-1606.
[http://dx.doi.org/10.1016/S0960-894X(01)80574-6]
[9]
Bell, F.W.; Cantrell, A.S.; Högberg, M.; Jaskunas, S.R.; Johansson, N.G.; Jordan, C.L.; Kinnick, M.D.; Lind, P.; Morin, J.M., Jr; Noréen, R. Phenethylthiazolethiourea (PETT) compounds, a new class of HIV-1 reverse transcriptase inhibitors. 1. Synthesis and basic structure-activity relationship studies of PETT analogs. J. Med. Chem., 1995, 38(25), 4929-4936.
[http://dx.doi.org/10.1021/jm00025a010] [PMID: 8523406]
[10]
Ergenç, N.; Çapan, G.; Günay, N.S.; Özkirimli, S.; Güngör, M.; Özbey, S.; Kendi, E. Synthesis and hypnotic activity of new 4-thiazolidinone and 2-thioxo-4,5-imidazolidinedione derivatives. Arch. Pharm. (Weinheim), 1999, 332(10), 343-347.
[http://dx.doi.org/10.1002/(SICI)1521-4184(199910)332:10<343:AID-ARDP343>3.0.CO;2-0] [PMID: 10575366]
[11]
Hargrave, K.D.; Hess, F.K.; Oliver, J.T.N.N. -(4-substituted-thiazolyl)oxamic acid derivatives, a new series of potent, orally active antiallergy agents. J. Med. Chem., 1983, 26(8), 1158-1163.
[http://dx.doi.org/10.1021/jm00362a014] [PMID: 6876084]
[12]
Carter, J.S.; Kramer, S.; Talley, J.J.; Penning, T.; Collins, P.; Graneto, M.J.; Seibert, K.; Koboldt, C.M.; Masferrer, J.; Zweifel, B. Synthesis and activity of sulfonamide-substituted 4,5-diaryl thiazoles as selective cyclooxygenase-2 inhibitors. Bioorg. Med. Chem. Lett., 1999, 9(8), 1171-1174.
[http://dx.doi.org/10.1016/S0960-894X(99)00157-2] [PMID: 10328307]
[13]
Badorc, A.; Bordes, M.F.; de Cointet, P.; Savi, P.; Bernat, A.; Lalé, A.; Petitou, M.; Maffrand, J.P.; Herbert, J.M. New orally active non-peptide fibrinogen receptor (GpIIb-IIIa) antagonists: identification of ethyl 3-[N-[4-[4-[amino[(ethoxycarbonyl) imino]methyl]phenyl]-1,3-thiazol-2-yl]-N-[1-[(ethoxycarbonyl)methyl]pip erid -4-yl]amino]propionate (SR 121787) as a potent and long-acting antithrombotic agent. J. Med. Chem., 1997, 40(21), 3393-3401.
[http://dx.doi.org/10.1021/jm970240y] [PMID: 9341914]
[14]
Rudolph, J.; Theis, H.; Hanke, R.; Endermann, R.; Johannsen, L.; Geschke, F. seco-Cyclothialidines: New concise synthesis, inhibitory activity toward bacterial and human DNA topoisomerases, and antibacterial properties. J. Med. Chem., 2001, 44(4), 619-626.
[http://dx.doi.org/10.1021/jm0010623] [PMID: 11170652]
[15]
Kappe, C.O. Biologically active dihydropyrimidones of the Biginelli-type--a literature survey. Eur. J. Med. Chem., 2000, 35(12), 1043-1052.
[http://dx.doi.org/10.1016/S0223-5234(00)01189-2] [PMID: 11248403]
[16]
Naikoo, R.A.; Kumar, R.; Kumar, V.; Bhargava, G. Recent developments in the synthesis of tricyclic condensed pyrimidinones. Synth. Commun., 2021, 51(10), 1451-1477.
[http://dx.doi.org/10.1080/00397911.2021.1885718]
[17]
Petricci, E.; Mugnaini, C.; Radi, M.; Togninelli, A.; Bernardini, C.; Manetti, F.; Parlato, M.C.; Renzulli, M.L.; Alongi, M.; Falciani, C.; Corelli, F.; Botta, M. Towards new methodologies for the synthesis of biologically interesting 6-substituted pyrimidines and 4(3H)-pyrimidinones. ARKIVOC, 2006, (7), 452-478.
[http://dx.doi.org/10.3998/ark.5550190.0007.732]
[18]
Xiong, X.; Smith, J.L.; Chen, M.S. Effect of incorporation of cidofovir into DNA by human cytomegalovirus DNA polymerase on DNA elongation. Antimicrob. Agents Chemother., 1997, 41(3), 594-599.
[http://dx.doi.org/10.1128/AAC.41.3.594] [PMID: 9055999]
[19]
Block, J.H.; Beale, J.M. Wilson and Gisvold’s textbook of organic medicinal and pharmaceutical chemistry, 11th ed; Lippincott Williams and Wilkins: London, 2004.
[20]
Szczech, G.M.; Furman, P.; Painter, G.R.; Barry, D.W.; Borroto-Esoda, K.; Grizzle, T.B.; Blum, M.R.; Sommadossi, J.; Endoh, R.; Niwa, T.; Yamamoto, M.; Moxham, C. Safety assessment, in vitro and in vivo, and pharmacokinetics of emivirine, a potent and selective nonnucleoside reverse transcriptase inhibitor of human immunodeficiency virus type 1. Antimicrob. Agents Chemother., 2000, 44(1), 123-130.
[http://dx.doi.org/10.1128/AAC.44.1.123-130.2000] [PMID: 10602732]
[21]
Dieterle, F.; Müller-Hagedorn, S.; Liebich, H.M.; Gauglitz, G. Urinary nucleosides as potential tumor markers evaluated by learning vector quantization. Artif. Intell. Med., 2003, 28(3), 265-279.
[http://dx.doi.org/10.1016/S0933-3657(03)00058-7] [PMID: 12927336]
[22]
Mangner, T.J.; Klecker, R.W.; Anderson, L.; Shields, A.F. Synthesis of 2′-deoxy-2′-[18F]fluoro-β-D-arabinofuranosyl nucleosides, [18F]FAU, [18F]FMAU, [18F]FBAU and [18F]FIAU, as potential PET agents for imaging cellular proliferation. Synthesis of [18F]labelled FAU, FMAU, FBAU, FIAU. Nucl. Med. Biol., 2003, 30(3), 215-224.
[http://dx.doi.org/10.1016/S0969-8051(02)00445-6] [PMID: 12745012]
[23]
Kumar, A.; Sinha, S.; Chauhan, P.M. Syntheses of novel antimycobacterial combinatorial libraries of structurally diverse substituted pyrimidines by three-component solid-phase reactions. Bioorg. Med. Chem. Lett., 2002, 12(4), 667-669.
[http://dx.doi.org/10.1016/S0960-894X(01)00829-0] [PMID: 11844696]
[24]
Molina, P.; Aller, E.; Lorenzo, A.; López-Cremades, P.; Rioja, I.; Ubeda, A.; Terencio, M.C.; Alcaraz, M.J. Solid-phase synthesis and inhibitory effects of some pyrido[1,2-c]pyrimidine derivatives on leukocyte formations and experimental inflammation. J. Med. Chem., 2001, 44(6), 1011-1014.
[http://dx.doi.org/10.1021/jm000997g] [PMID: 11300882]
[25]
Taylor, E.C.; Zhou, P.; Tice, C.M. 6-Trifluoromethanesulfonyloxy-4 (3H)-pyrimidinones as versatile intermediates for the synthesis of 6-functionalized 4 (3H)-pyrimidinones. Tetrahedron Lett., 1997, 38(25), 4343-4346.
[http://dx.doi.org/10.1016/S0040-4039(97)00947-7]
[26]
Hodgetts, K.J.; Yoon, T.; Huang, J.; Gulianello, M.; Kieltyka, A.; Primus, R.; Brodbeck, R.; De Lombaert, S.; Doller, D. 2-Aryl-3,6-dialkyl-5-dialkylaminopyrimidin-4-ones as novel crf-1 receptor antagonists. Bioorg. Med. Chem. Lett., 2003, 13(15), 2497-2500.
[http://dx.doi.org/10.1016/S0960-894X(03)00483-9] [PMID: 12852951]
[27]
Ram, V.J.; Singha, U.K.; Guru, P.Y. Chemotherapeutic agents XI: synthesis of pyrimidines and azolopyrimidines as leishmanicides. Eur. J. Med. Chem., 1990, 25(6), 533-538.
[http://dx.doi.org/10.1016/0223-5234(90)90148-V]
[28]
Perspicace, E.; Jouan-Hureaux, V.; Ragno, R.; Ballante, F.; Sartini, S.; La Motta, C.; Da Settimo, F.; Chen, B.; Kirsch, G.; Schneider, S.; Faivre, B.; Hesse, S. Design, synthesis and biological evaluation of new classes of thieno[3,2-d]pyrimidinone and thieno[1,2,3]triazine as inhibitor of vascular endothelial growth factor receptor-2 (VEGFR-2). Eur. J. Med. Chem., 2013, 63, 765-781.
[http://dx.doi.org/10.1016/j.ejmech.2013.03.022] [PMID: 23583911]
[29]
Ahmad, N.M.; Jones, K. An efficient synthesis of thiazolo[3, 2-a] pyrimidinones. Tetrahedron Lett., 2010, 51(25), 3263-3265.
[http://dx.doi.org/10.1016/j.tetlet.2010.04.052]
[30]
Mohan, C.; Bhargava, G.; Pannu, A.P.; Mahajan, M.P. An unprecedented methylene oxidation accompanying the aza Diels–Alder reactions of acyclic unactivated alkenes: synthesis of novel quinolin-3-one substituted pyrimidinone derivatives. Tetrahedron Lett., 2007, 48(10), 1711-1713.
[http://dx.doi.org/10.1016/j.tetlet.2007.01.052]
[31]
Boryski, J.; Golankiewicz, B.; De Clercq, E. Synthesis and antiviral activity of novel N-substituted derivatives of acyclovir. J. Med. Chem., 1988, 31(7), 1351-1355.
[http://dx.doi.org/10.1021/jm00402a017] [PMID: 2455050]
[32]
Golankiewicz, B.; Ostrowski, T.; Goslinski, T.; Januszczyk, P.; Zeidler, J.; Baranowski, D.; de Clercq, E. Fluorescent tricyclic analogues of acyclovir and ganciclovir. a structure-antiviral activity study. J. Med. Chem., 2001, 44(24), 4284-4287.
[http://dx.doi.org/10.1021/jm010922s] [PMID: 11708929]
[33]
Font, D.; Linden, A.; Heras, M.; Villalgordo, J.M. A simple approach for the regioselective synthesis of imidazo[1, 2-a] pyrimidiones and pyrimido[1, 2-a] pyrimidinones. Tetrahedron, 2006, 62(7), 1433-1443.
[http://dx.doi.org/10.1016/j.tet.2005.11.014]
[34]
Taylor, E.C.; Zhou, P.; Tice, C.M.; Lidert, Z.; Roemmele, R.C. Synthesis of 2-(2, 6-Dichloro-4-pyridyl)-3-propargyl-5-ethyl-6-methyl-4 (3H)-pyrimidinone, a promising new herbicide. Tetrahedron Lett., 1997, 38(25), 4339-4342.
[http://dx.doi.org/10.1016/S0040-4039(97)00946-5]
[35]
Mathew, B.; Srivastava, S.; Ross, L.J.; Suling, W.J.; White, E.L.; Woolhiser, L.K.; Lenaerts, A.J.; Reynolds, R.C. Novel pyridopyrazine and pyrimidothiazine derivatives as FtsZ inhibitors. Bioorg. Med. Chem., 2011, 19(23), 7120-7128.
[http://dx.doi.org/10.1016/j.bmc.2011.09.062] [PMID: 22024272]
[36]
Kieć-Kononowicz, K.; Karolak-Wojciechowska, J.; Müller, C.E.; Schumacher, B.; Pękala, E.; Szymańska, E. Imidazo-thiazine, -diazinone and -diazepinone derivatives. synthesis, structure and benzodiazepine receptor binding. Eur. J. Med. Chem., 2001, 36(5), 407-419.
[http://dx.doi.org/10.1016/S0223-5234(01)01239-9] [PMID: 11451530]
[37]
Bozsing, D.; Sohar, P.; Gigler, G.; Kovacs, G. Synthesis and pharmacological study of new 3, 4-dihydro-2H, 6H-pyrimido-[2, 1-b][1, 3] thiazines. Eur. J. Med. Chem., 1996, 31(9), 663-668.
[http://dx.doi.org/10.1016/0223-5234(96)85874-0]
[38]
Schroeder, E.F.; Dodson, R.M. The rearrangement of sulfoxides of pyrimido[5, 4-b][1, 4] thiazines. J. Am. Chem. Soc., 1962, 84(10), 1904-1913.
[http://dx.doi.org/10.1021/ja00869a028]
[39]
Senga, K.; Ichiba, M.; Kanazawa, H.; Nishigaki, S. 1,3-Dipolar cycloaddition of a thiazolo[5,4-d]pyrimidine 1-oxide to dimethyl acetylenedicarboxylate. new ring transformation to a pyrrolo-[3,2-d]pyrimidine via a pyrimido[4,5-b][1,4]thiazine. J. Chem. Soc. Chem. Commun., 1981, 6, 278-280.
[http://dx.doi.org/10.1039/c39810000278]
[40]
Landreau, C.; Deniaud, D.; Meslin, J.C. From thiourea to bicyclic structures: an original route to imidazo[2,1-b]thiazoles, 5H-thiazolo[3,2-a]pyrimidines, 7H-imidazo[2,1-b][1,3]thiazines, and 2H,6H-pyrimido[2,1-b][1,3]thiazines. J. Org. Chem., 2003, 68(12), 4912-4917.
[http://dx.doi.org/10.1021/jo034381l] [PMID: 12790599]
[41]
Gavrin, L.K.; Lee, A.; Provencher, B.A.; Massefski, W.W.; Huhn, S.D.; Ciszewski, G.M.; Cole, D.C.; McKew, J.C. Synthesis of pyrazolo[1,5-α]pyrimidinone regioisomers. J. Org. Chem., 2007, 72(3), 1043-1046.
[http://dx.doi.org/10.1021/jo062120g] [PMID: 17253833]
[42]
Boolell, M.; Allen, M.J.; Ballard, S.A.; Gepi-Attee, S.; Muirhead, G.J.; Naylor, A.M.; Osterloh, I.H.; Gingell, C. Sildenafil: an orally active type 5 cyclic GMP-specific phosphodiesterase inhibitor for the treatment of penile erectile dysfunction. Int. J. Impot. Res., 1996, 8(2), 47-52.
[PMID: 8858389]
[43]
Fowler, C.J.; Miller, J.R.; Sharief, M.K.; Hussain, I.F.; Stecher, V.J.; Sweeney, M. A double blind, randomised study of sildenafil citrate for erectile dysfunction in men with multiple sclerosis. J. Neurol. Neurosurg. Psychiatry, 2005, 76(5), 700-705.
[http://dx.doi.org/10.1136/jnnp.2004.038695] [PMID: 15834030]
[44]
Abelson, M.B.; Berdy, G.J.; Mundorf, T.; Amdahl, L.D.; Graves, A.L. Pemirolast study group. Pemirolast potassium 0.1% ophthalmic solution is an effective treatment for allergic conjunctivitis: a pooled analysis of two prospective, randomized, double-masked, placebo-controlled, phase III studies. J. Ocul. Pharmacol. Ther., 2002, 18(5), 475-488.
[http://dx.doi.org/10.1089/10807680260362759] [PMID: 12419098]
[45]
Nett, M.; Hertweck, C. Farinamycin, a quinazoline from streptomyces griseus. J. Nat. Prod., 2011, 74(10), 2265-2268.
[http://dx.doi.org/10.1021/np2002513] [PMID: 21939253]
[46]
Awouters, F.; Vermeire, J.; Smeyers, F.; Vermote, P.; Van Beek, R.; Niemegeers, C.J. Oral antiallergic activity in ascaris hypersensitive dogs: a study of known antihistamines and of the new compounds ramastine (R 57 959) and levocabastine (R 50 547). Drug Dev. Res., 1986, 8(1‐4), 95-102.
[http://dx.doi.org/10.1002/ddr.430080112]
[47]
Wang, Y.; Zheng, J.; Liu, P.; Wang, W.; Zhu, W. Three new compounds from aspergillus terreus PT06-2 grown in a high salt medium. Mar. Drugs, 2011, 9(8), 1368-1378.
[http://dx.doi.org/10.3390/md9081368] [PMID: 21892351]
[48]
Li, H.; Chen, C.; Xu, S.; Cao, X. Synthesis and bioevaluation of thieno[2, 3-d] pyrimidinone derivatives as potential tumor cell growth inhibitors. J. Chem., 2013, Article ID 692074.
[http://dx.doi.org/10.1155/2013/692074]
[49]
Beutner, K.R.; Friedman, D.J.; Forszpaniak, C.; Andersen, P.L.; Wood, M.J. Valaciclovir compared with acyclovir for improved therapy for herpes zoster in immunocompetent adults. Antimicrob. Agents Chemother., 1995, 39(7), 1546-1553.
[http://dx.doi.org/10.1128/AAC.39.7.1546] [PMID: 7492102]
[50]
Stamp, L.K.; O’Donnell, J.L.; Zhang, M.; James, J.; Frampton, C.; Barclay, M.L.; Chapman, P.T. Using allopurinol above the dose based on creatinine clearance is effective and safe in patients with chronic gout, including those with renal impairment. Arthritis Rheum., 2011, 63(2), 412-421.
[http://dx.doi.org/10.1002/art.30119] [PMID: 21279998]
[51]
Colsky, J.; Meiselas, L.E.; Rosen, S.J.; Schulman, I. Response of patients with leukemia to 8-azaguanine. Blood, 1955, 10(5), 482-492.
[http://dx.doi.org/10.1182/blood.V10.5.482.482] [PMID: 14363328]
[52]
Barnes, P.J. Theophylline. Am. J. Respir. Crit. Care Med., 2013, 188(8), 901-906.
[http://dx.doi.org/10.1164/rccm.201302-0388PP] [PMID: 23672674]
[53]
Evans, C.A.; Cowen, B.J.; Miller, S.J. Diversity-generation from an allenoate–enone coupling: syntheses of azepines and pyrimidones from common precursors. Tetrahedron, 2005, 61(26), 6309-6314.
[http://dx.doi.org/10.1016/j.tet.2005.03.106]
[54]
Al‐Shara’ey, A.A. Reaction of pyrimidinonethione derivatives: synthesis of n‐methyl‐2‐hydrizinopyrimidine‐4‐one, thiazolo[3, 4‐b] n‐methylpyrimidinone; 2‐(1‐pyrazolonyl) n‐methylpyrimidine‐4‐one and 2‐hydrazino‐n‐methyl pyrimidine‐4‐one derivatives. J. Chin. Chem. Soc. (Taipei), 2004, 51(3), 547-552.
[http://dx.doi.org/10.1002/jccs.200400082]
[55]
Silpa, L.; Petrignet, J.; Abarbri, M. Direct access to fluorinated thiadiazolo[3, 2-a] pyrimidin-7-one systems. Synlett, 2014, 25(13), 1827-1830.
[http://dx.doi.org/10.1055/s-0034-1378332]
[56]
Sokolov, V.B.; Aksinenko, A.Y.; Pushin, A.N.; Martynov, I.V. Intramolecular cyclization of 1-allyl-and 1-methallyl-6-amino-2-thiouracils. Russ. Chem. Bull., 2005, 54(7), 1744-1746.
[http://dx.doi.org/10.1007/s11172-006-0032-6]
[57]
Jokić, M.; Raza, Z.; Katalenić, D. The synthesis of novel 6,5- and 6,6-membered fused heterocyclic compounds derived from thymine. Nucleosides Nucleotides Nucleic Acids, 2000, 19(9), 1381-1396.
[http://dx.doi.org/10.1080/15257770008033849] [PMID: 11092310]
[58]
Tsoung, J.; Bogdan, A.R.; Kantor, S.; Wang, Y.; Charaschanya, M.; Djuric, S.W. Synthesis of fused pyrimidinone and quinolone derivatives in an automated high-temperature and high-pressure flow reactor. J. Org. Chem., 2017, 82(2), 1073-1084.
[http://dx.doi.org/10.1021/acs.joc.6b02520] [PMID: 28001397]
[59]
Molnár, A.; Mucsi, Z.; Vlád, G.; Simon, K.; Holczbauer, T.; Podányi, B.; Faigl, F.; Hermecz, I. Ring transformation of unsaturated N-bridgehead fused pyrimidin-4(3H)-ones: Role of repulsive electrostatic nonbonded interaction. J. Org. Chem., 2011, 76(2), 696-699.
[http://dx.doi.org/10.1021/jo102079k] [PMID: 21158465]
[60]
Reddy, D.V.; Sreelatha, P.; Dubey, P.K.; Devi, B.R. Green Synthesis of 3-(2-(4-(6-Fluorobenzo[d]isoxazol-3-yl)piperidin-yl)ethyl-6,7,8,9-tetrahydro-9-hydroxy-2-methylpyridol [1,2-a]pyrimidin-4-one. Asian J. Chem., 2014, 26(12), 3450-3452.
[http://dx.doi.org/10.14233/ajchem.2014.15910]
[61]
Čebašek, P.; Wagger, J.; Bevk, D.; Jakše, R.; Svete, J.; Stanovnik, B. Parallel solution-phase synthesis of (Z)-3-(arylamino)-2,3-dehydroalanine derivatives and solid-phase synthesis of fused pyrimidones. J. Comb. Chem., 2004, 6(3), 356-362.
[http://dx.doi.org/10.1021/cc034066c] [PMID: 15132595]
[62]
Erkin, A.V.; Krutikov, V.I. Formation, structure and heterocyclization of aminoguanidine and ethyl acetoacetate condensation products. Russ. J. Gen. Chem., 2009, 79(6), 1204-1209.
[http://dx.doi.org/10.1134/S1070363209060309]
[63]
Chaimbault, C.; Bosc, J.J.; Leger, J.M.; Negrier, P.; Capelle, F.; Jarry, C. Physicochemical and crystallographic evidence for polymorphism of the racemic ethyl (2-chloromethyl-2,3-dihydro-5H-oxazolo[3, 2-a]pyrimidin-5-one)-6-carboxylate. J. Pharm. Sci., 2000, 89(11), 1496-1504.
[http://dx.doi.org/10.1002/1520-6017(200011)89:11<1496:AID-JPS12>3.0.CO;2-7] [PMID: 11015694]
[64]
Hameed, A.M.A.; Nour-Eldin, A.M.; Ibrahim, M.M.; Sadek, K.U. Regioselectivity in the multicomponent reaction of 5-aminopyrazoles, Meldrum’s Acid and triethyl orthoformate. American Chem. Sci. J., 2015, 8(3), 1-5.
[65]
Lengyel, L.C.; Sipos, G.; Sipocz, T.; Vago, T.; Dormán, G.; Gerencser, J.; Makara, G.; Darvas, F. Synthesis of condensed heterocycles by the gould–jacobs reaction in a novel three-mode pyrolysis reactor. Org. Process Res. Dev., 2015, 19(3), 399-409.
[http://dx.doi.org/10.1021/op500354z]
[66]
Guo, T.; Hunter, R.C.; Zhang, R.; Greenlee, W.J. Microwave assisted synthesis of isothiazolo-, thiazolo-, imidazo-, and pyrimido-pyrimidinones as novel MCH1R antagonists. Tetrahedron Lett., 2007, 48(4), 613-615.
[http://dx.doi.org/10.1016/j.tetlet.2006.11.120]
[67]
Faizi, M.; Dabirian, S.; Tajali, H.; Ahmadi, F.; Zavareh, E.R.; Shahhosseini, S.; Tabatabai, S.A. Novel agonists of benzodiazepine receptors: design, synthesis, binding assay and pharmacological evaluation of 1,2,4-triazolo[1,5-a]pyrimidinone and 3-amino-1,2,4-triazole derivatives. Bioorg. Med. Chem., 2015, 23(3), 480-487.
[http://dx.doi.org/10.1016/j.bmc.2014.12.016] [PMID: 25564376]
[68]
Di Grandi, M.J.; Curran, K.J.; Baum, E.Z.; Bebernitz, G.; Ellestad, G.A.; Ding, W.D.; Lang, S.A.; Rossi, M.; Bloom, J.D. Pyrimido[1,2-b]-1,2,4,5-tetrazin-6-ones as HCMV protease inhibitors: a new class of heterocycles with flavin-like redox properties. Bioorg. Med. Chem. Lett., 2003, 13(20), 3483-3486.
[http://dx.doi.org/10.1016/S0960-894X(03)00789-3] [PMID: 14505653]
[69]
Aouali, M.; Allouche, F.; Zouari, I.; Mhalla, D.; Trigui, M.; Chabchoub, F. Synthesis, antibacterial, and antifungal activities of imidazo[2, 1-c][1, 2, 4] triazoles and 1, 2, 4-triazolo[4, 3-a] pyrimidinones. Synth. Commun., 2014, 44(6), 748-756.
[http://dx.doi.org/10.1080/00397911.2013.804576]
[70]
Safarov, S.; Kukaniev, M.A.; Kolshorn, H.; Meier, H. Preparation of 2‐amino‐5‐methyl‐7H‐1, 3, 4‐thiadiazolo[3, 2‐α] pyrimidin‐7‐ones. J. Heterocycl. Chem., 2005, 42(6), 1105-1109.
[http://dx.doi.org/10.1002/jhet.5570420611]
[71]
Shawali, A.S.; Abdallah, M.A.; Zayed, M.M. A convenient one‐pot synthesis and antimicrobial activity of pyrimido[1, 2‐b][1, 2, 4, 5] tetrazines. J. Heterocycl. Chem., 2002, 39(1), 45-49.
[http://dx.doi.org/10.1002/jhet.5570390105]
[72]
Berecz, G.; Reiter, J.; Argay, G.; Kálmán, A. On triazoles XLIV [1 synthesis of new ring systems containing imidazo[2′, 1′: 3, 4][1, 2, 4] triazolo[1, 5‐a] pyrimidine and imidazo[1′, 2′: 2, 3][1, 2, 4] triazolo[1, 5‐a] pyrimidine skeleton. J. Heterocycl. Chem., 2002, 39(2), 319-325.
[http://dx.doi.org/10.1002/jhet.5570390213]
[73]
Portilla, J.; Quiroga, J.; Nogueras, M.; Cobo, J. Regioselective synthesis of fused pyrazolo[1, 5-a] pyrimidines by reaction of 5-amino-1H-pyrazoles and β-dicarbonyl compounds containing five-membered rings. Tetrahedron, 2012, 68(4), 988-994.
[http://dx.doi.org/10.1016/j.tet.2011.12.001]
[74]
Sharma, R.; Mohan, C. A facile and chemoselective synthesis of novel pyrimido[5, 4‐b][1, 4] thiazines by exo‐dig iodocyclization reactions. J. Heterocycl. Chem., 2017, 54(3), 1833-1839.
[http://dx.doi.org/10.1002/jhet.2773]
[75]
Mohan, C.; Kumar, V.; Mahajan, M.P. A facile synthesis and thio-Claisen rearrangement of 3-aryl-2-phenyl-5-prop-2-ynylsulfanyl-3H-pyrimidin-4-ones: regioselective transformation to thieno[3, 2-d] pyrimidin-4-ones. Tetrahedron Lett., 2004, 45(31), 6075-6077.
[http://dx.doi.org/10.1016/j.tetlet.2004.05.121]
[76]
Mohan, C.; Singh, P.; Mahajan, M.P. Facile synthesis and regioselective thio-claisen rearrangements of 5-prop-2-ynyl/enyl-sulfanyl pyrimidinones: transformation to thienopyrimidinones. Tetrahedron, 2005, 61(45), 10774-10780.
[http://dx.doi.org/10.1016/j.tet.2005.08.074]
[77]
Jayakumar, S.; Singh, P.; Mahajan, M.P. Synthesis of novel heterocyclic fused 1, 3-diazabuta-1, 3-dienes and accompanying rearrangements in their cycloaddition reactions with ketenes: synthesis of heterocyclic fused pyrimidinone derivatives. Tetrahedron, 2004, 60(19), 4315-4324.
[http://dx.doi.org/10.1016/j.tet.2004.02.023]
[78]
Quan, Z.J.; Liang, J.L.; Bai, L.; Zhang, Z.; Da, Y.X.; Wang, X.C. Focused microwave-assisted efficient and convenient synthesis of new pyrido[2, 3-d] pyrimidinone derivatives. Heterocycl. Commun., 2012, 18(5-6), 257-261.
[http://dx.doi.org/10.1515/hc-2012-0131]
[79]
El-Gazzar, A.B.; Gaafar, A.M.; Aly, A.S. Synthesis of some new thiazolo[3, 2-a] pyrido[2, 3-d] pyrimidinones and isoxazolo[5′, 4′: 4, 5] thiazolo[3, 2-a] pyrido[2, 3-d] pyrimidinone. Phosphorus Sulfur Silicon Relat. Elem., 2002, 177(1), 45-58.
[http://dx.doi.org/10.1080/10426500210230]
[80]
Aly, H.M.; Taha, R.H.; El-deeb, N.M.; Alshehri, A. Efficient procedure with new fused pyrimidinone derivatives, Schiff base ligand and its La and Gd complexes by green chemistry. Inorg. Chem. Front., 2018, 5(2), 454-473.
[http://dx.doi.org/10.1039/C7QI00694B]
[81]
Romdhane, A.; Jannet, H.B. Synthesis of new pyran and pyranoquinoline derivatives. Arab. J. Chem., 2017, 10, S3128-S3134.
[http://dx.doi.org/10.1016/j.arabjc.2013.12.002]
[82]
Rahmouni, A.; Souiei, S.; Belkacem, M.A.; Romdhane, A.; Bouajila, J.; Ben Jannet, H. Synthesis and biological evaluation of novel pyrazolopyrimidines derivatives as anticancer and anti-5-lipoxygenase agents. Bioorg. Chem., 2016, 66, 160-168.
[http://dx.doi.org/10.1016/j.bioorg.2016.05.001] [PMID: 27179178]
[83]
Shaabani, A.; Sepahvand, H.; Boroujeni, M.B.; Faroghi, M.T. A green one-pot three-component cascade reaction: the synthesis of 2-amino-5,8-dihydro-3H-pyrido[2,3-D]pyrimidin-4-ones in aqueous medium. Mol. Divers., 2017, 21(1), 147-153.
[http://dx.doi.org/10.1007/s11030-016-9712-9] [PMID: 28083767]
[84]
Insuasty, B.; Orozco, F.; Quiroga, J.; Abonia, R.; Nogueras, M.; Cobo, J. Synthesis and structure elucidation of new regioisomeric 2‐alkylamino‐6‐aryl‐8, 9‐dihydropyrimido[4, 5‐b][1, 4] diazepin‐4 (7h)‐ones. J. Heterocycl. Chem., 2014, 51(1), 196-202.
[http://dx.doi.org/10.1002/jhet.1778]
[85]
Fu, H.; Lam, Y. Traceless solid-phase synthesis of N1,N7-disubstituted purines. J. Comb. Chem., 2005, 7(5), 734-738.
[http://dx.doi.org/10.1021/cc050058f] [PMID: 16153069]
[86]
Balázs, A.; Hetényi, A.; Szakonyi, Z.; Sillanpää, R.; Fülöp, F. Solvent-enhanced diastereo- and regioselectivity in the Pd(II)-catalyzed synthesis of six- and eight-membered heterocycles via cis-aminopalladation. Chemistry, 2009, 15(30), 7376-7381.
[http://dx.doi.org/10.1002/chem.200900477] [PMID: 19551783]
[87]
Davoodnia, A.; Bakavoli, M.; Pooryaghoobi, N.; Roshani, M. A convenient approach to the synthesis of new substituted isoxazolo[5, 4-D] pyrimidin-4 (5H)-ones. Heterocycl. Commun., 2007, 13(5), 323-325.
[http://dx.doi.org/10.1515/HC.2007.13.5.323]
[88]
Wagner, E.; Becan, L.; Nowakowska, E. Synthesis and pharmacological assessment of derivatives of isoxazolo[4,5-d]pyrimidine. Bioorg. Med. Chem., 2004, 12(1), 265-272.
[http://dx.doi.org/10.1016/j.bmc.2003.10.004] [PMID: 14697792]
[89]
Reddy, G.L.; Guru, S.K.; Srinivas, M.; Pathania, A.S.; Mahajan, P.; Nargotra, A.; Bhushan, S.; Vishwakarma, R.A.; Sawant, S.D. Synthesis of 5-substituted-1H-pyrazolo[4,3-d]pyrimidin-7(6H)-one analogs and their biological evaluation as anticancer agents: mTOR inhibitors. Eur. J. Med. Chem., 2014, 80, 201-208.
[http://dx.doi.org/10.1016/j.ejmech.2014.04.051] [PMID: 24780597]
[90]
Moirangthem, N.; Laitonjam, W.S. A facile synthesis of 7-amino-1,3-diaryl-5-phenyl-2-thioxo-pyrano[2,3-d]pyrimidine-4(5H)-ones. American Chem. Sci. J., 2011, 1(3), 58-70.
[91]
Xiang, J.; Geng, C.; Yi, L.; Dang, Q.; Bai, X. Synthesis of highly substituted 2,3-dihydropyrimido[4,5-d]pyrimidin-4(1H)-ones from 4,6-dichloro-5-formylpyrimidine, amines and aldehydes. Mol. Divers., 2011, 15(4), 839-847.
[http://dx.doi.org/10.1007/s11030-011-9314-5] [PMID: 21509500]
[92]
Zhang, X.; Lin, Q.; Zhong, P. A facile one-pot synthesis of 1-arylpyrazolo[3,4-d]pyrimidin-4-ones. Molecules, 2010, 15(5), 3079-3086.
[http://dx.doi.org/10.3390/molecules15053079] [PMID: 20657465]
[93]
Bogolubsky, A.V.; Ryabukhin, S.V.; Plaskon, A.S.; Stetsenko, S.V.; Volochnyuk, D.M.; Tolmachev, A.A. Dry HCl in parallel synthesis of fused pyrimidin-4-ones. J. Comb. Chem., 2008, 10(6), 858-862.
[http://dx.doi.org/10.1021/cc800074t] [PMID: 18767818]
[94]
Aksinenko, A.Y.; Sokolov, V.B.; Goreva, T.V.; Epishina, T.A.; Pushin, A.N. Synthesis of 6-substituted 5, 6, 7, 8-tetrahydropyrimido[4, 5-d] pyrimidine-2, 4-diones and 2-thioxo-5, 6, 7, 8-tetrahydropyrimido[4, 5-d] pyrimidin-4-ones. Russ. Chem. Bull., 2008, 57(7), 1543-1546.
[http://dx.doi.org/10.1007/s11172-008-0199-0]
[95]
Mohamed, N.R.; El-Saidi, M.M.; Ali, Y.M.; Elnagdi, M.H. Utility of 6-amino-2-thiouracil as a precursor for the synthesis of bioactive pyrimidine derivatives. Bioorg. Med. Chem., 2007, 15(18), 6227-6235.
[http://dx.doi.org/10.1016/j.bmc.2007.06.023] [PMID: 17600721]
[96]
Heravi, M.M.; Motamedi, R.; Seifi, N.; Bamoharram, F.F. Catalytic synthesis of 6-aryl-1H-pyrazolo[3,4-d]pyrimidin-4[5H]-ones by heteropolyacid: H14[NaP5W30O110] and H3PW12O40. J. Mol. Catal. Chem., 2006, 249(1-2), 1-3.
[http://dx.doi.org/10.1016/j.molcata.2005.12.025]
[97]
Li, Y.L.; Fevig, J.M.; Cacciola, J.; Buriak, J., Jr; Rossi, K.A.; Jona, J.; Knabb, R.M.; Luettgen, J.M.; Wong, P.C.; Bai, S.A.; Wexler, R.R.; Lam, P.Y. Preparation of 1-(3-aminobenzo[d]isoxazol-5-yl)-1H-pyrazolo[4,3-d]pyrimidin-7(6H)-ones as potent, selective, and efficacious inhibitors of coagulation factor Xa. Bioorg. Med. Chem. Lett., 2006, 16(19), 5176-5182.
[http://dx.doi.org/10.1016/j.bmcl.2006.07.002] [PMID: 16870435]
[98]
Hilmy, K.M. Synthesis of non-nucleosides: 7- and 1,3-substituents of new pyrrolo[2,3-d]pyrimidin-4-ones on antiviral activity. Arch. Pharm. (Weinheim), 2006, 339(4), 174-181.
[http://dx.doi.org/10.1002/ardp.200500162] [PMID: 16586425]
[99]
Quiroga, J.; Insuasty, H.; Insuasty, B.; Abonía, R.; Cobo, J.; Sánchez, A.; Nogueras, M. New aspects on the selective synthesis of 7-arylpyrido[2, 3-d] pyrimidines. Tetrahedron, 2002, 58(24), 4873-4877.
[http://dx.doi.org/10.1016/S0040-4020(02)00433-7]
[100]
Hassaneen, H.M. Chemistry of the enaminone of 1-acetylnaphthalene under microwave irradiation using chitosan as a green catalyst. Molecules, 2011, 16(1), 609-623.
[http://dx.doi.org/10.3390/molecules16010609] [PMID: 21242941]
[101]
Hédou, D.; Deau, E.; Dubouilh‐Benard, C.; Sanselme, M.; Martinet, A.; Chosson, E.; Levacher, V.; Besson, T. Microwave‐assisted [3+ 2] cycloaddition and suzuki–miyaura cross‐coupling for a concise access to polyaromatic scaffolds. Eur. J. Org. Chem., 2013, 2013(33), 7533-7545.
[http://dx.doi.org/10.1002/ejoc.201301014]
[102]
Liu, M.C.; Luo, M.Z.; Mozdziesz, D.E.; Sartorelli, A.C. An improved synthesis of 9-deazaguanine. Synth. Commun., 2002, 32(24), 3797-3802.
[http://dx.doi.org/10.1081/SCC-120015398]
[103]
Gangjee, A.; Zeng, Y.; McGuire, J.J.; Mehraein, F.; Kisliuk, R.L. Synthesis of classical, three-carbon-bridged 5-substituted furo[2,3-d]pyrimidine and 6-substituted pyrrolo[2,3-d]pyrimidine analogues as antifolates. J. Med. Chem., 2004, 47(27), 6893-6901.
[http://dx.doi.org/10.1021/jm040123k] [PMID: 15615538]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy